#
Circuit Simulation for Solar Power Maximum Power Point Tracking with Different Buck-Boost Converter Topologies^{ †}

^{*}

^{†}

## Abstract

**:**

## 1. Introduction

## 2. PV Model

Parameter | Unit | Value |
---|---|---|

Irradiation Level, G | W/m^{2} | 1000 |

Temperature, T | °C | 20 |

Open Circuit Voltage | V | 21.5 |

Short Circuit Current | A | 3.788 |

Voltage, Max Power | V | 17.4 |

Current, Max Power | A | 3.55 |

Maximum Power | W | 61.77 |

## 3. Buck-Boost Converter

**Figure 2.**Buck-Boost Converters. (

**a**) Cuk converter; (

**b**) Zeta Converter; (

**c**) SEPIC Converter; (

**d**) Four-switch type converter.

**Figure 8.**Bode plots of the Four-Switch type converter. (

**a**) $\overline{D}=0.4$; (

**b**) $\overline{D}=0.6$.

## 4. Buck-Boost Converter-Based MPPT System

## 5. Fuzzy Logic MPPT Controller

Fuzzy rules | E(n) | |||||
---|---|---|---|---|---|---|

NB | NS | ZE | PS | PB | ||

∆E(n) | NB | ZE | PS | PS | ZE | NS |

NS | PB | PS | ZE | ZE | NS | |

ZE | PB | PS | ZE | NS | NB | |

PS | PS | ZE | ZE | NS | NB | |

PB | PS | ZE | NS | NS | ZE |

**Figure 13.**Circuit simulation model for buck-boost converter based MPPT system with its PLECS circuit.

## 6. Results and Discussion

**Figure 14.**

**Figure 1**

**4**

**.**Circuit simulation results with 3 Ω load. (

**a**) Power characteristics; (

**b**) Duty ratio command; (

**c**) Output voltage from PV model; (

**d**) Output current from PV model.

**Figure 15.**

**Figure 1**

**5**

**.**Circuit simulation results with 4.9 Ω load. (

**a**) Power characteristics; (

**b**) Duty ratio command; (

**c**) Output voltage from PV model; (

**d**) Output current from PV model.

**Figure 16.**Circuit simulation results with 8 Ω load. (

**a**) Power characteristics; (

**b**) Duty ratio command; (

**c**) Output voltage from PV model; (

**d**) Output current from PV model.

Converter | Zeta | SEPIC | Four-Switch | ||||||
---|---|---|---|---|---|---|---|---|---|

Load | 3 Ω | 4.9 Ω | 8 Ω | 3 Ω | 4.9 Ω | 8 Ω | 3 Ω | 4.9 Ω | 8 Ω |

V_{PV} (V) | 17.473 | 17.419 | 17.378 | 17.448 | 17.377 | 17.418 | 17.33 | 17.425 | 17.363 |

I_{PV} (A) | 3.5425 | 3.5462 | 3.5529 | 3.54 | 3.5548 | 3.5464 | 3.5632 | 3.545 | 3.5577 |

P_{PV} (W) | 61.77 | 61.772 | 61.773 | 61.768 | 61.772 | 61.771 | 61.75 | 61.772 | 61.772 |

Duty Ratio | 0.4428 | 0.5031 | 0.5638 | 0.4428 | 0.5038 | 0.5635 | 0.4473 | 0.5050 | 0.5667 |

**Figure 17.**Circuit simulation for irradiation variations using SEPIC converter. (

**a**) Voltage and current from PV model; (

**b**) Evolution of duty ratio commands.

**Figure 18.**(

**a**) Power output from PV model and power at the load terminal; (

**b**) Power output from PV model versus PV voltage.

**Figure 19.**Circuit simulation for irradiation variations using Zeta converter. (

**a**) Voltage and current from PV model; (

**b**) Power output from PV model and power at the load terminal.

**Figure 20.**Circuit simulation for irradiation variations using four-switch type converter. (

**a**) Voltage and current from PV model; (

**b**) Power output from PV model and power at the load terminal.

## 7. Conclusions

## Acknowledgments

## Author Contributions

## Conflicts of Interest

## References

- International Energy Agency. Technology Roadmap: Solar Photovoltaic Energy; IEA Publications: Paris, France, 2010; Available online: http://www.iea.org/publications/freepublications/publication/pv_roadmap-1.pdf (accessed on 19 February 2014).
- Tomabechi, K. Energy resources in the future. Energies
**2010**, 3, 686–695. [Google Scholar] [CrossRef] - Weissbach, R.S.; Torres, K.M. A non-inverting buck-boost converter with reduced components using a microcontroller. In Proceedings of the Southeast Conference, Clemson, SC, USA, 30 March–1 April 2001; pp. 79–84.
- Sahu, B.; Rincon-Mora, G.A. A low voltage, dynamic, noninverting, synchronous buck-boost converter for portable application. IEEE Trans. Power Electron.
**2004**, 19, 443–452. [Google Scholar] [CrossRef] - Gaboriault, M.; Notman, A. A high efficiency, non-inverting, buck-boost DC-DC converter. In Proceedings of IEEE Applied Power Electronics Conference and Exposition, Anaheim, CA, USA, 22–26 February 2004; pp. 1411–1415.
- Qiao, H.; Zhang, Y.; Yao, Y.; Wei, L. Analysis of buck-boost converter for fuel cell electric vehicles. In Proceedings of IEEE International Conference on Vehicular Electronics and Safety, Beijing, China, 13–15 December 2006; pp. 109–113.
- Shiau, J.-K.; Ma, C.-W. Li-ion battery charging with a buck-boost power converter for a solar powered battery management system. Energies
**2013**, 6, 1669–1699. [Google Scholar] [CrossRef] - Wu, T.; Chang, C.; Chen, Y. A Fuzzy-logic-controlled single-stage converter for PV-powered lighting system applications. IEEE Trans. Ind. Electron.
**2000**, 47, 287–296. [Google Scholar] [CrossRef] - Alajmi, B.N.; Ahmed, K.H.; Finney, S.J.; Williams, B.W. Fuzzy-logic-control approach of a modified hill-climbing method for maximum power point in microgrid standalone photovoltaic system. IEEE Trans. Power Electron.
**2011**, 26, 1022–1030. [Google Scholar] [CrossRef] - Takun, P.; Kaitwanidvilai, S.; Jettanasen, C. Maximum power point tracking using fuzzy logic control for photovoltaic systems. In Proceedings of the International MutiConference of Engineers and Computer Scientists, Hong Kong, China, 16–18 March 2011.
- Khateb, A.E.; Rahim, N.A.; Selvaraj, J.; Uddin, M.N. Fuzzy logic controller based SEPIC converter of maximum power point tracking. In Proceedings of IEEE Industry Application Society Annual Meeting,, Las Vegas, NV, USA, 10–11 October 2012; pp. 1–9.
- Liu, C.-L.; Chiu, Y.-S.; Liu, Y.-H.; Ho, Y.-H.; Huang, S.-S. Optimization of a fuzzy-logic-control-based five-stage battery charger using a fuzzy-based taguchi method. Energies
**2013**, 6, 3528–3547. [Google Scholar] [CrossRef] - Venkatanarayanan, S.; Saravanan, M. Fuzzy logic based PV energy system with SEPIC converter. J. Theor. Appl. Inf. Technol.
**2014**, 59, 89–95. [Google Scholar] - Liu, C.-L.; Chen, J.-H.; Liu, Y.-H.; Yang, Z.-Z. An asymmetrical fuzzy-logic-control-based MPPT algorithm for photovoltaic systems. Energies
**2014**, 7, 2177–2193. [Google Scholar] [CrossRef] - Suntio, T.; Leppaaho, J.; Huusari, J.; Nousiainen, L. Issues on solar-generator interfacing with current-fed MPP-tracking converters. IEEE Trans. Power Electron.
**2010**, 25, 2409–2419. [Google Scholar] [CrossRef] - Nousiainen, L.; Puukko, J.; Maki, A.; Messo, T.; Huusari, J.; Jokipii, J.; Viinamaki, J.; Lobera, D.T.; Valkealahti, S.; Suntio, T. Photovoltaic generator as an input source for power electronic converters. IEEE Trans. Power Electron.
**2013**, 28, 3028–3038. [Google Scholar] [CrossRef] - Walker, G. Evaluating MPPT converter topologies using a MATLAB PV model. J. Electr. Electron. Eng.
**2001**, 21, 49–55. [Google Scholar]

© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).

## Share and Cite

**MDPI and ACS Style**

Shiau, J.-K.; Lee, M.-Y.; Wei, Y.-C.; Chen, B.-C.
Circuit Simulation for Solar Power Maximum Power Point Tracking with Different Buck-Boost Converter Topologies. *Energies* **2014**, *7*, 5027-5046.
https://doi.org/10.3390/en7085027

**AMA Style**

Shiau J-K, Lee M-Y, Wei Y-C, Chen B-C.
Circuit Simulation for Solar Power Maximum Power Point Tracking with Different Buck-Boost Converter Topologies. *Energies*. 2014; 7(8):5027-5046.
https://doi.org/10.3390/en7085027

**Chicago/Turabian Style**

Shiau, Jaw-Kuen, Min-Yi Lee, Yu-Chen Wei, and Bo-Chih Chen.
2014. "Circuit Simulation for Solar Power Maximum Power Point Tracking with Different Buck-Boost Converter Topologies" *Energies* 7, no. 8: 5027-5046.
https://doi.org/10.3390/en7085027