A Novel Methodology for Assessing the Electricity Generation Potential of Biomass Residues: A Case Study in the State of Minas Gerais, Brazil
Abstract
:1. Introduction
2. Materials and Methods
- Utilization of the MCDM/AHP method to decide on the most suitable biomass residues for electricity generation across different microregions, considering multiple criteria and preferences;
- Determination of the theoretical, technical, and economic potential of biomass;
- Determination of the levelized cost of electricity (LCOE) for different mature technologies, providing insights into the economic viability and competitiveness of biomass-based electricity generation.
2.1. Structure of the Proposed Methodology
2.2. Multi-Criteria Methods
2.3. Conversion Technologies: Technological Maturity
2.4. Logistics, Economic Radius, and Pretreatment
3. Results: The Case Study of the State of Minas Gerais in Brazil
3.1. Theoretical Potential
3.2. Economic Potential
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MCDM | Multi-criteria decision-making (Tomada de Decisão Multicritério) |
TRLs | Technological Readiness Levels (Níveis de Prontidão Tecnológica) |
GIS | Geographic Information Systems (Sistemas de Informação Geográfica) |
MWe | Mega Watt elétrico |
GIS-MCDM | Abordagem combinada de GIS e MCDM |
LCOE | Levelized cost of electricity (Custo Nivelado de Eletricidade) |
AHP | Analytic Hierarchy Process (Processo de Hierarquia Analítica) |
NPV | Net Present Value (Valor Presente Líquido) |
IRR | Internal Rate of Return (Taxa Interna de Retorno) |
PBT | Payback Time (Tempo de Retorno do Investimento) |
MSW | Municipal Solid Waste (Resíduos Sólidos Municipais) |
ANEEL | Agência Nacional de Energia Elétrica (Brasil) |
IBGE | Instituto Brasileiro de Geografia e Estatística |
SIDRA | Sistema IBGE de Recuperação Automática |
UNIDO | United Nations Industrial Development Organization (Organização das Nações Unidas para o Desenvolvimento Industrial) |
IRENA | International Renewable Energy Agency (Agência Internacional de Energia Renovável) |
ETC | Energy Transitions Commission (Comissão de Transições Energéticas) |
References
- Multilateral Consultation with Chairs of Negotiating Groups and Heads of Delegation on. Available online: https://unfccc.int/sites/default/files/resource/Co-Chairs_Summary_of_27_Feb_2025_HoDs.pdf (accessed on 24 April 2025).
- Hatab, E. Commentary on COP28: The “Beginning of The End” of The Fossil Fuel Era. Int. J. Comput. Audit. 2023, 5, 68–73. [Google Scholar] [CrossRef]
- Wyllie, M. Developments in the “LNG to Power” Market and the Growing Importance of Floating Facilities; Oxford Institute for Energy Studies: Oxford, UK, 2021; ISBN 9781784671815. [Google Scholar]
- Mandley, S.; Wicke, B.; Junginger, H.; Vuuren, D.; Daioglou, V. Integrated Assessment of the Role of Bioenergy within the EU Energy Transition Targets to 2050. GCB Bioenergy 2021, 14, 157–172. [Google Scholar] [CrossRef]
- Dias, T.A.d.C.; Lora, E.E.S.; Maya, D.M.Y.; del Olmo, O.A. Global Potential Assessment of Available Land for Bioenergy Projects in 2050 within Food Security Limits. Land Use Policy 2021, 105, 105346. [Google Scholar] [CrossRef]
- Errera, M.R.; Dias, T.A.d.C.; Maya, D.M.Y.; Lora, E.E.S. Global Bioenergy Potentials Projections for 2050. Biomass Bioenergy 2023, 170, 106721. [Google Scholar] [CrossRef]
- IRENA. Bioenergy for the Energy Transition Ensuring Sustainability and Overcoming Barriers; IRENA: Masdar City, Abu Dhabi, 2022. [Google Scholar]
- Lacrosse, L.; Englisch, M.; Danner, K.; Stokes, H. The Role of Bioenergy in the Clean Energy Transition and Sustainable Development Lessons from Developing Countries; UNIDO: Vienna, AT, USA, 2021. [Google Scholar]
- Energy Transition Commission. Bioresources within a Net-Zero Emissions Economy: Making a Sustainable Approach Possible The Making Mission Possible Series; Energy Transition Commission: London, UK, 2021. [Google Scholar]
- Colla, M.; Blondeau, J.; Jeanmart, H. Optimal Use of Lignocellulosic Biomass for the Energy Transition, Including the Non-Energy Demand: The Case of the Belgian Energy System. Front. Energy Res. 2022, 10, 802327. [Google Scholar] [CrossRef]
- Kabeyi, M.J.B.; Olanrewaju, O.A. Sustainable Energy Transition for Renewable and Low Carbon Grid Electricity Generation and Supply. Front. Energy Res. 2022, 9, 743114. [Google Scholar] [CrossRef]
- Tun, M.M.; Juchelkova, D.; Win, M.M.; Thu, A.M.; Puchor, T. Biomass Energy: An Overview of Biomass Sources, Energy Potential, and Management in Southeast Asian Countries. Resources 2019, 8, 81. [Google Scholar] [CrossRef]
- Yasseri, S.; Bahai, H. System Readiness Level Estimation of Oil and Gas Production Systems. Int. J. Coast. Offshore Environ. Eng. 2018, 2, 31–44. [Google Scholar] [CrossRef]
- Masi, M.; Oddo, E.; Rulli, M.C.; Seabra, J.E. Roadmap to 2050: The Land-Water-Energy Nexus of Biofuels. In Roadmap to 2050 The Land-Water-Energy Nexus of Biofuels. Sustainable Development Solutions Network and Fondazione Eni Enrico Mattei. 2021. Available online: https://roadmap2050.report/static/files/roadmap-to-2050-biofuels.pdf (accessed on 24 April 2025).
- Gamborg, C.; Millar, K.; Shortall, O.; Sandøe, P. Bioenergy and Land Use: Framing the Ethical Debate. J. Agric. Environ. Ethics 2011, 25, 909–925. [Google Scholar] [CrossRef]
- Alakangas, E. Biomass and Agricultural Residues for Energy Generation. In Fuel Flexible Energy Generation; Woodhead Publishing: Cambridge, UK, 2016; pp. 59–96. [Google Scholar] [CrossRef]
- Ladanai, S.; Vinterbäck, J. Global Potential of Sustainable Biomass for Energy. Rapport (Institutionen för Energi Och Teknik, SLU) 2009, 13. Available online: https://publications.slu.se/?file=publ/show&id=28604 (accessed on 24 April 2025).
- Thorenz, A.; Wietschel, L.; Stindt, D.; Tuma, A. Assessment of Agroforestry Residue Potentials for the Bioeconomy in the European Union. J. Clean. Prod. 2018, 176, 348–359. [Google Scholar] [CrossRef]
- Fiorese, G.; Guariso, G. A GIS-Based Approach to Evaluate Biomass Potential from Energy Crops at Regional Scale. Environ. Model. Softw. 2010, 25, 702–711. [Google Scholar] [CrossRef]
- Famoso, F.; Prestipino, M.; Brusca, S.; Galvagno, A. Designing Sustainable Bioenergy from Residual Biomass: Site Allocation Criteria and Energy/Exergy Performance Indicators. Appl. Energy 2020, 274, 115315. [Google Scholar] [CrossRef]
- Lovrak, A.; Pukšec, T.; Duić, N. A Geographical Information System (GIS) Based Approach for Assessing the Spatial Distribution and Seasonal Variation of Biogas Production Potential from Agricultural Residues and Municipal Biowaste. Appl. Energy 2020, 267, 115010. [Google Scholar] [CrossRef]
- Zhao, B.; Wang, H.; Huang, Z.; Sun, Q. Location Mapping for Constructing Biomass Power Plant Using Multi-Criteria Decision-Making Method. Sustain. Energy Technol. Assess. 2022, 49, 101707. [Google Scholar] [CrossRef]
- Gómez, A.; Rodrigues, M.; Montañés, C.; Dopazo, C.; Fueyo, N. The Potential for Electricity Generation from Crop and Forestry Residues in Spain. Biomass Bioenergy 2010, 34, 703–719. [Google Scholar] [CrossRef]
- Lozano-García, D.F.; Santibañez-Aguilar, J.E.; Lozano, F.J.; Flores-Tlacuahuac, A. GIS-Based Modeling of Residual Biomass Availability for Energy and Production in Mexico. Renew. Sustain. Energy Rev. 2019, 120, 109610. [Google Scholar] [CrossRef]
- Ji, L.; Zheng, Z.; Huang, Y.; Xie, Y.; Sun, L.; Huang, G. An Integrated Decision Support Method for Strategic Planning and Tactical Management of Regional Biomass Power Plants under Uncertainties. J. Clean. Prod. 2023, 388, 135968. [Google Scholar] [CrossRef]
- Ukoba, M.O.; Diemuodeke, E.O.; Briggs, T.A.; Imran, M.; Owebor, K.; Nwachukwu, C.O. Geographic Information Systems (GIS) Approach for Assessing the Biomass Energy Potential and Identification of Appropriate Biomass Conversion Technologies in Nigeria. Biomass Bioenergy 2023, 170, 106726. [Google Scholar] [CrossRef]
- Taherdoost, H.; Madanchian, M. Multi-Criteria Decision Making (MCDM) Methods and Concepts. Encyclopedia 2023, 3, 77–87. [Google Scholar] [CrossRef]
- Saaty, T.L. Decision Making with the Analytic Hierarchy Process. Int. J. Serv. Sci. 2008, 1, 83–98. [Google Scholar] [CrossRef]
- Shen, W.; Chen, X.; Qiu, J.; Hayward, J.A.; Sayeef, S.; Osman, P.; Meng, K.; Dong, Z.Y. A Comprehensive Review of Variable Renewable Energy Levelized Cost of Electricity. Renew. Sustain. Energy Rev. 2020, 133, 110301. [Google Scholar] [CrossRef]
- Campos-Guzmán, V.; García-Cáscales, M.S.; Espinosa, N.; Urbina, A. Life Cycle Analysis with Multi-Criteria Decision Making: A Review of Approaches for the Sustainability Evaluation of Renewable Energy Technologies. Renew. Sustain. Energy Rev. 2019, 104, 343–366. [Google Scholar] [CrossRef]
- Kumar, A.; Sah, B.; Singh, A.R.; Deng, Y.; He, X.; Kumar, P.; Bansal, R.C. A Review of Multi Criteria Decision Making (MCDM) towards Sustainable Renewable Energy Development. Renew. Sustain. Energy Rev. 2017, 69, 596–609. [Google Scholar] [CrossRef]
- Dovichi Filho, F.B.; de Sousa, L.V.M.; Lora, E.E.S.; Palacio, J.C.E.; Borges, P.T.; Barros, R.M.; Jaen, R.L.; Errera, M.R.; Quintero, Q.R. A Methodology for the Feasibility Assessment of Using Crop Residues for Electricity Production Through GIS-MCD and Its Application in a Case Study. Agriculture 2025, 15, 334. [Google Scholar] [CrossRef]
- Dovichi Filho, F.B.; Castillo Santiago, Y.; Silva Lora, E.E.; Escobar Palacio, J.C.; Almazan del Olmo, O.A. Evaluation of the Maturity Level of Biomass Electricity Generation Technologies Using the Technology Readiness Level Criteria. J. Clean. Prod. 2021, 295, 126426. [Google Scholar] [CrossRef]
- Dovichi Filho, F.B.; Silva, E.; Escobar, C.; Venturini, O.J.; Jaén, R.L. An Approach to Technology Selection in Bioelectricity Technical Potential Assessment: A Brazilian Case Study. Energy 2023, 272, 126995. [Google Scholar] [CrossRef]
- Sistema de Informações de Geração da ANEEL. 2024. Available online: https://www.gov.br/aneel/pt-br/centrais-de-conteudos/relatorios-e-indicadores/geracao (accessed on 24 April 2025).
- IBGE. Sistema IBGE de Recuperação Automática SIDRA. 2023. Available online: https://sidra.ibge.gov.br/home/pms/brasil (accessed on 24 April 2025).
Technical Criteria | ||
---|---|---|
N° | Initials | Criteria |
1 | RPj [GW] | Theoretical potential that can be converted into electricity (power) considering the current conditions and constraints (like the conversion efficiency, for instance) |
2 | RPR [%] | The ratio between the mass of residues/mass of agricultural products resulting from harvesting |
3 | η [%] | Biomass energy conversion efficiency (technical potential/theoretical potential) |
4 | AF [%] | Annual availability factor of residues, representing the relative fraction of the year when the residue is available (many crops are not available during the entire year) |
5 | AR [%] | Waste recovery rate, determining the fraction of residues that can be recovered for energy generation (the remaining part is lost) |
6 | RT [km] | Collection, storage, loading, and transport distance of the biomass to the generation plant |
Economic Criteria | ||
7 | CET [BRL/km] | Cost of harvesting, storage, loading, and transportation of the biomass to the generation plant |
Environmental Criteria | ||
8 | CO2 [%] | Percentage of carbon dioxide in the combustion flue gas |
9 | ESR [%] | Environmentally sustainable removal rate, which assumes that part of the biomass must remain in the growing area to regulate the ecosystem |
Social Criteria | ||
10 | GDP [USD] | Indicator that represents the overall economic product of a city, region, state, country, or group of nations |
11 | CUI [MW] | Power availability based on the biomass plants in operation in the region |
12 | Demand (MWh/year) | Electricity demand to satisfy all the loads in a region used by the unit to carry out its operations within a year |
13 | HDI | Indicator that reflects the degree of development of a given society in terms of education, health, and income |
Microregion | Crop | NPV [USD] | IRR [%] | PBT [Year] | LCOE [USD/kWh] | Project |
---|---|---|---|---|---|---|
Unai | Eucalyptus | 7,437,825.89 | 12.49% | 17.37 | 0.1336 | Viable |
Paracatu | Eucalyptus | 77,359,713.31 | 2.94% | 0.00 | 0.1538 | Unviable |
Januaria | Soybean | 9,207,938.27 | 12.99% | 16.21 | 0.1015 | Viable |
Janauba | Eucalyptus | 18,603,349.06 | 11.77% | 19.36 | 0.1078 | Viable |
Salinas | Eucalyptus | 66,255,649.56 | 4.19% | 0.00 | 0.1485 | Unviable |
Pirapora | Corn | 14,544,687.43 | 12.30% | 17.84 | 0.1053 | Viable |
Montes Claros | Eucalyptus | 6,527,299.21 | 12.27% | 17.91 | 0.1061 | Viable |
Grao Mogol | Eucalyptus | 108,003,858.17 | −1.34% | 0.00 | 0.1686 | Unviable |
Bocaiuva | Eucalyptus | 19,219,173.32 | 8.68% | 0.00 | 0.1259 | Unviable |
Diamantina | Eucalyptus | 5,052,681.92 | 9.88% | 0.00 | 0.1191 | Unviable |
Capelinha | Eucalyptus | 125,648,851.92 | −5.07% | 0.00 | 0.1770 | Unviable |
Araçuai | Eucalyptus | 9,661,364.51 | 5.00% | 0.00 | 0.1553 | Unviable |
Pedra Azul | Eucalyptus | 4,948,844.60 | −3.51% | 0.00 | 0.2488 | Unviable |
Almenara | Eucalyptus | 18,135,956.06 | −3.77% | 0.00 | 0.2616 | Unviable |
Teofilo Otoni | Eucalyptus | 4,437,065.98 | 11.40% | 20.62 | 0.1108 | Viable |
Nanuque | Eucalyptus | 24,759,728.31 | 12.25% | 17.97 | 0.1048 | Viable |
Ituiutaba | Sugarcane | 980,457.22 | 10.37% | 25.51 | 0.1162 | Viable |
Uberlandia | Sugarcane | 12,248,156.92 | 9.28% | 0.00 | 0.1226 | Unviable |
Patrocinio | Sugarcane | 7,773,476.44 | −2.02% | 0.00 | 0.2408 | Unviable |
Patos de Minas | Corn | 679,358.32 | 10.35% | 25.65 | 0.1165 | Viable |
Frutal | Sugarcane | 120,490,787.83 | −4.49% | 0.00 | 0.1747 | Unviable |
Uberaba | Sugarcane | 1,591,017.22 | 10.42% | 25.18 | 0.1160 | Viable |
Araxa | Sugarcane | 32,432,066.05 | 12.90% | 16.42 | 0.1012 | Viable |
Tres Marias | Eucalyptus | 9,742,070.66 | 11.09% | 21.83 | 0.1121 | Viable |
Curvelo | Eucalyptus | 13,133,616.68 | 11.37% | 20.75 | 0.1105 | Viable |
Bom Despacho | Sugarcane | 10,074,771.11 | 11.12% | 21.72 | 0.1120 | Viable |
Sete Lagoas | Eucalyptus | 12,849,302.32 | 14.07% | 14.24 | 0.0955 | Viable |
Conceição do Mato Dentro | Eucalyptus | 9,519,391.70 | 12.51% | 17.32 | 0.1034 | Viable |
Para de Minas | Eucalyptus | 4,104,571.52 | 12.58% | 17.14 | 0.1030 | Viable |
Belo Horizonte | Eucalyptus | 5,037,485.63 | 12.65% | 16.98 | 0.1027 | Viable |
Itabira | Eucalyptus | 105,517,954.09 | −1.35% | 0.00 | 0.1675 | Unviable |
Itaguara | Eucalyptus | 9,280,452.31 | 5.22% | 0.00 | 0.1429 | Unviable |
Ouro Preto | Eucalyptus | 28,052,551.66 | 12.56% | 17.20 | 0.1033 | Viable |
Conselheiro Lafaiete | Corn | 11,494,778.60 | 18.01% | 9.97 | 0.0791 | Viable |
Guanhães | Eucalyptus | 89,966,522.70 | 1.07% | 0.00 | 0.1600 | Unviable |
Peçanha | Eucalyptus | 28,697,060.25 | 7.79% | 0.00 | 0.1306 | Unviable |
Governador Valadares | Eucalyptus | 26,963,755.79 | 12.47% | 17.41 | 0.1039 | Viable |
Mantena | Sugarcane | 17,363,339.40 | −3.09% | 0.00 | 0.2553 | Unviable |
Ipatinga | Eucalyptus | 23,580,730.89 | 8.25% | 0.00 | 0.1281 | Unviable |
Caratinga | Eucalyptus | 26,809,372.73 | 7.96% | 0.00 | 0.1297 | Unviable |
Aimores | Eucalyptus | 2,903,879.09 | 11.11% | 21.74 | 0.1119 | Viable |
Piui | Sugarcane | 21,878,581.13 | 12.23% | 18.02 | 0.1053 | Viable |
Divinopolis | Eucalyptus | 10,493,668.08 | 11.15% | 21.58 | 0.1118 | Viable |
Formiga | Eucalyptus | 13,122,576.11 | 7.63% | 0.00 | 0.1315 | Unviable |
Campo Belo | Corn | 2,001,396.87 | 11.09% | 21.83 | 0.1119 | Viable |
Oliveira | Eucalyptus | 2,001,396.87 | 11.09% | 21.83 | 0.1119 | Viable |
Passos | Sugarcane | 30,583,576.84 | 12.75% | 16.74 | 0.1021 | Viable |
São Sebastião do Paraiso | Sugarcane | 31,289,966.27 | 12.81% | 16.61 | 0.1018 | Viable |
Alfenas | Sugarcane | 33,807,841.16 | 13.00% | 16.19 | 0.1006 | Viable |
Varginha | Corn | 15,615,930.69 | 11.57% | 20.03 | 0.1093 | Viable |
Poços de Caldas | Eucalyptus | 7,701,931.64 | 10.93% | 22.56 | 0.1131 | Viable |
Pouso Alegre | Eucalyptus | 18,802,522.99 | 12.07% | 18.47 | 0.1063 | Viable |
Santa Rita do Sapucai | Corn | 11,996,811.80 | 12.40% | 17.59 | 0.1042 | Viable |
São Lourenço | Corn | 12,275,721.92 | 12.45% | 17.47 | 0.1039 | Viable |
Andrelandia | Eucalyptus | 19,688,511.99 | 12.15% | 18.24 | 0.1058 | Viable |
Itajuba | Eucalyptus | 1,725,390.43 | 11.10% | 21.82 | 0.1118 | Viable |
Lavras | Corn | 20,970,237.49 | 12.27% | 17.92 | 0.1051 | Viable |
São João Del Rei | Corn | 14,532,616.12 | 11.48% | 20.34 | 0.1098 | Viable |
Barbacena | Corn | 9,189,490.80 | 12.99% | 16.22 | 0.1016 | Viable |
Ponte Nova | Sugarcane | 46,124,899.48 | 14.14% | 14.12 | 0.0949 | Viable |
Manhuaçu | Eucalyptus | 12,120,010.05 | 12.68% | 16.90 | 0.1034 | Viable |
Viçosa | Eucalyptus | 25,697,116.37 | 12.38% | 17.65 | 0.1045 | Viable |
Muriae | Sugarcane | 3,688,049.54 | 8.92% | 0.00 | 0.1245 | Unviable |
Uba | Eucalyptus | 6,240,611.51 | 11.77% | 19.37 | 0.1080 | Viable |
Juiz de Fora | Eucalyptus | 21,068,172.22 | 12.01% | 18.65 | 0.1067 | Viable |
Cataguases | Eucalyptus | 12,139,609.59 | 11.94% | 18.85 | 0.1071 | Viable |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Filho, F.B.D.; Lora, E.E.S.; Yepes Maya, D.M.; Palacio, J.C.E.; Venturini, O.J.; de Sousa, L.V.M.; Mayer, F.D.; Errera, M.R. A Novel Methodology for Assessing the Electricity Generation Potential of Biomass Residues: A Case Study in the State of Minas Gerais, Brazil. Energies 2025, 18, 2321. https://doi.org/10.3390/en18092321
Filho FBD, Lora EES, Yepes Maya DM, Palacio JCE, Venturini OJ, de Sousa LVM, Mayer FD, Errera MR. A Novel Methodology for Assessing the Electricity Generation Potential of Biomass Residues: A Case Study in the State of Minas Gerais, Brazil. Energies. 2025; 18(9):2321. https://doi.org/10.3390/en18092321
Chicago/Turabian StyleFilho, Fernando Bruno Dovichi, Electo Eduardo Silva Lora, Diego Mauricio Yepes Maya, José Carlos Escobar Palacio, Osvaldo Jose Venturini, Laura Vieira Maia de Sousa, Flavio Dias Mayer, and Marcelo Risso Errera. 2025. "A Novel Methodology for Assessing the Electricity Generation Potential of Biomass Residues: A Case Study in the State of Minas Gerais, Brazil" Energies 18, no. 9: 2321. https://doi.org/10.3390/en18092321
APA StyleFilho, F. B. D., Lora, E. E. S., Yepes Maya, D. M., Palacio, J. C. E., Venturini, O. J., de Sousa, L. V. M., Mayer, F. D., & Errera, M. R. (2025). A Novel Methodology for Assessing the Electricity Generation Potential of Biomass Residues: A Case Study in the State of Minas Gerais, Brazil. Energies, 18(9), 2321. https://doi.org/10.3390/en18092321