Advances and Challenges in Biohydrogen Production by Photosynthetic Microorganisms
Abstract
1. Introduction
1.1. Microalgae and Cyanobacteria
1.1.1. Microalgal Strains
Nutritional Strategies for Production and Improvement of H2 in Microalgal Strains
Microalgal Strain | Main Characteristics | H2 Production Methods | Advantages | Disadvantages | References |
---|---|---|---|---|---|
Chlamydomonas reinhardtii | Model organism for H2 production | Direct pathway (PSII) and indirect pathway (carbohydrate catabolism) | Easy to cultivate and manipulate | O2-sensitive; requires sulfur deprivation | [7,8,9] |
Chlorella vulgaris | High ability to produce H2 from carbohydrates | Carbohydrate catabolism, production in both light and dark | High biomass and H2 production | Requires sugar-containing media. Augmented risk of contamination | [7,11] |
Scenedesmus obliquus | Increased H2 production under potassium deprivation | PSII-independent pathway | Higher production without O₂ generation | Requires specific deprivation conditions | [7,12,13,14] |
Synechocystis PCC 6803 | Model cyanobacterium, genetically manipulable | Indirect light-driven and anaerobic metabolism production | Acclimatable to various environmental conditions | Limited production in some mutations. High risk of grazing by Poterioochromonas | [15] |
1.1.2. H2 Production in the Cyanobacterium Synechosyctis PCC 6803
Microalgae | Growth Conditions | H2 Production Conditions | H2 Production | References |
---|---|---|---|---|
Closterium moniliferum AARL G041 | Jaworski’s medium (JM), autotrophically, 30.8 μE/m2/s, 25 °C | Sulfur-free JM medium (JM-S), 54 μE/m2/s 25 °C, under Ar, 60 mL vial serum bottles | 0.38 mmol/h/mg (Chl) | [7] |
Chlorella vulgaris | Artificial wastewater medium, immobilized, 140 μE/m2/s, 25 ± 1 °C | Wastewater medium 10 g/L glucose, sulfur deprivation, 140 μE/m2/s, purple light, 25 ± 1 °C, under N2 atmosphere, pH 8 | 1.63 mL/L/h (or 39.18 mL/L/day) | [19] |
Scenedesmus obliquus | Artificial wastewater medium, immobilized, 140 μE/m2/s, 25 ± 1 °C | Wastewater medium 10 g/L glucose, sulfur deprivation, 140 μE/m2/s, purple light, 25 ± 1 °C, under N2 atmosphere, pH 8 | 8.53 mL/L/h (or 204.8 mL/L/day) | [19] |
Chlorella pyrenoidosa | Tris-acetate-phosphate (TAP) medium þ 10 mM NaHCO3 (TCP medium), immobilized, pH 7, 180 ± 10 μE/m2/s, 28 °C, a 3.925 L airlift PBR | TCP medium þ injection of 10 mM DCMU (3-(3,4-dichlorophenyl)-1,1-dimethylurea), after 9 h injection, under N2, under 24 h darkness then 180 ± 10 μE/m2/s, 28 °C, anaerobic bottles with 75 mL TCP medium | 93.86 mL/L | [20] |
Tetraspora sp. CU2551 | Tris-acetate-phosphate (TAP) medium, immobilized, pH 7.2, 29 μE/m2/s, 36 °C, 125 mL Erlenmeyer flasks | Sulfur-free TAP medium (TAP-S), under air, pH 7.2, 29 μE/m2/s, 36 °C, 100 mL gas-tight vials | 0.182 ± 0.020 mmol/h/mg dry wt | [21] |
Chlorella lewinii KU201 | Tris-acetate-phosphate (TAP) medium 0.7 mM NH4Cl, 25 °C, 5 μE/m2/s, 14:10 h light/dark cycle, pH 7.3 | Sulfur-free TAP medium (TAP-S) 0.7 mM NH4Cl, 25 °C, 35 μE/m2/s, pH 7.3, under Ar, 650 mL bioreactors | 13.03 mL/L | [22] |
Chlorella sp. KU209 | Tris-acetate-phosphate (TAP) medium þ 0.7 mM NH4Cl, 25 °C, 35 μE/m2/s, 14:10 h light/dark cycle, pH 7.3 | Sulfur-free TAP medium (TAP-S) þ 0.7 mM NH4Cl, 25 °C, 35 μE/m2/s, pH 7.3, under Ar, 650 mL bioreactors | 12.67 mL/L | [22] |
Chlorella sorokiniana | KU204 tris-acetate-phosphate (TAP) medium 0.7 mM NH4Cl, 25 °C, 35 μE/m2/s, 14:10 h light/dark cycle, pH 7.3 | Sulfur-free TAP medium (TAP-S) 0.7 mM NH4Cl, 25 °C, 35 μE/m2/s, pH 7.3, under Ar, 650 mL bioreactors | Maximum H2 1.30 mL/L/h, total H2 89.64 mL/L | [22] |
Cyanobacteria | Growth Conditions | H2 Production Conditions | H2 Production | References |
---|---|---|---|---|
Immobilized Synechocystis PCC 6803 | BG11 medium, 28 °C, 70 μE/m2/s, 97% air 3% CO2, Glass tube (400 mL) | Nitrogen-free medium BG110-Tris, 60 μE/m2/s, 28 °C, under N2 atmosphere, serum vials (60 mL) | Total H2 5.80 ± 0.14 mL or maximum H2 5.73 ± 0.69 mL/mg cells | [23] |
Synechocystis sp. PCC 6803 | BG11 medium, 28 °C, 70 μE/m2/s, 97% air 3% CO2, Glass tube (400 mL) | BG11 medium, 28 °C, 70 μE/m2/s, use of oxygen absorber to create anaerobiosis | 3–5 mL/g/day (direct biophotolysis) | Faraloni et al. (unpublished) |
Fischerella muscicola | BG11 medium, pH 7.5, bubbling with air, 50 μE/m2/s, 30 °C | Sulfur- and nitrogen-free BG11 medium (BG110-s medium) 0.1% glucose, under Ar, optimal pH 7.5, 25 °C, 250 μE/m2/s, 20 mL vial | 0.35 ± 0.08 mmol/g(Chl)/h | [24] |
Nostoc calcicola | BG11 medium, pH 7.5, bubbling with air, 50 μE/m2/s, 30 °C | Nitrate-free BG11 medium (BG110 medium) 0.1% glucose, under Ar, optimal pH 7.5, 25 °C, 250 μE/m2/s 20 mL vial | 0.09 ± 0.01 mmol/g(Chl)/h | [24] |
Scytonema bohneri | BG11 medium, pH 7.5, bubbling with air, 50 μE/m2/s, 30 °C | Nitrate-free BG11 medium (BG110 medium) 0.3% glucose, under Ar, optimal pH 7.5, 25 °C, 250 μE/m2/s, 20 mL vial | 0.09 ± 0.01 mmol/mg(Chl)/h | [24] |
Tolypothrix distorta | BG11 medium, pH 7.5, bubbling with air, 50 μE/m2/s, 30 °C | Nitrate-free BG11 medium (BG110 medium) 0.1% glucose, under Ar, optimal pH 7.5, 25 °C, 250 μE/m2/s, 20 mL vial | 0.21 ± 0.05 mmol/mg(Chl)/h | [24] |
Geitlerinema sp. RMK-SH10 | ASN III medium, 30 μE/m2/s, 30 °C Nitrogen-free ASN IIIeN medium 0.2 M NaCl, 18.9 mmol C-atom/L glucose 0.1 mM Ni2, 30 °C | Under dark and Ar atmosphere, a 10 mL gas-tight vial | 0.271 mmol/h/mg dry wt | [25] |
Anabaena sp. PCC 7120 | DHup 8-times diluted Allen and Arnon medium (AA/8), 30 μE/m2/s, 27 °C, 99% air 1% CO2 | A total of 8-times diluted Allen and Arnon medium without nitrogen (AA/8-N), 290 and 340 μE/m2/s, Ar with 5% CO2, and 3.3% N2, pH 8.2, 22 °C, plastic bags (1 L) | 0.86 mL/h/L or 20.6 mL/day/L or 33.2 mL/L/during 5 days | [26] |
1.2. Enzymes
2. Strategies to Optimize H2 Production
2.1. Genetic Engineering
2.2. Co-Cultivation with Bacteria
2.3. Use of Wastewater
2.4. Light Utilization
2.5. Challenges in Scaling Up of Photobiological H2 Production
3. Potential Use of Microalgae for H2 Production as By-Products
4. Solar H2 Production Cost
5. Challenges and Perspectives
6. Purple Non-Sulfur Photosynthetic Bacteria for Photofermentation
Optimization of the Photofermentation Process with Immobilization
PBR Type (Volume) | Strain | Carbon Source (g/L) | Rate (mL/L/h) | Reference |
---|---|---|---|---|
Schott bottle (100 mL) | R. sphaeroides NCIMB8253 | Palm Oil Mill Effluent/pulp and paper mill effluent | 64.9 | [97] |
Serological bottles (120 mL) | R. capsulatus ATCC 17015 | Acetate (1.0), Butyrate (11.6), Propionate (1.76) | 19.67 | [119] |
Cylindrical glass (220 mL) | Rhodopseudomonas sp. | Acetate (4.0) | 19.6 | [90] |
Glass bottle (260 mL) | R. palustris PB-Z | Glucose (12.6) | 78.7 | [120] |
Flat panel (4.0 L) | R. capsulatus hup- | Sugar Beet Thick Juice | 25.01 | [121] |
Tubular (50 L) | R. palustris 42OL | Malate (4.0) | 27.2 | [122] |
Tubular (70 L) | R. sphaeroides HY01 | Glucose (5.4) | 37.6 | [123] |
Tubular (20 L) | R. capsulatus YO3 | Molasses | 15.45 | [100] |
PBR Type (Volume) | Strain | Carbon Source (g/L) | Matrix | Rate (mL/L/h) | Reference |
---|---|---|---|---|---|
Roux bottle (200 mL) | Rhodobacter capsulatus YO3 | Acetate (3.6) | Agar | 48.9 | [110] |
Flat panel (1400 mL) | Rhodobacter capsulatus YO3 | Acetate (3.6) | Agar | 31.2 | [111] |
Roux bottle (200 mL) | Rhodobacter capsulatus DSM 1710 | Acetate (3.6) | Agar | 18.6 | [110] |
Flat panel (1400 mL) | Rhodobacter capsulatus DSM 1710 | Acetate (3.6) | Agar | 18.0 | [111] |
Cylindrical glass bottle (200 mL) | Rhodopseudomonas sp. S16-VOGS3 | Acetate (2.0) | Ca-alginate | 14.96 | [91] |
Cylindrical glass bottle (200 mL) | Rhodopseudomonas sp. | Acetate (2.0) | Ca-alginate | 10.2 | [99] |
Flat Roux glass bottle (600 mL) | Rhodopseudomonas sp. S16-VOGS3 | Acetate (2.0) | Ca-alginate | 2.58 | [91] |
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dowaidar, M. Microbial pathways for sustainable hydrogen production. Int. J. Hydrogen Energy 2025, in press. [Google Scholar] [CrossRef]
- Caserta, G.; Lorent, C.; Pelmenschikov, V.; Schoknecht, J.; Yoda, Y.; Hildebrandt, P.; Cramer, S.P.; Zebger, I.; Lenz, O. In vitro assembly as a tool to investigate catalytic intermediates of [NiFe]-hydrogenase. ACS Catal. 2020, 10, 13890–13894. [Google Scholar] [CrossRef] [PubMed]
- Pagnier, A.; Balci, B.; Shepard, E.M.; Broderick, W.E.; Broderick, J.B. [FeFe]-hydrogenase in vitro maturation. Angew. Chem. Int. Ed. Engl. 2022, 61, e202212074. [Google Scholar] [CrossRef] [PubMed]
- Ghirardi, M.L. Implementation of photobiological H2 production: The O2 sensitivity of hydrogenases. Photosynth. Res. 2015, 5, 383–393. [Google Scholar] [CrossRef]
- Yadav, S.; Haas, R.; Birsen Boydas, E.; Roemelt, M.; Happe, T.; Apfel, U.P.; Stripp, S.T. Oxygen sensitivity of [FeFe]-hydrogenase: A comparative study of active site mimics inside vs. outside the enzyme. Phys. Chem. Chem. Phys. 2024, 26, 19105–19116. [Google Scholar] [CrossRef]
- Wulff, P.; Day, C.C.; Sargent, F.; Armstrong, F.A. How oxygen reacts with oxygen-tolerant respiratory [NiFe]-hydrogenases. Proc. Natl. Acad. Sci. USA 2014, 111, 6606–6611. [Google Scholar] [CrossRef]
- Duangjan, K.; Nakkhunthod, W.; Pekkoh, J.; Pumas, C. Comparison of hydrogen production in microalgae under autotrophic and mixotrophic media. Bot. Lith. 2017, 23, 169–177. [Google Scholar] [CrossRef]
- Faraloni, C.; Torzillo, G. Xanthophyll cycle induction by anaerobic conditions under low light in Chlamydomonas reinhardtii. J. Appl. Phycol. 2013, 25, 1457–1471. [Google Scholar] [CrossRef]
- Torzillo, G.; Scoma, A.; Faraloni, C.; Giannelli, L. Advances in the biotechnology of hydrogen production with the microalga Chlamydomonas reinhardtii. Crit. Rev. Biotechnol. 2014, 35, 485–496. [Google Scholar] [CrossRef]
- Eroglu, E.; Melis, A. Microalgal hydrogen production research. Int. J. Hydrogen Energy 2016, 41, 12772–12798. [Google Scholar] [CrossRef]
- Touloupakis, E.; Faraloni, C.; Silva Benavides, A.M.; Masojídek, J.; Torzillo, G. Sustained photobiological hydrogen production by Chlorella vulgaris without nutrient starvation. Int. J. Hydrogen Energy 2021, 46, 3684–3694. [Google Scholar] [CrossRef]
- Papazi, A.; Gjindali, A.I.; Kastanaki, E.; Assimakopoulos, K.; Stamatakis, K.; Kotzabasis, K. Potassium deficiency, a “smart” cellular switch for sustained high yield hydrogen production by the green alga Scenedesmus obliquus. Int. J. Hydrogen Energy 2014, 39, 19452–19464. [Google Scholar] [CrossRef]
- Papazi, A.; Karamanli, M.; Kotzabasis, K. Comparative biodegradation of all chlorinated phenols by the microalga Scenedesmus obliquus—The biodegradation strategy of microalgae. J. Biotechnol. 2019, 296, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Lestari, K.R.; Hidayanti, F.; Darusalam, U. Hydrogen production by algae Scenedesmus sp. biomass through photosynthesis process. Int. J. Sci. Soc. 2022, 4, 3. [Google Scholar] [CrossRef]
- Touloupakis, E.; Silva Benavides, A.M.; Cicchi, B.; Torzillo, G. Growth and hydrogen production of outdoor cultures of Synechocystis PCC 6803. Algal Res. 2016, 16, 78–85. [Google Scholar] [CrossRef]
- Opel, F.; Itzenhäuser, M.A.; Wehner, I.; Lupacchini, S.; Lauterbach, L.; Lenz, O.; Klähn, S. Toward a synthetic hydrogen sensor in cyanobacteria: Functional production of an oxygen-tolerant regulatory hydrogenase in Synechocystis sp. PCC 6803. Front. Microbiol. 2023, 14, 1122078. [Google Scholar] [CrossRef]
- Touloupakis, E.; Cicchi, B.; Silva Benavides, A.M.; Torzillo, G. Effect of high pH on growth of Synechocystis sp. PCC 6803 cultures and their contamination by golden algae (Poterioochromonas sp.). Appl. Microbiol. Biotechnol. 2016, 100, 1333–1341. [Google Scholar] [CrossRef]
- Akiyama, M.; Osanai, T. Regulation of organic acid and hydrogen production by NADH/NAD+ ratio in Synechocystis sp. PCC 6803. Front. Microbiol. 2024, 14, 1332449. [Google Scholar] [CrossRef]
- Ruiz-Marin, A.; Canedo-Lopez, Y.; Chavez-Fuentes, P. Biohydrogen production by Chlorella vulgaris and Scenedesmus obliquus immobilized cultivated in artificial wastewater under different light quality. Amb. Express 2020, 10, 191. [Google Scholar] [CrossRef]
- Liu, R.; Qin, S.; Li, W. Phycocyanin: Anti-inflammatory effect and mechanism. Biomed. Pharmacother. 2022, 153, 113362. [Google Scholar] [CrossRef]
- Maswanna, T.; Phunpruch, S.; Lindblad, P.; Maneeruttanarungroj, C. Enhanced hydrogen production by optimization of immobilized cells of the green alga Tetraspora sp. CU2551 grown under anaerobic condition. Biomass Bioenerg. 2018, 111, 88–95. [Google Scholar] [CrossRef]
- Pongpadung, P.; Liu, J.; Yokthongwattana, K.; Techapinyawat, S.; Juntawong, N. Screening for hydrogen-producing strains of green microalgae in phosphorus or sulphur deprived medium under nitrogen limitation. Sci. Asia 2015, 41, 97–107. [Google Scholar] [CrossRef]
- Touloupakis, E.; Rontogiannis, G.; Silva Benavides, A.M.; Cicchi, B.; Ghanotakis, D.F.; Torzillo, G. Hydrogen production by immobilized Synechocystis sp. PCC 6803. Int. J. Hydrogen Energy 2016, 41, 15181–15186. [Google Scholar] [CrossRef]
- Yodsang, P.; Raksajit, W.; Aro, E.-M.; Maenpaa, P.; Incharoensakdi, A. Factors affecting photobiological hydrogen production in five filamentous cyanobacteria from Thailand. Photosynthetica 2018, 56, 334–341. [Google Scholar] [CrossRef]
- Tinpranee, N.; Incharoensakdi, A.; Phunpruch, S. Screening cyanobacteria from marine coastal waters of Thailand for biohydrogen production. J. Appl. Phycol. 2018, 30, 3471–3481. [Google Scholar] [CrossRef]
- Shastik, E.; Romanova, A.; Laurinavichene, T.; Petushkova, E.; Sakurai, H.; Tsygankov, A. Plastic bags as simple photobioreactors for cyanobacterial hydrogen production outdoors in Moscow region. Int. J. Energy Environ. Eng. 2020, 11, 1–8. [Google Scholar] [CrossRef]
- Greening, C.; Biswas, A.; Carere, C.R.; Jackson, C.J.; Taylor, M.C.; Stott, M.B.; Cook, G.M.; Morales, S.E. Genomic and metagenomic surveys of hydrogenase distribution indicate H2 is a widely utilised energy source for microbial growth and survival. ISME J. 2016, 10, 761–777. [Google Scholar] [CrossRef]
- Lenz, O.; Lauterbach, L.; Frielingsdorf, S. Chapter Five—O2-tolerant [NiFe]-hydrogenases of Ralstonia eutropha H16: Physiology, molecular biology, purification, and biochemical analysis. In Methods in Enzymology; Fraser, A., Ed.; Academic Press: Cambridge, MA, USA, 2018; pp. 117–151. [Google Scholar]
- Schumann, C.; Fernández Méndez, J.; Berggren, G.; Lindblad, P. Novel concepts and engineering strategies for heterologous expression of efficient hydrogenases in photosynthetic microorganisms. Front. Microbiol. 2023, 14, 1179607. [Google Scholar] [CrossRef]
- Gutekunst, K.; Hoffmann, D.; Westernströer, U.; Schulz, R.; Garbe-Schönberg, D.; Appel, J. In-vivo turnover frequency of the cyanobacterial NiFe-hydrogenase during photohydrogen production outperforms in-vitro systems. Sci. Rep. 2018, 8, 6083. [Google Scholar] [CrossRef]
- Gupta, R.; Pa, A.K. Bioinspired photo-driven hydrogen evolution systems based on hydrogenases and their mimics. Sustain. Energy Fuels 2024, 8, 4709. [Google Scholar] [CrossRef]
- Seefeldt, L.C.; Yang, Z.Y.; Lukoyanov, D.A.; Harris, D.F.; Dean, D.R.; Raugei, S.; Hoffman, B.M. Reduction of substrates by nitrogenases. Chem. Rev. 2020, 120, 5082–5106. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.W.; Syn, J.W.; Hsieh, C.H.; Huang, C.C.; Chien, L.F. Genetically engineered hydrogenases promote biophotocatalysis-mediated H2 production in the green alga Chlorella sp. DT. Int. J. Hydrogen Energy 2019, 44, 2533–2545. [Google Scholar] [CrossRef]
- Goswami, R.K.; Mehariya, S.; Obulisamy, P.K.; Verma, P. Advanced microalgae-based renewable biohydrogen production systems: A review. Bioresour. Technol. 2021, 320, 124301. [Google Scholar] [CrossRef] [PubMed]
- Adamu, H.; Bello, U.; Yuguda, A.U.; Tafida, U.I.; Jalam, A.M.; Sabo, A.; Qamar, M. Production processes, techno-economic and policy challenges of bioenergy production from fruit and vegetable wastes. Renew. Sustain. Energy Rev. 2023, 186, 113686. [Google Scholar] [CrossRef]
- Sun, J.; Yang, P.; Li, N.; Zhao, M.; Zhang, X.; Zhang, Y.; Yuan, Y.; Lu, X.; Lu, X. Extraction of photosynthetic electron from mixed photosynthetic consortium of bacteria and algae towards sustainable bioelectrical energy harvesting. Electrochim. Acta 2020, 336, 135710. [Google Scholar] [CrossRef]
- Taikhao, S.; Phunpruch, S. Biomass and biohydrogen production by unicellular green alga Chlorella vulgaris var. vulgaris TISTR 8261 using frozen food industrial wastewater. Asia-Pac. J. Sci. Technol. 2022, 27, APST-27-01-19. [Google Scholar]
- Faraloni, C.; Ena, A.; Pintucci, C.; Torzillo, G. Enhanced hydrogen production by means of sulfur-deprived Chlamydomonas reinhardtii cultures grown in pre-treated olive-mill wastewater. Int. J. Hydrogen Energy 2011, 36, 5920–5931. [Google Scholar] [CrossRef]
- Anwar, M.; Lou, S.; Chen, L.; Li, H.; Hu, Z. Recent advancement and strategy on bio-hydrogen production from photosynthetic microalgae. Bioresour. Technol. 2019, 292, 121972. [Google Scholar] [CrossRef]
- Oncel, S.; Vardar Sukan, F. Effect of light intensity and the light: Dark cycles on the long term hydrogen production of Chlamydomonas reinhardtii by batch cultures. Biomass Bioenerg. 2011, 35, 1066–1074. [Google Scholar] [CrossRef]
- Redding, K.E.; Appel, J.; Boehm, M.; Schuhmann, W.; Nowaczyk, M.M.; Yacoby, I.; Gutekunst, K. Advances and challenges in photosynthetic hydrogen production. Trends Biotechnol. 2022, 40, 1313–1325. [Google Scholar] [CrossRef]
- Marco, P.; Elman, T.; Yacoby, I. Binding of ferredoxin NADP(+) oxidoreductase (FNR) to plant photosystem I. Biochim. Biophys. Acta Bioenerg. 2019, 1860, 689–698. [Google Scholar] [CrossRef] [PubMed]
- Torzillo, G.; Seibert, M. Hydrogen production by Chlamydomonas reinhardtii. In Handbook of Microalgal Culture; Wiley–Blackwell: Hoboken, NJ, USA, 2013; pp. 417–432. [Google Scholar]
- Jaramillo, A.; Satta, A.; Pinto, F.; Faraloni, C.; Chini Zittelli, G.; Silva Benavides, A.M.; Torzillo, G.; Schumann, C.; Fernandez Mendez, J.; Berggren, G.; et al. Outlook on synthetic biology-driven hydrogen production: Lessons from algal photosynthesis applied to cyanobacteria. Energy Fuels 2025, 31, 4987–5006. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Chen, X.; Wu, S.; Wang, Q. Co-cultivation of Chlamydomonas reinhardtii with Azotobacter chroococcum improved H2 production. Biotechnol. Lett. 2017, 39, 731–738. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Li, D.; Wang, Q.; Wu, S. Improved hydrogen production and biomass through the co-cultivation of Chlamydomonas reinhardtii and Bradyrhizobium japonicum. Int. J. Hydrogen Energy 2016, 41, 9276–9283. [Google Scholar] [CrossRef]
- Fakhimi, N.; Tavakoli, O. Improving hydrogen production using co-cultivation of bacteria with Chlamydomonas reinhardtii microalga. Mater. Sci. Energy Technol. 2019, 2, 1–7. [Google Scholar] [CrossRef]
- Ban, S.; Lin, W.; Wu, F.; Luo, J. Algal-bacterial cooperation improvesalgal photolysis-mediated hydrogen production. Bioresour. Technol. 2018, 251, 350–357. [Google Scholar] [CrossRef]
- Karchiyappan, T.; Ettiyagounder, P.; Selvaraj, P.S.; Ramanujam, K. Advancements in green hydrogen (GH2) recovery from industrial wastewater: A comprehensive review. Desalin. Water Treat. 2025, 321, 100966. [Google Scholar]
- Mus, F.; Dubini, A.; Seibert, M.; Posewitz, M.C.; Grossman, A.R. Anaerobic acclimation in Chlamydomonas reinhardtii: Anoxic gene expression, hydrogenase induction, and metabolic pathways. J. Biol. Chem. 2007, 282, 25475–25486. [Google Scholar] [CrossRef]
- Zarei, Z.; Malekshahi, P.; Morowvat, M.H.; Trzcinski, A.P. A review of bioreactor configurations for hydrogen production by cyanobacteria and microalgae. Int. J. Hydrogen Energy 2024, 49, 472–495. [Google Scholar] [CrossRef]
- Frowijn, L.S.F.; van Sark, W.G.J.H.M. Analysis of photon-driven solar-to-hydrogen production methods in the Netherlands. Sustain. Energy Technol. Assess. 2021, 48, 101631. [Google Scholar] [CrossRef]
- Melis, A.; Zhang, L.; Forestier, M.; Ghirardi, M.L.; Seibert, M. Sustained photobiological hydrogen gas production upon reversible inactivation of oxygen evolution in the green alga Chlamydomonas reinhardtii. Plant Physiol. 2000, 122, 127–136. [Google Scholar] [CrossRef] [PubMed]
- Torzillo, G.; Zittelli, G.C.; Cicchi, B.; Diano, M.; Parente, M.; Silva Benavides, A.M.; Esposito, S.; Touloupakis, E. Effect of plate distance on light conversion efficiency of a Synechocystis culture grown outdoors in a multiplate photobioreactor. Sci. Total Environ. 2022, 842, 156840. [Google Scholar] [CrossRef] [PubMed]
- Torri, C.; Samorì, C.; Adamiano, A.; Fabbri, D.; Faraloni, C.; Torzillo, G. Preliminary investigation on the production of fuels and bio-char from Chlamydomonas reinhardtii biomass residue after bio-hydrogen production. Bioresour. Technol. 2011, 102, 8707–8713. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Nagarajan, D.; Zhang, Q.; Chang, J.S.; Lee, D.J. Heterotrophic cultivation of microalgae for pigment production: A review. Biotechnol. Adv. 2018, 36, 5467. [Google Scholar] [CrossRef]
- Serra, A.T.; Silva, S.D.; Pleno de Gouveia, L.; Alexandre, A.M.R.C.; Pereira, C.V.; Pereira, A.B.; Partidário, A.C.; Silva, N.E.; Bohn, T.; Gonçalves, V.S.S.; et al. A single dose of marine Chlorella vulgaris increases plasma concentrations of lutein, β-carotene and zeaxanthin in healthy male volunteers. Antioxidants 2021, 10, 1164. [Google Scholar] [CrossRef]
- Bernaerts, T.M.M.; Gheysen, L.; Foubert, I.; Hendrickx, M.E.; Van Loey, A.M. The potential of microalgae and their biopolymers as structuring ingredients in food: A review. Biotechnol. Adv. 2019, 37, 107419. [Google Scholar] [CrossRef]
- Niccolai, A.; Zittelli, G.C.; Rodolfi, L.; Biondi, N.; Tredici, M.R. Microalgae of interest as food source: Biochemical composition and digestibility. Algal Res. 2019, 42, 101617. [Google Scholar] [CrossRef]
- Wild, K.J.; Steinga, H.; Rodehutscord, M. Variability in nutrient composition and in vitro crude protein digestibility of 16 microalgae products. J. Anim. Physiol. Anim. Nutr. 2018, 1020, 13061319. [Google Scholar] [CrossRef]
- Galasso, C.; Gentile, A.; Orefice, I.; Ianora, A.; Bruno, A.; Noonan, D.M.; Sansone, C.; Albini, A.; Brunet, C. Microalgal derivatives as potential nutraceutical and food supplements for human health: A focus on cancer prevention and interception. Nutrients 2019, 11, 1226. [Google Scholar] [CrossRef]
- Sadeghi, S.; Jalili, H.; Ranaei Siadat, S.O.; Sedighi, M. Anticancer and antibacterial properties in peptide fractions from hydrolyzed spirulina protein. J. Agric. Sci. Technol. 2018, 20, 673683. [Google Scholar]
- Simsa, R.; Yuen, J.; Stout, A.; Rubio, N.; Fogelstrand, P.; Kaplan, D.L. Extracellular heme proteins influence bovine myosatellite cell proliferation and the color of cell-based meat. Foods 2019, 8, 521. [Google Scholar] [CrossRef] [PubMed]
- Prabakaran, G.; Sampathkumar, P.; Kavisri, M.; Moovendhan, M. Extraction and characterization of phycocyanin from Spirulina platensis and evaluation of its anticancer, antidiabetic and antiinflammatory effect. Int. J. Biol. Macromol. 2020, 153, 256–263. [Google Scholar] [CrossRef] [PubMed]
- Li, Y. The bioactivities of phycocyanobilin from Spirulina. J. Immunol. Res. 2022, 2022, 4008991. [Google Scholar] [CrossRef] [PubMed]
- Pentón-Rol, G.; Marín-Prida, J.; McCarty, M.F. C-Phycocyanin-derived phycocyanobilin as a potential nutraceutical approach for major neurodegenerative disorders and COVID-19- induced damage to the nervous system. Curr. Neuropharmacol. 2021, 19, 2250–2275. [Google Scholar] [CrossRef]
- Garcia-Pliego, E.; Franco-Colin, M.; Rojas-Franco, P.; Blas-Valdivia, V.; Serrano-Contreras, J.I.; Pentón-Rol, G.; Cano-Europa, E. Phycocyanobilin is the molecule responsible for the nephroprotective action of phycocyanin in acute kidney injury caused by mercury. Food Funct. 2021, 12, 2985–2994. [Google Scholar] [CrossRef]
- Gdara, N.B.; Belgacem, A.; Khemiri, I.; Mannai, S.; Bitri, L. Protective effects of phycocyanin on ischemia/reperfusion liver injuries. Biomed. Pharmacother. 2018, 102, 196–202. [Google Scholar] [CrossRef]
- Xie, Y.; Li, W.; Zhu, L.; Zhai, S.; Qin, S.; Du, Z. Effects of phycocyanin in modulating the intestinal microbiota of mice. Microbiologyopen 2019, 8, e00825. [Google Scholar] [CrossRef]
- Yang, F.H.; Dong, X.L.; Liu, G.X.; Teng, L.; Wang, L.; Zhu, F.; Xu, F.H.; Yang, Y.F.; Cao, C.; Chen, G.; et al. The protective effect of C-phycocyanin in male mouse reproductive system. Food Funct. 2022, 13, 2631–2646. [Google Scholar] [CrossRef]
- Touloupakis, E.; Cicchi, B.; Torzillo, G. A bioenergetic assessment of photosynthetic growth of Synechocystis sp. PCC 6803 in continuous cultures. Biotechnol. Biofuels 2015, 8, 133. [Google Scholar] [CrossRef]
- Kumar, P.; Saravanan, P.; Omer, S.N.; Rajeshkannan, R.; Kumar, S.V. Enhanced biohydrogen yield through cyanobacterial engineering: A detailed review. Biomass Convers. Biorefin. 2025, in press. [Google Scholar] [CrossRef]
- Skovgaard, J.; van Asselt, H. The politics of fossil fuel subsidies and their reform: Implications for climate change mitigation. Wiley Interdiscip. Rev. Clim. Change 2019, 10, e581. [Google Scholar] [CrossRef]
- Jewell, J.; McCollum, D.; Emmerling, J.; Bertram, C.; Gernaat, D.E.H.J.; Krey, V.; Paroussos, L.; Berger, L.; Fragkiadakis, K.; Keppo, I.; et al. Limited emission reductions from fuel subsidy removal exceptin energy-exporting regions. Nature 2018, 554, 229–233. [Google Scholar] [CrossRef]
- Ambec, S.; Crampes, C. Decarbonizing electricity generation with intermittent sources of energy. J. Assoc. Environ. Resour. Econ. 2019, 6, 1105–1134. [Google Scholar] [CrossRef]
- Nicodemus, J.H. Technological learning and the future of solar H2: A component learning comparison of solar thermochemical cycles and electrolysis with solar PV. Energ. Policy 2018, 120, 100–109. [Google Scholar] [CrossRef]
- Joy, J.; Mathew, J.; George, S.C. Nanomaterials for photoelectrochemical water splitting–review. Int. J. Hydrogen Energy 2018, 43, 4804–4817. [Google Scholar] [CrossRef]
- Liao, C.; Que, L.; Fu, Z.; Deng, P.; Li, A.; Wang, X.; Cheng, L. Reseatch status of electrolytic preparation of rare Earth metals and alloys in fluoride meltem salt sysem. A minireview of China. Metals 2024, 14, 407. [Google Scholar] [CrossRef]
- Dhar, K.; Venkateswarlu, K.; Megharaj, M. Anoxygenic phototrophic purple non-sulfur bacteria: Tool for bioremediation of hazardous environmental pollutants. World J. Microbiol. Biotechnol. 2023, 39, 283. [Google Scholar] [CrossRef]
- Imhoff, J.F. Diversity of anaerobic anoxygenic phototrophic purple bacteria. In Modern Topics in the Phototrophic Prokaryotes; Hallenbeck, P., Ed.; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Reungsang, A.; Zhong, N.; Yang, Y.; Sittijunda, S.; Xia, A.; Liao, Q. Hydrogen from photo fermentation. In Bioreactors for Microbial Biomass and Energy Conversion. Green Energy and Technology; Liao, Q., Chang, J., Herrmann, C., Xia, A., Eds.; Springer: Singapore, 2018. [Google Scholar]
- Haq, I.U.; Christensen, A.; Fixen, K.R. Evolution of Rhodopseudomonas palustris to degrade halogenated aromatic compounds involves changes in pathway regulation and enzyme specificity. Appl. Environ. Microbiol. 2024, 90, e0210423. [Google Scholar] [CrossRef]
- Lu, H.; Zhang, G.; He, S.; Zhao, R.; Zhu, D. Purple non-sulfur bacteria technology: A promising and potential approach for wastewater treatment and bioresources recovery. World J. Microbiol. Biotechnol. 2021, 37, 161. [Google Scholar] [CrossRef]
- Budiman, P.M.; Wu, T.Y. Role of chemicals addition in affecting biohydrogen production through photofermentation. Energy Convers. Manag. 2018, 165, 509–527. [Google Scholar] [CrossRef]
- Hosseini, S.S.; Aghbashlo, M.; Tabatabaei, M.; Younesi, H.; Najafpour, G. Energy analysis of biohydrogen production from various carbon sources via anaerobic photosynthetic bacteria (Rhodospirillum rubrum). Energy 2015, 93, 730–739. [Google Scholar] [CrossRef]
- Adessi, A.; Concato, M.; Sanchini, A.; Rossi, F.; De Philippis, R. Hydrogen production under salt stress conditions by a freshwater Rhodopseudomonas palustris strain. Appl. Microbiol. Biotechnol. 2016, 100, 2917–2926. [Google Scholar] [CrossRef] [PubMed]
- Al-Mohammedawi, H.H.; Znad, H.; Eroglu, E. Synergistic effects and optimization of photo-fermentative hydrogen production of Rhodobacter sphaeroides DSM 158. Int. J. Hydrogen Energy 2018, 43, 15823–15834. [Google Scholar] [CrossRef]
- Cai, J.; Guan, Y.; Jia, T.; Yang, J.; Hu, Y.; Li, P.; Duan, Y.; Zhang, L.; Yu, P. Hydrogen production from high slat medium by co-culture of Rhodovulum sulfidophilum and dark fermentative microflora. Int. J. Hydrogen Energy 2018, 43, 10959–10966. [Google Scholar] [CrossRef]
- Tiang, M.F.; Fitri Hanipa, M.A.; Abdul, P.M.; Jahim, J.M.d.; Mahmod, S.S.; Takriff, M.S.; Lay, C.H.; Reungsang, A.; Wu, S.Y. Recent advanced biotechnological strategies to enhance photo-fermentative biohydrogen production by purple non-sulphur bacteria: An overview. Int. J. Hydrogen Energy 2020, 45, 13211–13230. [Google Scholar] [CrossRef]
- Touloupakis, E.; Poloniataki, E.G.; Ghanotakis, D.F.; Carlozzi, P. Production of biohydrogen and/or poly-β-hydroxybutyrate by Rhodopseudomonas sp. using various carbon sources as substrate. Appl. Biochem. Biotechnol. 2021, 193, 307–318. [Google Scholar] [CrossRef]
- Moia, I.C.; Kanaropoulou, A.; Ghanotakis, D.F.; Carlozzi, P.; Touloupakis, E. Photofermentative hydrogen production by immobilized Rhodopseudomonas sp. S16-VOGS3 cells in photobioreactors. Energy Rev. 2024, 3, 100055. [Google Scholar] [CrossRef]
- Ghosh, S.; Dairkee, U.K.; Chowdhury, R.; Bhattacharya, P. Hydrogen from food processing wastes via photofermentation using Purple Non-sulfur Bacteria (PNSB)—A review. Energy Convers. Manag. 2017, 141, 299–314. [Google Scholar] [CrossRef]
- Ghosh, S. Retrofitting nanotechnology into photofermentation: State-of-the-art and prospect analysis for ameliorated production of clean hydrogen. Fuel 2024, 359, 130374. [Google Scholar] [CrossRef]
- Putatunda, C.; Behl, M.; Solanki, P.; Sharma, S.; Bhatia, S.K.; Walia, A.; Bhatia, R.K. Current challenges and future technology in photofermentation-driven biohydrogen production by utilizing algae and bacteria. Int. J. Hydrogen Energy 2023, 48, 21088–21109. [Google Scholar] [CrossRef]
- Goveas, L.C.; Nayak, S.; Kumar, P.S.; Vinayagam, R.; Selvaraj, R.; Rangasamy, G. Recent advances in fermentative biohydrogen production. Int. J. Hydrogen Energy 2024, 54, 200–217. [Google Scholar] [CrossRef]
- Agyekum, E.B.; Odoi-Yorke, F. Review of over two decades of research on dark and photo fermentation for biohydrogen production—A combination of traditional, systematic, and bibliometric approaches. Int. J. Hydrogen Energy 2024, 91, 1149–1169. [Google Scholar] [CrossRef]
- Budiman, P.M.; Wu, T.Y.; Ramanan, R.N.; Jahim, J.M. Improvement of biohydrogen production through combined reuses of palm oil mill effluent together with pulp and paper mill effluent in photofermentation. Energ. Fuel 2015, 29, 5816–5824. [Google Scholar] [CrossRef]
- Hakobyan, L.; Gabrielyan, L.; Trchounian, A. Biohydrogen by Rhodobacter sphaeroides during photo-fermentation: Mixed vs. sole carbon sources enhance bacterial growth and H2 production. Int. J. Hydrogen Energy 2019, 44, 674–679. [Google Scholar] [CrossRef]
- Touloupakis, E.; Chatziathanasiou, A.; Ghanotakis, D.F.; Carlozzi, P.; Pecorini, I. Hydrogen production by immobilized Rhodopseudomonas sp. cells in calcium alginate beads. Energies 2022, 15, 8355. [Google Scholar] [CrossRef]
- Oflaz, F.B.; Koku, H. Pilot-scale outdoor photofermentative hydrogen production from molasses using pH control. Int. J. Hydrogen Energy 2021, 46, 29160–29172. [Google Scholar] [CrossRef]
- Policastro, G.; Cesaro, A.; Fabbricino, M. Photo-fermentative hydrogen production from cheese whey: Engineering of a mixed culture process in a semi-continuous, tubular photo-bioreactor. Int. J. Hydrogen Energy 2023, 48, 21038–21054. [Google Scholar] [CrossRef]
- Hay, J.X.W.; Wu, T.Y.; Juan, J.C.; Jahim, J.M. Effect of adding brewery wastewater to pulp and paper mill effluent to enhance the photofermentation process: Wastewater characteristics, biohydrogen production, overall performance, and kinetic modeling. Environ. Sci. Pollut. Res. 2017, 24, 10354–10363. [Google Scholar] [CrossRef]
- Policastro, G.; Carraturo, F.; Compagnone, M.; Guida, M.; Fabbricino, M. Enhancing hydrogen production from winery wastewater through fermentative microbial culture selection. Bioresour. Technol. Rep. 2022, 19, 101196. [Google Scholar] [CrossRef]
- Allegue, L.D.; Puyol, D.; Melero, J.A. Food waste valorization by purple phototrophic bacteria and anaerobic digestion after thermal hydrolysis. Biomass Bioenerg. 2020, 142, 105803. [Google Scholar] [CrossRef]
- Smith, S.C.; Toledo-Alarcón, J.; Schiappacasse, M.C.; Tapia-Venegas, E. Enrichment of a mixed culture of purple non-sulfur bacteria for hydrogen production from organic acids. Sustainability 2023, 15, 16607. [Google Scholar] [CrossRef]
- Chandra, R.; Nikhil, G.N.; Mohan, S.V. Single-stage operation of hybrid dark-photo fermentation to enhance biohydrogen production through regulation of system redox condition: Evaluation with real-field wastewater. Int. J. Mol. Sci. 2015, 1, 9540–9556. [Google Scholar] [CrossRef] [PubMed]
- Laurinavichene, T.; Tsygankov, A. Different types of H2 photoproduction by starch-utilizing co-cultures of Clostridium butyricum and Rhodobacter sphaeroides. Int. J. Hydrogen Energy 2016, 41, 13419–13425. [Google Scholar] [CrossRef]
- Scognamiglio, V.; Giardi, M.T.; Zappi, D.; Touloupakis, E.; Antonacci, A. Photoautotrophs-bacteria co-cultures: Advances, challenges and applications. Materials 2021, 14, 3027. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Tabatabaei, M.; Li, F.; Ho, S.H. A review of green biohydrogen production using anoxygenic photosynthetic bacteria for hydrogen economy: Challenges and opportunities. Int. J. Hydrogen Energy 2024, 54, 218–238. [Google Scholar] [CrossRef]
- Elkahlout, K.; Alipour, S.; Eroglu, I.; Gunduz, U.; Yucel, M. Long-term biological hydrogen production by agar immobilized Rhodobacter capsulatus in a sequential batch photobioreactor. Bioproc. Biosyst. Eng. 2017, 40, 589–599. [Google Scholar] [CrossRef]
- Elkahlout, K.; Sagir, E.; Alipour, S.; Koku, H.; Gunduz, U.; Eroglu, I.; Yucel, M. Long-term stable hydrogen production from acetate using immobilized Rhodobacter capsulatus in a panel photobioreactor. Int. J. Hydrogen Energy 2018, 44, 18801–18810. [Google Scholar] [CrossRef]
- Wang, Y.; Tahir, N.; Cao, W.; Zhang, Q.; Lee, D.J. Grid columnar flat panel photobioreactor with immobilized photosynthetic bacteria for continuous photofermentative hydrogen production. Bioresour. Technol. 2019, 291, 121806. [Google Scholar]
- Ross, B.S.; Pott, R.W.M. Hydrogen production by immobilized Rhodopseudomonas palustris in packed or fluidized bed photobioreactor systems. Int. J. Hydrogen Energy 2021, 46, 1715–1727. [Google Scholar] [CrossRef]
- Sagir, E.; Alipour, S. Photofermentative hydrogen production by immobilized photosynthetic bacteria: Current perspectives and challenges. Renew. Sustain. Energy Rev. 2021, 141, 110796. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, G.; Zhang, Q.; Lee, D.; Zhang, Z.; Li, Y.; Li, P.; Hu, J.; Yan, B. Photosynthetic hydrogen production by alginate immobilized bacterial consortium. Bioresour. Technol. 2017, 236, 44–48. [Google Scholar] [CrossRef] [PubMed]
- du Toit, J.-P.; Pott, R.W.M. Transparent polyvinyl-alcohol cryogel as immobilisation matrix for continuous biohydrogen production by phototrophic bacteria. Biotechnol. Biofuels 2020, 13, 105. [Google Scholar] [CrossRef] [PubMed]
- Mabutyana, L.; Pott, R.W.M. Photo-fermentative hydrogen production by Rhodopseudomonas palustris CGA009 in the presence of inhibitory compounds. Int. J. Hydrogen Energy 2021, 46, 29088–29099. [Google Scholar] [CrossRef]
- Sağır, E.; Yucel, M.; Hallenbeck, P.C. Demonstration and optimization of sequential microaerobic dark- and photo-fermentation biohydrogen production by immobilized Rhodobacter capsulatus JP91. Bioresour. Technol. 2018, 250, 43–52. [Google Scholar] [CrossRef]
- Montiel, C.V.; Le, B.S.; Revah, S.; Morales, M. Effect of light-dark cycles on hydrogen and poly-β-hydroxybutyrate production by a photoheterotrophic culture and Rhodobacter capsulatus using a dark fermentation effluent as substrate. Bioresour. Technol. 2017, 226, 238–246. [Google Scholar] [CrossRef]
- Sun, M.L.Y.; Liu, Y. A new hydrogen-producing strain and its characterization of hydrogen production. Appl. Biochem. Biotechnol. 2015, 177, 1676–1689. [Google Scholar] [CrossRef]
- Özkan, E.; Uyar, B.; Özgür, E.; Yücel, M.; Eroglu, I.; Gündüz, U. Photofermentative hydrogen production using dark fermentation effluent of sugar beet thick juice in outdoor conditions. Int. J. Hydrogen Energy 2012, 37, 2044–2049. [Google Scholar] [CrossRef]
- Adessi, A.; Torzillo, G.; Baccetti, E.; De Philippis, R. Sustained outdoor H2 production with Rhodopseudomonas palustris cultures in a 50 L tubular photobioreactor. Int. J. Hydrogen Energy 2012, 37, 8840–8849. [Google Scholar] [CrossRef]
- Ren, C.; Zhang, S.; Li, Q.; Jiang, Q.; Li, Y.; Gao, Z.; Cao, W.; Guo, L. Pilot composite tubular bioreactor for outdoor photo-fermentation hydrogen production: From batch to continuous operation. Bioresour. Technol. 2024, 401, 130705. [Google Scholar] [CrossRef]
Enzyme Type | Characteristics | H2 Production Mechanism | Advantages | Disadvantages | References |
---|---|---|---|---|---|
[FeFe]-Hydrogenase | Found in microalgae; highly active but O2-sensitive | Catalyzes H2 production at rates of ~104 H2/s in vitro | High efficiency in H2 production | Highly sensitive to O2, requiring anaerobic conditions | [30] |
[NiFe]-Hydrogenase | Found in cyanobacteria; more resistant to O2 exposure | Lower H2 production rates (~1000–2000 H2/s) | Some variants can function in oxygenated environments | Lower catalytic efficiency compared to [FeFe]-hydrogenase | [28] |
Nitrogenase | Converts N₂ into ammonia, producing H2 as a by-product | Requires ATP (16 ATP per H2 with N2, 4 ATP without N2) | Can produce H2 for longer periods in anaerobic conditions | High energy cost due to ATP consumption | [32] |
Optimization Strategy | Description | Advantages | Challenges | References |
---|---|---|---|---|
Genetic Engineering | Modifying microalgae/cyanobacteria for improved H2 output | Can enhance enzyme efficiency and O2 tolerance | Ethical concerns, regulatory restrictions | [33,34] |
Co-Cultivation with Bacteria | Using bacteria to assist H2 production (e.g., dark fermentation) | Converts biomass into additional H2 | Requires controlled symbiotic relationships | [35,36] |
Nutrient Starvation | Limiting sulfur, nitrogen, or potassium to enhance H2 yield | Enhances hydrogenase activity, reduces O2 production | Can stress cells, lowering overall biomass production | [19] |
Wastewater Utilization | Using wastewater as a nutrient source for microalgae | Reduces costs, reuses waste, increases biomass | Variability in wastewater composition | [37,38] |
Light Optimization | Using specific wavelengths (e.g., purple light) | Increases photosynthetic efficiency and H2 production | Requires precise control of light exposure | [39,40] |
Solar to H2 Technology | Solar to H2 Efficiency | Material-Catalysts | TRL | Reference |
---|---|---|---|---|
PV Alkaline Electrolysis | 10–12.3% | Material: Perovskite + Alkaline Catalysts: a multilayer anode nickel–iron hydroxide (NiFe) electrocatalyst layer coated on a nickel sulfide (NiSx) layer formed on porous Ni foam (NiFe/NiSx-Ni). | 9 | [52] |
Direct Biophotolysis | 1–13.4% | Microalgae: C. reinhardtii; C. reinhardtii D1 mutants; Chlorella sp G-120.; Cyanobacteria; Synechocystis 6803; Synnechocystis mutants Catalysts: Hydrogenases | 4–5 | [11,43] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Faraloni, C.; Torzillo, G.; Balestra, F.; Moia, I.C.; Zampieri, R.M.; Jiménez-Conejo, N.; Touloupakis, E. Advances and Challenges in Biohydrogen Production by Photosynthetic Microorganisms. Energies 2025, 18, 2319. https://doi.org/10.3390/en18092319
Faraloni C, Torzillo G, Balestra F, Moia IC, Zampieri RM, Jiménez-Conejo N, Touloupakis E. Advances and Challenges in Biohydrogen Production by Photosynthetic Microorganisms. Energies. 2025; 18(9):2319. https://doi.org/10.3390/en18092319
Chicago/Turabian StyleFaraloni, Cecilia, Giuseppe Torzillo, Francesco Balestra, Isabela Calegari Moia, Raffaella Margherita Zampieri, Natalia Jiménez-Conejo, and Eleftherios Touloupakis. 2025. "Advances and Challenges in Biohydrogen Production by Photosynthetic Microorganisms" Energies 18, no. 9: 2319. https://doi.org/10.3390/en18092319
APA StyleFaraloni, C., Torzillo, G., Balestra, F., Moia, I. C., Zampieri, R. M., Jiménez-Conejo, N., & Touloupakis, E. (2025). Advances and Challenges in Biohydrogen Production by Photosynthetic Microorganisms. Energies, 18(9), 2319. https://doi.org/10.3390/en18092319