Phytoremediation and Environmental Law: Harnessing Biomass and Microbes to Restore Soils and Advance Biofuel Innovation
Abstract
:1. Introduction
2. Soil Degradation: Problem Scale
Strategies for Preventing and Restoring Soil Degradation
3. Phytoremediation as a Strategy for Soil Restoration
3.1. Types and Mechanisms of Phytoremediation in Soil Decontamination
3.2. Limitations of Phytoremediation in Soil Remediation in Real-World Conditions
3.3. Plants in Phytoremediation
3.4. Root-Zone Interactions and Soil Stabilization
3.5. Microorganisms as Allies of Plants in Phytoremediation
3.5.1. Plant-Growth-Promoting Rhizobacteria
3.5.2. Arbuscular Mycorrhizal Fungi
3.5.3. Soil Microbial Interactions
4. Role of Assisted Phytoremediation Towards Environmental Policies
4.1. Plant and Microbial Biomass Towards Achieving Sustainable Development Goals
4.2. Assisted Phytoremediation Towards the Green Deal
4.3. Plant and Microbial Biomass Towards Directive Renewable Energy Directive III
4.4. Waste-Free Phytoremediation and Phycoremediation Towards a Circular Economy and RED III
5. Phytoremediation in Regenerative Agriculture
6. Future Perspectives
6.1. Advancements in Genetic Engineering for Enhanced Phytoremediation and Soil Restoration
6.2. Integration of Phytoremediation and Nanotechnology for Soil Regeneration
6.3. Potential Gaps in the Literature and Directions for Future Research
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Rathod, S.V.; Saras, P.; Gondaliya, S.M. Environmental pollution: Threats and challenges for management. In Eco-Restoration of Polluted Environment; Rathod, S.V., Ed.; CRP Press: Boca Raton, FL, USA, 2025; pp. 1–34. [Google Scholar]
- Efthimiou, N. Governance and degradation of soil in the EU. An overview of policies with a focus on soil erosion. Soil Tillage Res. 2025, 245, 106308. [Google Scholar] [CrossRef]
- Tadesse, A.; Hailu, W. Causes and consequences of land degradation in Ethiopia: A review. Int. J. Sci. Qual. Anal. 2024, 10, 10–21. [Google Scholar] [CrossRef]
- Han, H.; Zeeshan, Z.; Talpur, B.A.; Sadiq, T.; Bhatti, U.A.; Awwad, E.M.; Al-Razgan, M.; Ghadi, Y.Y. Studying long term relationship between carbon Emissions, Soil, and climate Change: Insights from a global Earth modeling Framework. Int. J. Appl. Earth Obs. Geoinf. 2024, 130, 103902. [Google Scholar] [CrossRef]
- Inbit, M.J.O.; Kazem, A.A.A.; Hussein, H.H.; Abd AL-kadum mageed Brism, R. The Impact of Human Activities on Environmental Sustainability. J. Med. Genet. Clin. Biol. 2024, 1, 119–141. [Google Scholar] [CrossRef]
- Adepoju, A.O.; Femi-Adepoju, A.; Jalloh, A.; Faeflen, S. Soil pollution and management practices. In Environmental Pollution and Public Health; Frazer-Williams, R., Ogundiran, M.B., Unuabonach, E.I., Eds.; Elsevier: Amsterdam, The Netherlands, 2024; pp. 187–236. [Google Scholar] [CrossRef]
- Singh, A.; Shah, S.S.; Sharma, C.; Gupta, V.; Sundramoorthy, A.K.; Kumar, P.; Arya, S. An approach towards different techniques for detection of heavy metal ions and their removal from waste water. J. Environ. Chem. Eng. 2024, 12, 113032. [Google Scholar] [CrossRef]
- Manaswini, G.; Sivagami, K.; Gopalakrishnan, M.; Harshini, P.; Janjoren, D.; Ganesan, S. Biodegradation of Low Molecular Weight Polycyclic Aromatic Hydrocarbons in Soil: Insights into Bacterial Activities and Bioremediation Techniques. Sustain. Chem. Environ. 2024, 7, 100146. [Google Scholar] [CrossRef]
- Fetting, C. The European Green Deal: Our Pact for the Future, European Sustainable Development Network (ESDN) Conference Report; ESDN Office: Vienna, Austria, 2020. [Google Scholar]
- Ige, O.E.; Ojo, F.R.; Onikanni, S.A. Rural and Urban Development: Pathways to Environmental Conservation and Sustainability. In Prospects for Soil Regeneration and Its Impact on Environmental Protection; Springer Nature: Cham, Switzerland, 2024; pp. 307–333. [Google Scholar]
- Kowalska, A.; Grobelak, A. Maximizing soil carbon storage: Leveraging microbial factors and limitations for carbon remediation. In Biotechnology of Emerging Microbes; Sharma, H., Joshi, S.J., Eds.; Academic Press: Cambridge, MA, USA, 2024; pp. 73–89. [Google Scholar] [CrossRef]
- Regassa, A.; Kibret, K.; Selassie, Y.G.; Kiflu, A.; Tena, W. Soil properties. In The Soils of Ethiopia; Beyene, S., Regassa, A., Mishra, B.B., Haile, M., Eds.; World Soils Book Series; Springer: Cham, Switzerland, 2023; pp. 111–156. [Google Scholar] [CrossRef]
- Kharel, M.; Dahal, B.M.; Raut, N. Good agriculture practices for safe food and sustainable agriculture in Nepal: A review. J. Agric. Food Res. 2022, 10, 100447. [Google Scholar] [CrossRef]
- Mosier, S.; Córdova, S.C.; Robertson, G.P. Restoring soil fertility on degraded lands to meet food, fuel, and climate security needs via perennialization. Front. Sustain. Food Syst. 2021, 5, 706142. [Google Scholar] [CrossRef]
- Bhardwaj, A. The Soils of Black Folk: WEB Du Bois’s Theories of Environmental Racialization. Sociol. Theory 2023, 41, 105–128. [Google Scholar] [CrossRef]
- Sofo, A.; Zanella, A.; Ponge, J.-F. Soil quality and fertility in sustainable agriculture, with a contribution to the biological classification of agricultural soils. Soil Use Manag. 2022, 38, 1085–1112. [Google Scholar] [CrossRef]
- Njoku, V.O.N.; Arinze, C.; Chizoruo, I.F.; Blessing, E.N. A Review: Effects of air, water and land dumpsite on human health and analytical methods for determination of pollutants. Anal. Methods Environ. Chem. J. 2021, 4, 80–106. [Google Scholar] [CrossRef]
- Vieira, D.C.S.; Yunta, F.; Baragaño, D.; Evrard, O.; Reiff, T.; Silva, V.; de la Torre, A.; Zhang, C.; Panagos, P.; Jones, A.; et al. Soil pollution in the European Union—An outlook. Environ. Sci. Policy 2024, 161, 103876. [Google Scholar] [CrossRef]
- European Commission: Joint Research Centre; Akca, E.; Aldrian, U.; Alewell, C.; Anzalone, E.; Arcidiacono, A.; Arias Navarro, C.; Auclerc, A.; Aydinsakir, K.; Ballabio, C.; et al. The State of Soils in Europe; Arias Navarro, C., Baritz, R., Jones, A., Eds.; Publications Office of the European Union: Luxembourg, 2024; Available online: https://data.europa.eu/doi/10.2760/7007291 (accessed on 12 January 2025).
- European Commission. EU Soil Strategy for 2030, COM (2021) 699 Final. 2021. Available online: https://ec.europa.eu/environment/publications/eu-soil-strategy-2030_en (accessed on 15 February 2022).
- Panagos, P.; Borrelli, P.; Jones, A.; Robinson, D.A. A 1 billion euro mission: A Soil Deal for Europe. Eur. J. Soil Sci. 2024, 75, e13466. [Google Scholar] [CrossRef]
- Panagos, P.; Van Liedekerke, M.; Borrelli, P.; Köninger, J.; Ballabio, C.; Orgiazzi, A.; Lugato, E.; Liakos, L.; Hervas, J.; Jones, A.; et al. European Soil Data Centre 2.0: Soil data and knowledge in support of the EU policies. Eur. J. Soil Sci. 2022, 73, e13315. [Google Scholar] [CrossRef]
- Gobinath, R.; Ganapathy, G.P.; Gayathiri, E.; Salunkhe, A.A.; Pourghasemi, H.R. Ecoengineering practices for soil degradation protection of vulnerable hill slopes. In Computers in Earth and Environmental Sciences; Pourghasemi, H.R., Ed.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 255–270. [Google Scholar] [CrossRef]
- Prăvălie, R. Exploring the multiple land degradation pathways across the planet. Earth-Sci. Rev. 2021, 220, 103689. [Google Scholar] [CrossRef]
- Voltr, V.; Menšík, L.; Hlisnikovský, L.; Hruška, M.; Pokorný, E.; Pospíšilová, L. The soil organic matter in connection with soil properties and soil inputs. Agronomy 2021, 11, 779. [Google Scholar] [CrossRef]
- Koval, V.; Mikhno, I.; Udovychenko, I.; Gordiichuk, Y.; Kalina, I. Sustainable natural resource management to ensure strategic environmental development. TEM J. 2021, 3, 1022–1030. [Google Scholar]
- Coban, O.; De Deyn, G.B.; van der Ploeg, M. Soil microbiota as game-changers in restoration of degraded lands. Science 2022, 375, abe0725. [Google Scholar] [CrossRef]
- Pedrinho, A.; Mendes, L.W.; de Araujo Pereira, A.P.; Araujo, A.S.F.; Vaishnav, A.; Karpouzas, D.G.; Singh, B.K. Soil microbial diversity plays an important role in resisting and restoring degraded ecosystems. Plant Soil 2024, 500, 325–349. [Google Scholar] [CrossRef]
- Liu, N.; Zhao, J.; Du, J.; Hou, C.; Zhou, X.; Chen, J.; Zhang, Y. Non-phytoremediation and phytoremediation technologies of integrated remediation for water and soil heavy metal pollution: A comprehensive review. Sci. Total Environ. 2024, 948, 174237. [Google Scholar] [CrossRef]
- Zhu, Y.; Gu, H.; Li, H.; Lam, S.S.; Verma, M.; Ng, H.S.; Sonne, C.; Liew, R.K.; Peng, W. Phytoremediation of contaminants in urban soils: A review. Environ. Chem. Lett. 2024, 22, 355–371. [Google Scholar] [CrossRef]
- Mohanty, C.; Kumar, V.; Bisoi, S.; Joseph, M.A.S.; Das, P.K.; Farzana Ahmad, M.; Selvaray, C.I.; Ratha, B.N.; Nanda, S.; Gangwar, S.P. Ecological implications of chromium-contaminated effluents from Indian tanneries and their phytoremediation: A sustainable approach. Environ. Monit. Assess. 2024, 196, 995. [Google Scholar] [CrossRef] [PubMed]
- Yaqoob, S.; Zahoor, I.; Kazerooni, E.A. Phytostabilization of contaminated soils. Int. J. Chem. Biochem. Sci. (IJCBS) 2024, 25, 136–153. [Google Scholar]
- Rabêlo, F.H.S.; Vangronsveld, J.; Baker, A.J.; van der Ent, A.; Alleoni, L.R.F. Are grasses really useful for the phytoremediation of potentially toxic trace elements? A review. Front. Plant Sci. 2021, 12, 778275. [Google Scholar] [CrossRef]
- Krzesłowska, M.; Goliński, P.; Szostek, M.; Mocek-Płóciniak, A.; Drzewiecka, K.; Piechalak, A.; Ilek, A.; Neumann, U.; Timmers, A.C.J.; Budzyńska, S.; et al. Morphology and Physiology of Plants Growing on Highly Polluted Mining Wastes. In Phytoremediation for Environmental Sustainability; Prasad, R., Ed.; Springer Nature: Singapore, 2022; pp. 151–200. [Google Scholar] [CrossRef]
- Gavrilescu, M. Enhancing phytoremediation of soils polluted with heavy metals. Curr. Opin. Biotechnol. 2022, 74, 21–31. [Google Scholar] [CrossRef]
- Nwogwu, N.A.; Ajala, O.A.; Ajibade, F.O.; Ajibade, T.F.; Adelodun, B.; Lasisi, K.H.; Ugya, A.Y.; Kumar, P.; Omotade, I.F.; Babalola, T.E.; et al. Phytoremediation mechanisms of heavy metal removal: A step towards a green and sustainable environment. In Innovative Bio-Based Technologies for Environmental Remediation; Singh, P., Hussain, C.M., Sillanpää, M., Eds.; CRP Press: Boca Raton, FL, USA, 2022; pp. 207–236. [Google Scholar] [CrossRef]
- Sharma, K.; Devi, P.; Dey, S.R.; Kumar, P. Mercury phytovolatilization: An overview of the mechanism and mitigation. In Role of Green Chemistry in Ecosystem Restoration to Achieve Environmental Sustainability; Srivastav, A.L., Grewal, A.S., Tiwari, M., Pham, T.D., Eds.; Elsevier: Amsterdam, The Netherlands, 2024; pp. 325–331. [Google Scholar] [CrossRef]
- Li, S.; Liu, C. Use of selenium accumulators and hyperaccumulators in Se-phytoremediation technologies: Recent progress and future perspectives. In Selenium and Nano-Selenium in Environmental Stress Management and Crop Quality Improvement; Hossain, M.A., Ahammed, G.J., Kolbert, Z., El-Ramady, H., Islam, T., Schiavon, M., Eds.; Springer: Cham, Switzerland, 2022; pp. 365–381. [Google Scholar] [CrossRef]
- Genchi, G.; Lauria, G.; Catalano, A.; Sinicropi, M.S.; Carocci, A. Biological activity of selenium and its impact on human health. Int. J. Mol. Sci. 2023, 24, 2633. [Google Scholar] [CrossRef]
- Abdullah, S.R.S.; Al-Baldawi, I.A.; Almansoory, A.F.; Purwanti, I.F.; Al-Sbani, N.H.; Sharuddin, S.S.N. Plant-assisted remediation of hydrocarbons in water and soil: Application, mechanisms, challenges and opportunities. Chemosphere 2020, 247, 125932. [Google Scholar] [CrossRef]
- Xiang, L.; Harindintwali, J.D.; Wang, F.; Redmile-Gordon, M.; Chang, S.X.; Fu, Y.; He, C.; Muhoza, B.; Brahushi, B.; Bolan, N.; et al. Integrating biochar, bacteria, and plants for sustainable remediation of soils contaminated with organic pollutants. Environ. Sci. Technol. 2022, 56, 16546–16566. [Google Scholar] [CrossRef]
- Nasr, M.; Samy, M. Plant-based adsorbents for emerging pollutants removal: A decade review. In Sustainable Technologies for Remediation of Emerging Pollutants from Aqueous Environment; Dehghani, M.H., Karr, R.R., Tyagi, I., Eds.; Elsevier: Amsterdam, The Netherlands, 2024; pp. 241–262. [Google Scholar] [CrossRef]
- Coughlan, N.E.; Walsh, É.; Ahern, R.; Burnell, G.; O’Mahoney, R.; Kuehnhold, H.; Jansen, M.A.K. Flow Rate and Water Depth Alters Biomass Production and Phytoremediation Capacity of Lemna minor. Plants 2022, 11, 2170. [Google Scholar] [CrossRef]
- Khan, A.H.A.; Kiyani, A.; Mirza, C.R.; Butt, T.A.; Barros, R.; Ali, B.; Iqbal, M.; Yousaf, S. Ornamental plants for the phytoremediation of heavy metals: Present knowledge and future perspectives. Environ. Res. 2021, 195, 110780. [Google Scholar] [CrossRef]
- Phang, L.Y.; Mingyuan, L.; Mohammadi, M.; Tee, C.S.; Yuswan, M.H.; Cheng, W.H.; Lai, K.S. Phytoremediation as a viable ecological and socioeconomic management strategy. Environ. Sci. Pollut. Res. 2024, 31, 50126–50141. [Google Scholar] [CrossRef] [PubMed]
- Garraud, J.; Plihon, H.; Capiaux, H.; Le Guern, C.; Mench, M.; Lebeau, T. Drivers to improve metal (loid) phytoextraction with a focus on microbial degradation of dissolved organic matter in soils. Int. J. Phytoremediation 2024, 26, 63–81. [Google Scholar] [CrossRef] [PubMed]
- Wei, Z.; Van Le, Q.; Peng, W.; Yang, Y.; Yang, H.; Gu, H.; Lam, S.S.; Sonne, C. A review on phytoremediation of contaminants in air, water and soil. J. Hazard. Mater. 2021, 403, 123658. [Google Scholar] [CrossRef] [PubMed]
- Mensah, A.K.; Amoakwah, E. Soil Biogeochemical Factors Influencing Mobilization of Toxic. In Perspectives and Insights on Soil Contamination and Effective Remediation Techniques; Hakeem, K.R., Ed.; IntechOpen: London, UK, 2024. [Google Scholar] [CrossRef]
- Mohammed, J.N.; Mohammed, A.; Muhammad, I.L.; Mohammed, S.; Alka, S.; Muhammad, R.G. Role of Plant Growth Promoting Rhizobacteria in Remediation of Fluoride Toxicity. In Fluoride and Fluorocarbon Toxicity; Kumar, N., Ed.; Springer Nature: Singapore, 2024; pp. 331–344. [Google Scholar] [CrossRef]
- Hou, D.; Al-Tabbaa, A.; O’Connor, D.; Hu, Q.; Zhu, Y.G.; Wang, L.; Kirkwood, N.; Ok, Y.S.; Tsang, D.C.W.; Bolan, W.S.; et al. Sustainable remediation and redevelopment of brownfield sites. Nat. Rev. Earth Environ. 2023, 4, 271–286. [Google Scholar] [CrossRef]
- Kafle, A.; Timilsina, A.; Gautam, A.; Adhikari, K.; Bhattarai, A.; Aryal, N. Phytoremediation: Mechanisms, plant selection and enhancement by natural and synthetic agents. Environ. Adv. 2022, 8, 100203. [Google Scholar] [CrossRef]
- Kumar, A.; Jigyasu, D.K.; Kumar, A.; Subrahmanyam, G.; Mondal, R.; Shabnam, A.A.; Cabral-Pinto, M.M.S.; Molyan, S.K.; Chaturvedi, A.K.; Gupta, D.K.; et al. Nickel in terrestrial biota: Comprehensive review on contamination, toxicity, tolerance and its remediation approaches. Chemosphere 2021, 275, 129996. [Google Scholar] [CrossRef]
- Memon, A.; Kusur, F.; Memon, M. Metal hyperaccumulator plants and their role in phytoremediation. In Phytoremediation for Environmental Sustainability; Prasad, R., Ed.; Springer Nature: Singapore, 2022; pp. 1–24. [Google Scholar] [CrossRef]
- Hussain, M.M.; Farooqi, Z.U.R.; Mohy-Ud-Din, W.; Younas, F.; Shahzad, M.T.T.; Ghani, M.U.M.U.; Ayub, M.A.; Qadeer, A. Application of bioremediation as sustainable approach to remediate heavy metal and pesticide polluted environments. Plant Environ. 2021, 2, 62–92. [Google Scholar]
- Sekhohola-Dlamini, L.M.; Keshinro, O.M.; Masudi, W.L.; Cowan, A.K. Elaboration of a phytoremediation strategy for successful and sustainable rehabilitation of disturbed and degraded land. Minerals 2022, 12, 111. [Google Scholar] [CrossRef]
- Peco, J.D.; Higueras, P.; Campos, J.A.; Esbrí, J.M.; Moreno, M.M.; Battaglia-Brunet, F.; Sandalio, L.M. Abandoned mine lands reclamation by plant remediation technologies. Sustainability 2021, 13, 6555. [Google Scholar] [CrossRef]
- Amabogha, O.N.; Garelick, H.; Jones, H.; Purchase, D. Combining phytoremediation with bioenergy production: Developing a multi-criteria decision matrix for plant species selection. Environ. Sci. Pollut. Res. 2023, 30, 40698–40711. [Google Scholar] [CrossRef]
- Li, M.; Heng, Q.; Hu, C.; Wang, Z.; Jiang, Y.; Wang, X.; He, X.; Yong, J.W.H.; Dawoud, T.M.; Rahman, S.U.; et al. Phytoremediation efficiency of poplar hybrid varieties with diverse genetic backgrounds in soil contaminated by multiple toxic metals (Cd, Hg, Pb, and As). Ecotoxicol. Environ. Saf. 2024, 283, 116843. [Google Scholar] [CrossRef] [PubMed]
- Bajraktari, D.; Zeneli, L.; Bauer, B. Salix alba phytoremediation potential of heavy metals. Maced. Pharm. Bull. 2022, 68, 89–90. [Google Scholar] [CrossRef]
- Landberg, T.; Greger, M. Phytoremediation using willow in industrial contaminated soil. Sustainability 2022, 14, 8449. [Google Scholar] [CrossRef]
- Novakovskiy, A.B.; Kanev, V.A.; Markarova, M.Y. Long-term dynamics of plant communities after biological remediation of oil-contaminated soils in Far North. Sci. Rep. 2021, 11, 4888. [Google Scholar] [CrossRef]
- Zamani, N.; Sabzalian, M.R.; Afyuni, M. Elevated atmospheric CO2 combined with Epichloë endophyte may improve growth and Cd phytoremediation potential of tall fescue (Festuca arundinacea L.). Environ. Sci. Pollut. Res. 2024, 31, 8164–8185. [Google Scholar] [CrossRef]
- Tatian, M.R.; Tamartash, R.; Agajantabar Ali, H.; Faraji, A. Evaluation of phytoremediation potential of lead and cadmium in rangeland plant species, Dactylis glomerata, Festuca ovina and Medicago sativa. J. Nat. Environ. 2023, 76, 15–28. [Google Scholar] [CrossRef]
- Pusz, A.; Wiśniewska, M.; Rogalski, D. Assessment of the Accumulation Ability of Festuca rubra L. and Alyssum saxatile L. Tested on Soils Contaminated with Zn, Cd, Ni, Pb, Cr, and Cu. Resources 2021, 10, 46. [Google Scholar] [CrossRef]
- Havryliuk, O.; Hovorukha, V.; Bida, I.; Danko, Y.; Gladka, G.; Zakutevsky, O.; Mariychuk, R.; Tashyrev, O. Bioremediation of Copper-and Chromium-Contaminated Soils Using Agrostis capillaris L.; Festuca pratensis Huds., and Poa pratensis L. Mixture of Lawn Grasses. Land 2022, 11, 623. [Google Scholar] [CrossRef]
- Wu, Y.; Trejo, H.X.; Chen, G.; Li, S. Phytoremediation of contaminants of emerging concern from soil with industrial hemp (Cannabis sativa L.): A review. Environ. Dev. Sustain. 2021, 23, 14405–14435. [Google Scholar] [CrossRef]
- Panchenko, L.; Muratova, A.; Turkovskaya, O. Comparison of the phytoremediation potentials of Medicago falcata L. and Medicago sativa L. in aged oil-sludge-contaminated soil. Environ. Sci. Pollut. Res. Int. 2017, 24, 3117–3130. [Google Scholar] [CrossRef]
- Jiao, S.; Hou, X.; Zhao, G.; Feng, Y.; Zhang, S.; Zhang, H.; Liu, J.; Jiang, G. Migration of polycyclic aromatic hydrocarbons in the rhizosphere micro-interface of soil-ryegrass (Lolium perenne L.) system. Sci. Total Environ. 2023, 903, 166299. [Google Scholar] [CrossRef] [PubMed]
- Dąbrowska, G.B.; Janczak, K.; Richert, A. Combined use of Bacillus strains and Miscanthus for accelerating biodegradation of poly (lactic acid) and poly (ethylene terephthalate). PeerJ 2021, 9, e10957. [Google Scholar] [CrossRef]
- LeFevre, G.H.; Portmann, A.C.; Müller, C.E.; Sattely, E.S.; Luthy, R. Plant assimilation kinetics and metabolism of 2-mercaptobenzothiazole tire rubber vulcanizers by Arabidopsis. Environ. Sci. Technol. 2016, 50, 6762–6771. [Google Scholar] [CrossRef] [PubMed]
- Nassazzi, W.; Bezabhe, Y.H.; Guo, C.; Tapase, S.; Jaffe, B.D.; Key, T.A.; Lai, F.Y.; Jass, J.; Ahrens, L. Role of hormone and microbial amendment in per-and polyfluoroalkyl substances (PFAS) phytoremediation using willow and poplar. Environ. Technol. Innov. 2025, 37, 104048. [Google Scholar] [CrossRef]
- Sharma, N.; Barion, G.; Shrestha, I.; Ebinezer, L.B.; Trentin, A.R.; Vamerali, T.; Mezzalira, G.; Masi, A.; Ghisi, R. Accumulation and effects of perfluoroalkyl substances in three hydroponically grown Salix L. species. Ecotoxicol. Environ. Saf. 2020, 191, 110150. [Google Scholar] [CrossRef]
- Ren, W.; Wang, Y.; Huang, Y.; Liu, F.; Teng, Y. Uptake, translocation and metabolism of di-n-butyl phthalate in alfalfa (Medicago sativa). Sci. Total Environ. 2020, 731, 138974. [Google Scholar] [CrossRef]
- Aioub, A.A.; Fahmy, M.A.; Ammar, E.E.; Maher, M.; Ismail, H.A.; Yue, J.; Zhang, Q.; Abdel-Wahab, S.I.Z. Decontamination of Chlorpyrifos Residue in Soil by Using Mentha piperita (Lamiales: Lamiaceae) for Phytoremediation and Two Bacterial Strains. Toxics 2024, 12, 435. [Google Scholar] [CrossRef]
- Ramadan, M.R.; Aioub, A.A.; Romeh, A.A.; Shalaby, A.A. Phytoremediation of soil and water contaminated with diazinon. Zagazig J. Agric. Res. 2015, 42, 843. [Google Scholar]
- Maheshwari, G.; Setia, K.; Gauba Mathur, S. Exploring phytoremediation potential for estrogen hormone. Int. J. Res. Rev. 2019, 6, 195–202. [Google Scholar]
- Teerakun, M.; Reungsang, A. Determination of plant species for the phytoremediation of carbofuran residue in rice field soils. Songklanakarin J. Sci. Technol. 2025, 27, 967–973. [Google Scholar]
- Wang, N.Q.; Kong, C.H.; Wang, P.; Meiners, S.J. Root exudate signals in plant–plant interactions. Plant Cell Environ. 2021, 44, 1044–1058. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.; Tang, S.; Dengzeng, Z.; Zhang, D.; Zhang, T.; Ma, X. Root exudates contribute to belowground ecosystem hotspots: A review. Front. Microbiol. 2022, 13, 937940. [Google Scholar] [CrossRef]
- Sun, W.; Li, Q.; Qiao, B.; Jia, K.; Li, C.; Zhao, C. Advances in Plant–Soil Feedback Driven by Root Exudates in Forest Ecosystems. Forests 2024, 15, 515. [Google Scholar] [CrossRef]
- Podar, D.; Maathuis, F.J. The role of roots and rhizosphere in providing tolerance to toxic metals and metalloids. Plant Cell Environ. 2022, 45, 719–736. [Google Scholar] [CrossRef]
- Pasricha, S.; Mathur, V.; Garg, A.; Lenka, S.; Verma, K.; Agarwal, S. Molecular mechanisms underlying heavy metal uptake, translocation and tolerance in hyperaccumulators-an analysis: Heavy metal tolerance in hyperaccumulators. Environ. Chall. 2021, 4, 100197. [Google Scholar] [CrossRef]
- Supreeth, M. Enhanced remediation of pollutants by microorganisms–plant combination. Int. J. Environ. Sci. Technol. 2022, 19, 4587–4598. [Google Scholar] [CrossRef]
- Das, P.P.; Singh, K.R.; Nagpure, G.; Mansoori, A.; Singh, R.P.; Ghazi, I.A.; Kumar, A.; Singh, J. Plant-soil-microbes: A tripartite interaction for nutrient acquisition and better plant growth for sustainable agricultural practices. Environ. Res. 2022, 214, 113821. [Google Scholar] [CrossRef]
- Imam, A.; Suman, S.K.; Kanaujia, P.K.; Ray, A. Biological machinery for polycyclic aromatic hydrocarbons degradation: A review. Bioresour. Technol. 2022, 343, 126121. [Google Scholar] [CrossRef]
- Kristanti, R.A.; Tirtalistyani, R.; Tang, Y.Y.; Thao, N.T.T.; Kasongo, J.; Wijayanti, Y. Phytoremediation mechanism for emerging pollutants: A review. Trop. Aquat. Soil Pollut. 2023, 3, 88–108. [Google Scholar] [CrossRef]
- Grobelak, A.; Całus-Makowska, K.; Jasińska, A.; Klimasz, M.; Wypart-Pawul, A.; Augustajtys, D.; Baor, E.; Sławczyk, D.; Kowalska, A. Environmental Impacts and Contaminants Management in Sewage Sludge-to-Energy and Fertilizer Technologies: Current Trends and Future Directions. Energies 2024, 17, 4983. [Google Scholar] [CrossRef]
- Wang, J.; Ma, W.; Ma, W.; Yao, Z.; Jiang, Y.; Jiang, W.; Xin, F.; Zhang, W.; Jiang, M. Microbial Astaxanthin Synthesis by Komagataella phaffii through Metabolic and Fermentation Engineering. J. Agric. Food Chem. 2025, 73, 1952–1964. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Gao, S.; Pan, K.; Liu, H.; Li, Q.; Bai, X.; Zhu, Q.; Chen, Z.; Yan, X.; Hong, Q. Functional analysis, diversity, and distribution of the ean cluster responsible for 17β-estradiol degradation in sphingomonads. Appl. Environ. Microbiol. 2024, 90, e01974-23. [Google Scholar] [CrossRef] [PubMed]
- Cao, S.; Duan, M.; Zhang, X.; Yang, Z.; Zhuo, R. Bacterial community structure analysis of sludge from Taozi lake and isolation of an efficient 17β-Estradiol (E2) degrading strain Sphingobacterium sp. GEMB-CSS-01. Chemosphere 2024, 355, 141806. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, L.; Hou, J.; Wang, X.; Liu, H.; Zheng, D.; Liang, R. iTRAQ-based quantitative proteomic analysis of the global response to 17β-estradiol in estrogen-degradation strain Pseudomonas putida SJTE-1. Sci. Rep. 2017, 7, 41682. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Gao, H.; Dong, Q.; Su, Y.; Dai, T.; Qin, Z.; Yang, Y.; Gao, Q. Bacteria are better predictive biomarkers of environmental estrogen transmission than fungi. Environ. Pollut. 2022, 298, 118838. [Google Scholar] [CrossRef]
- Daâssi, D.; Alharbi, S.R. Degradation of endocrine-disrupting chemicals in wastewater by new thermophilic fungal isolates and their laccases. 3 Biotech 2023, 13, 26. [Google Scholar] [CrossRef]
- Feng, N.-X.; Feng, Y.-X.; Liang, Q.-F.; Chen, X.; Xiang, L.; Zhao, H.M.; Liu, B.-L.; Cao, G.; Li, Y.-W.; Li, H.; et al. Complete biodegradation of di-n-butyl phthalate (DBP) by a novel Pseudomonas sp. YJB6. Sci. Total Environ. 2021, 761, 143208. [Google Scholar] [CrossRef]
- Wu, X.; Li, J.; Zhou, Z.; Lin, Z.; Pang, S.; Bhatt, P.; Mishra, S.; Chen, S. Environmental occurrence, toxicity concerns, and degradation of diazinon using a microbial system. Front. Microbiol. 2021, 12, 717286. [Google Scholar] [CrossRef]
- Sun, W.; Chen, Y.; Liu, L.; Tang, J.; Chen, J.; Liu, P. Conidia immobilization of T-DNA inserted Trichoderma atroviride mutant AMT-28 with dichlorvos degradation ability and exploration of biodegradation mechanism. Bioresour. Technol. 2010, 101, 9197–9203. [Google Scholar] [CrossRef]
- Parte, S.G.; Mohekar, A.D.; Kharat, A.S. Aerobic dichlorvos degradation by Pseudomonas stutzeri smk: Complete pathway and implications for toxicity in Mus musculus. Iran. J. Microbiol. 2020, 12, 138. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, W.; Li, J.; Pang, S.; Mishra, S.; Bhatt, P.; Zeng, D.; Chen, S. Emerging Technologies for Degradation of Dichlorvos: A Review. Int. J. Environ. Res. Public Health 2021, 18, 5789. [Google Scholar] [CrossRef] [PubMed]
- Srinivasulu, M.; Raju, M.N.; Chandra, M.S.; Shankar, P.C.; Rangaswamy, V.; Prasad, R. Microbe-pesticide interactions: Soil enzyme analysis and bacterial degradation of chlorpyrifos. J. Environ. Chem. Ecotoxicol. 2024, 6, 180–191. [Google Scholar] [CrossRef]
- Wepukhulu, M.; Wachira, P.; Huria, N.; Sifuna, P.; Essuman, S.; Asamba, M. Optimization of Growth Conditions for Chlorpyrifos-Degrading Bacteria in Farm Soils in Nakuru County, Kenya. BioMed Res. Int. 2024, 2024, 1611871. [Google Scholar] [CrossRef] [PubMed]
- Salah-Tazdaït, R.; Tazdaït, D. Use of microbial enzymes to degrade pesticide residues in agroecosystems-sustainable practices. In Biotechnology of Emerging Microbes; Sharma, H., Joshi, S.J., Eds.; Academic Press: Cambridge, MA, USA, 2024; pp. 189–215. [Google Scholar] [CrossRef]
- Bhende, R.S.; Bombaywala, S.; Dafale, N.A. Unleashing potential of Pseudomonas aeruginosa RNC3 and Stenotrophomonas maltophilia RNC7 for chlorpyrifos biodegradation by genome analysis and kinetic studies. J. Hazard. Mater. 2024, 461, 132668. [Google Scholar] [CrossRef]
- Bosu, S.; Rajamohan, N.; Al Salti, S.; Rajasimman, M.; Das, P. Biodegradation of chlorpyrifos pollution from contaminated environment—A review on operating variables and mechanism. Environ. Res. 2024, 248, 118212. [Google Scholar] [CrossRef]
- Kosimov, D.; Zaynitdinova, L.; Mavjudova, A.; Muminov, M.; Shukurov, O. Isolation, Identification and Use of Bacterial Strain Ochrobactrum intermedium PDB-3 for Degradation of the Pesticide Chlorpyrifos. Microbiol. Biotechnol. Lett. 2024, 52, 44–54. [Google Scholar] [CrossRef]
- Pan, Q.; Li, Y.; Zhang, J.; Hu, T.; Hou, Y.; Tang, S. Mechanisms of oxidative response during biodegradation of malathion by S. oneidensis MR-1. Environ. Sci. Pollut. Res. 2024, 31, 16832–16845. [Google Scholar] [CrossRef]
- Dar, M.A.; Pandey, J.; Kaushik, G. Optimizing malathion biodegradation by Bacillus cereus via a design of experiment framework. Bioremediat. J. 2024, 1–19. [Google Scholar] [CrossRef]
- Swathy, K.; Vivekanandhan, P.; Yuvaraj, A.; Sarayut, P.; Kim, J.S.; Krutmuang, P. Biodegradation of pesticide in agricultural soil employing entomopathogenic fungi: Current state of the art and future perspectives. Heliyon 2024, 10, e23406. [Google Scholar] [CrossRef]
- Duc, H.D.; Hung, N.V.; Oanh, N.T. Anaerobic Degradation of Endosulfans by a Mixed Culture of Pseudomonas sp. and Staphylococcus sp. Appl. Biochem. Microbiol. 2021, 57, 327–334. [Google Scholar] [CrossRef]
- Baharudin, N.S.; Ahmad, H.; Hossain, M.S. Understanding the Degradation of Carbofuran in Agricultural Area: A Review of Fate, Metabolites, and Toxicity. Pertanika J. Sci. Technol. 2024, 32, 285–322. [Google Scholar] [CrossRef]
- Ivshina, I.B.; Tyumina, E.A.; Kuzmina, M.V.; Vikhareva, E.V. Features of diclofenac biodegradation by Rhodococcus ruber IEGM 346. Sci. Rep. 2019, 9, 9159. [Google Scholar] [CrossRef] [PubMed]
- Aracagök, Y.D.; Göker, H.; Cihangir, N. Biodegradation of diclofenac with fungal strains. Arch. Environ. Prot. 2018, 44, 55–62. [Google Scholar] [CrossRef]
- Fetyan, N.A.H.; Asair, A.A.; Ismail, I.M.; Elsakhawy, T.A.; Elnagdy, S.M.; Mohamed, M.S.M. Bacterial Degradation of Ibuprofen: Insights into Metabolites, Enzymes, and Environmental Fate Biodegradation of Ibuprofen by Achromobacter Species. Microbiol. Res. 2024, 15, 2298–2315. [Google Scholar] [CrossRef]
- Lara-Moreno, A.; Costa, M.C.; Vargas-Villagomez, A.; Carlier, J.D. New bacterial strains for ibuprofen biodegradation: Drug removal, transformation, and potential catabolic genes. Environ. Microbiol. Rep. 2024, 16, e13320. [Google Scholar] [CrossRef]
- Palma, T.L.; Magno, G.; Costa, M.C. Biodegradation of paracetamol by some gram-positive bacterial isolates. Curr. Microbiol. 2021, 78, 2774–2786. [Google Scholar] [CrossRef]
- Wang, Y.; Gao, J.; Zhou, S.; Lian, M. Microbial degradation of carbamazepine by a newly isolated of Gordonia polyophrenivorans. Environ. Technol. Innov. 2023, 32, 103322. [Google Scholar] [CrossRef]
- Xu, W.-J.; Wan, Q.; Wang, W.-F.; Wang, Y.; Feng, F.-Y.; Cheng, J.-J.; Juan, J.-J.; Yu, X.-Y. Biodegradation of dibutyl phthalate by a novel endophytic Bacillus subtilis strain HB-T2 under in-vitro and in-vivo conditions. Environ. Technol. 2022, 43, 1917–1926. [Google Scholar] [CrossRef]
- Du, H.; Cheng, J.-L.; Li, Z.-Y.; Zhong, H.-N.; Wei, S.; Gu, Y.-J.; Yao, C.-C.; Zhang, M.; Cai, Q.-Y.; Zhao, H.M.; et al. Molecular insights into the catabolism of dibutyl phthalate in Pseudomonas aeruginosa PS1 based on biochemical and multi-omics approaches. Sci. Total Environ. 2024, 926, 171852. [Google Scholar] [CrossRef]
- Hernández-Sánchez, B.; Santacruz-Juárez, E.; Figueroa-Martínez, F.; Castañeda-Antonio, D.; Portillo-Reyes, R.; Viniegra-González, G.; Sánchez, C. A novel and efficient strategy for the biodegradation of di (2-ethylhexyl) phthalate by Fusarium culmorum. Appl. Microbiol. Biotechnol. 2024, 108, 94. [Google Scholar] [CrossRef]
- Patil, R.; Bagde, U.S. Isolation of polyvinyl chloride degrading bacterial strains from environmental samples using enrichment culture technique. Afr. J. Biotechnol. 2012, 11, 7947–7956. [Google Scholar] [CrossRef]
- Giacomucci, L.; Raddadi, N.; Soccio, M.; Lotti, N.; Fava, F. Polyvinyl chloride biodegradation by Pseudomonas citronellolis and Bacillus flexus. New Biotechnol. 2019, 52, 35–41. [Google Scholar] [CrossRef]
- Okal, E.J.; Heng, G.; Magige, E.A.; Khan, S.; Wu, S.; Ge, Z.; Zhang, T.; Mortimer, P.E.; Xu, J. Insights into the mechanisms involved in the fungal degradation of plastics. Ecotoxicol. Environ. Saf. 2023, 262, 115202. [Google Scholar] [CrossRef]
- Zainab, N.; Amna; Khan, A.A.; Azeem, M.A.; Ali, B.; Wang, T.; Shi, F.; Alghanem, S.M.; Hussain Munis, M.F.; Hashem, M.; et al. PGPR-mediated plant growth attributes and metal extraction ability of Sesbania sesban L. in industrially contaminated soils. Agronomy 2021, 11, 1820. [Google Scholar] [CrossRef]
- Naz, M.; Afzal, M.R.; Qi, S.S.; Dai, Z.; Sun, Q.; Du, D. Microbial-assistance and chelation-support techniques promoting phytoremediation under abiotic stresses. Chemosphere 2024, 365, 143397. [Google Scholar] [CrossRef]
- Bhanse, P.; Kumar, M.; Singh, L.; Awasthi, M.K.; Qureshi, A. Role of plant growth-promoting rhizobacteria in boosting the phytoremediation of stressed soils: Opportunities, challenges, and prospects. Chemosphere 2022, 303, 134954. [Google Scholar] [CrossRef]
- Gamalero, E.; Glick, B.R. Recent advances in bacterial amelioration of plant drought and salt stress. Biology 2022, 11, 437. [Google Scholar] [CrossRef]
- Jan, S.; Bhardwaj, R.; Sharma, N.R.; Singh, R. Unraveling the role of plant growth regulators and plant growth promoting rhizobacteria in phytoremediation. J. Plant Growth Regul. 2024, 43, 2471–2487. [Google Scholar] [CrossRef]
- Montreemuk, J.; Stewart, T.N.; Prapagdee, B. Bacterial-assisted phytoremediation of heavy metals: Concepts, current knowledge, and future directions. Environ. Technol. Innov. 2024, 33, 103488. [Google Scholar] [CrossRef]
- Gómez-Godínez, L.J.; Aguirre-Noyola, J.L.; Martínez-Romero, E.; Arteaga-Garibay, R.I.; Ireta-Moreno, J.; Ruvalcaba-Gómez, J.M. A look at plant-growth-promoting bacteria. Plants 2023, 12, 1668. [Google Scholar] [CrossRef]
- Shah, A.; Nazari, M.; Antar, M.; Msimbira, L.A.; Naamala, J.; Lyu, D.; Rabileh, M.; Zajonc, J.; Smith, D.L. PGPR in agriculture: A sustainable approach to increasing climate change resilience. Front. Sustain. Food Syst. 2021, 5, 667546. [Google Scholar] [CrossRef]
- Shahid, M.; Khan, M.S.; Singh, U.B. Pesticide-tolerant microbial consortia: Potential candidates for remediation/clean-up of pesticide-contaminated agricultural soil. Environ. Res. 2023, 236, 116724. [Google Scholar] [CrossRef] [PubMed]
- Shahid, M.; Singh, U.B. Enhancing Spinach (Spinacia oleracea L.) Resilience in Pesticide-Contaminated Soil: Role of Pesticide-Tolerant Ciceribacter azotifigens and Serratia marcescens in Root Architecture, Leaf Gas Exchange Attributes and Antioxidant Response Restoration. Chemosphere 2024, 361, 142487. [Google Scholar] [CrossRef] [PubMed]
- Hnini, M.; Rabeh, K.; Oubohssaine, M. Interactions between beneficial soil microorganisms (PGPR and AMF) and host plants for environmental restoration: A systematic review. Plant Stress 2024, 11, 100391. [Google Scholar] [CrossRef]
- Tiwari, J.; Ma, Y.; Bauddh, K. Arbuscular mycorrhizal fungi: An ecological accelerator of phytoremediation of metal contaminated soils. Arch. Agron. Soil Sci. 2022, 68, 283–296. [Google Scholar] [CrossRef]
- Salifu, M.; John, M.A.; Abubakar, M.; Bankole, I.A.; Ajayi, N.D.; Amusan, O. Phytoremediation Strategies for Heavy Metal Contamination: A Review on Sustainable Approach for Environmental Restoration. J. Environ. Prot. 2024, 15, 450–474. [Google Scholar] [CrossRef]
- Li, X.; Kang, X.; Zou, J.; Yin, J.; Wang, Y.; Li, A.; Ma, X. Allochthonous arbuscular mycorrhizal fungi promote Salix viminalis L.–mediated phytoremediation of polycyclic aromatic hydrocarbons characterized by increasing the release of organic acids and enzymes in soils. Ecotoxicol. Environ. Saf. 2023, 249, 114461. [Google Scholar] [CrossRef]
- Hu, B.; Hu, S.; Vymazal, J.; Chen, Z. Arbuscular mycorrhizal symbiosis in constructed wetlands with different substrates: Effects on the phytoremediation of ibuprofen and diclofenac. J. Environ. Manag. 2021, 296, 113217. [Google Scholar] [CrossRef]
- Naseer, M.; Zhu, Y.; Li, F.-M.; Yang, Y.-M.; Wang, S.; Xiong, Y.-C. Nano-enabled improvements of growth and colonization rate in wheat inoculated with arbuscular mycorrhizal fungi. Environ. Pollut. 2022, 295, 118724. [Google Scholar] [CrossRef]
- Kebede, G.; Tafese, T.; Abda, E.M.; Kamaraj, M.; Assefa, F. Factors influencing the bacterial bioremediation of hydrocarbon contaminants in the soil: Mechanisms and impacts. J. Chem. 2021, 2021, 9823362. [Google Scholar] [CrossRef]
- Shi, Z.; Zhang, J.; Lu, S.; Li, Y.; Wang, F. Arbuscular Mycorrhizal Fungi Improve the Performance of Sweet Sorghum Grown in a Mo-Contaminated Soil. J. Fungi 2020, 6, 44. [Google Scholar] [CrossRef] [PubMed]
- Meyer, E.; Londoño, D.M.M.; de Armas, R.D.; Giachini, A.J.; Rossi, M.J.; Stoffel, S.C.G.; Soares, C.R.F.S. Arbuscular mycorrhizal fungi in the growth and extraction of trace elements by Chrysopogon zizanioides (vetiver) in a substrate containing coal mine wastes. Int. J. Phytoremediat. 2017, 19, 113–120. [Google Scholar] [CrossRef] [PubMed]
- Carlsen, S.C.K.; Understrup, A.; Fomsgaard, I.S.; Mortensen, A.G.; Ravnskov, S. Flavonoids in roots of white clover: Interaction of arbuscular mycorrhizal fungi and a pathogenic fungus. Plant Soil 2008, 302, 33–43. [Google Scholar] [CrossRef]
- Tuo, X.-Q.; He, L.; Zou, Y.-N. Alleviation of drought stress in white clover after inoculation with arbuscular mycorrhizal Fungi. Not. Bot. Horti Agrobot. Cluj-Napoca 2017, 45, 220–224. [Google Scholar] [CrossRef]
- Wang, H.-R.; Du, X.-R.; Zhang, Z.-Y.; Feng, F.-J.; Zhang, J.-M. Rhizosphere interface microbiome reassembly by arbuscular mycorrhizal fungi weakens cadmium migration dynamics. iMeta 2023, 2, e133. [Google Scholar] [CrossRef]
- Das, T.; Bhattacharyya, A.; Bhar, A. Linking phyllosphere and rhizosphere microbiome to the plant–insect interplay: The new dimension of tripartite interaction. Physiologia 2023, 3, 129–144. [Google Scholar] [CrossRef]
- Mishra, V.; Gupta, A.; Kaur, P.; Singh, S.; Singh, N.; Gehlot, P.; Singh, J. Synergistic effects of Arbuscular mycorrhizal fungi and plant growth promoting rhizobacteria in bioremediation of iron contaminated soils. Int. J. Phytoremediat. 2016, 18, 697–703. [Google Scholar] [CrossRef]
- Hao, L.; Zhang, Z.; Hao, B.; Diao, F.; Zhang, J.; Bao, Z.; Guo, W. Arbuscular mycorrhizal fungi alter microbiome structure of rhizosphere soil to enhance maize tolerance to La. Ecotoxicol. Environ. Saf. 2021, 212, 111996. [Google Scholar] [CrossRef]
- Ali, A.; Ghani, M.I.; Ding, H.; Iqbal, M.; Cheng, Z.; Cai, Z. Arbuscular mycorrhizal inoculum coupled with organic substrate induces synergistic effects for soil quality changes, and rhizosphere microbiome structure in long-term monocropped cucumber planted soil. Rhizosphere 2021, 20, 100428. [Google Scholar] [CrossRef]
- Monokrousos, N.; Papatheodorou, E.M.; Orfanoudakis, M.; Jones, D.-G.; Scullion, J.; Stamou, G.P. The effects of plant type, AMF inoculation and water regime on rhizosphere microbial communities. Eur. J. Soil Sci. 2020, 71, 265–278. [Google Scholar] [CrossRef]
- Ma, Y.; Ankit; Tiwari, J.; Bauddh, K. Plant-Mycorrhizal Fungi Interactions in Phytoremediation of Geogenic Contaminated Soils. Front. Microbiol. 2022, 13, 843415. [Google Scholar] [CrossRef]
- Ponce-Hernández, A.; Gómez-Rubio, J.A.; Ceballos-Maldonado, J.G.; Martínez-Soto, D.; Márquez-Vega, M.; Hernández-Morales, A.; Maldonado-Miranda, J.J.; Carranza-Álvarez, C. Endophytic Fungi and Bacteria: Enhancement of Heavy Metal Phytoextraction. In Aquatic Contamination: Tolerance and Bioremediation; Bhat, R.A., Dar, G.H., Tonelli, F.M.P., Hamid, S., Eds.; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2024; pp. 43–59. [Google Scholar] [CrossRef]
- United Nations. Transforming Our World: The 2030 Agenda for Sustainable Development; A/RES/70/1; United Nations: New York, NY, USA, 2015; Available online: https://sdgs.un.org/2030agenda (accessed on 16 February 2025).
- Yin, C.; Zhao, W.; Pereira, P. Soil conservation service underpins sustainable development goals. Glob. Ecol. Conserv. 2022, 33, e01974. [Google Scholar] [CrossRef]
- Rydz-Żbikowska, A. Implementing Sustainable Development Goals within the COVID–19 Pandemic Future Challenges for the 2030 Agenda. Comp. Econ. Res. Cent. East. Eur. 2022, 25, 135–160. [Google Scholar]
- Sonowal, S.; Nava, A.R.; Joshi, S.J.; Borah, S.N.; Islam, N.F.; Pandit, S.; Prasad, R.; Sarma, H. Biosurfactant-assisted phytoremediation of potentially toxic elements in soil: Green technology for meeting the United Nations Sustainable Development Goals. Pedosphere 2022, 32, 198–210. [Google Scholar] [CrossRef]
- Yang, Q.; Yu, H.; Zhao, Z.; Ju, Z. Effects of Enhanced Phytoremediation Techniques on Soil Aggregate Structure. Agriculture 2024, 14, 1882. [Google Scholar] [CrossRef]
- Ghosh, A.; Manna, M.C.; Jha, S.; Singh, A.K.; Misra, S.; Srivastava, R.C.; Srivastava, P.P.; Laik, R.; Bhattacharyya, R.; Prasad, S.S.; et al. Impact of soil-water contaminants on tropical agriculture, animal and societal environment. Adv. Agron. 2022, 176, 209–274. [Google Scholar] [CrossRef]
- Raklami, A.; Meddich, A.; Oufdou, K.; Baslam, M. Plants—Microorganisms-based bioremediation for heavy metal cleanup: Recent developments, phytoremediation techniques, regulation mechanisms, and molecular responses. Int. J. Mol. Sci. 2022, 23, 5031. [Google Scholar] [CrossRef]
- Mohan, C.; Robinson, J.; Vodwal, L.; Kumari, N. Sustainable Development Goals for addressing environmental challenges. In Green Chemistry Approaches to Environmental Sustainability; Garg, V.K., Mohan, C., Kumari, N., Eds.; Elsevier: Amsterdam, The Netherlands, 2024; pp. 357–374. [Google Scholar] [CrossRef]
- Giller, K.E.; Hijbeek, R.; Andersson, J.A.; Sumberg, J. Regenerative agriculture: An agronomic perspective. Outlook Agric. 2021, 50, 13–25. [Google Scholar] [CrossRef]
- Sayed, E.T.; Abdelkareem, M.A.; Obaideen, K.; Elsaid, K.; Wilberforce, T.; Maghrabie, H.M.; Olabi, A.G. Progress in plant-based bioelectrochemical systems and their connection with sustainable development goals. Carbon Resour. Convers. 2021, 4, 169–183. [Google Scholar] [CrossRef]
- Lal, R.; Monger, C.; Nave, L.; Smith, P. The role of soil in regulation of climate. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2021, 376, 20210084. [Google Scholar] [CrossRef]
- Kowalska, A.; Grobelak, A.; Almås, Å.R.; Singh, B.R. Effect of Biowastes on Soil Remediation, Plant Productivity and Soil Organic Carbon Sequestration: A Review. Energies 2020, 13, 5813. [Google Scholar] [CrossRef]
- Hossain, M.B. Glomalin and contribution of glomalin to carbon sequestration in soil: A review. Turk. J. Agric.-Food Sci. Technol. 2021, 9, 191–196. [Google Scholar] [CrossRef]
- Bodner, G.; Mentler, A.; Keiblinger, K. Plant roots for sustainable soil structure management in cropping systems. In The Root Systems in Sustainable Agricultural Intensification; Rengel, Z., Djalovic, I., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2021; pp. 45–90. [Google Scholar] [CrossRef]
- Köninger, J.; Panagos, P.; Jones, A.; Briones, M.J.I.; Orgiazzi, A. In defence of soil biodiversity: Towards an inclusive protection in the European Union. Biol. Conserv. 2022, 268, 109475. [Google Scholar] [CrossRef]
- Bhatt, R.P. Achievement of SDGS globally in biodiversity conservation and reduction of greenhouse gas emissions by using green energy and maintaining forest cover. GSC Adv. Res. Rev. 2023, 17, 001–021. [Google Scholar] [CrossRef]
- Lei, Y.; Huang, D.; Zhou, W.; Wang, G.; Xiao, R.; Xu, W.; Huan, H.; Li, S.; Shen, L.; Ren, Y.; et al. Combining phytoremediation with carbon-based materials under carbon neutral background: Is it a close step to sustainable restoration? Crit. Rev. Environ. Sci. Technol. 2024, 54, 1070–1091. [Google Scholar] [CrossRef]
- Lee, S.-H.; Park, H.; Kim, J.-G. Current status of and challenges for phytoremediation as a sustainable environmental management plan for abandoned mine areas in Korea. Sustainability 2023, 15, 2761. [Google Scholar] [CrossRef]
- Bandyopadhyay, S. Plant-assisted metal remediation in mine-degraded land: A scientometric review. Int. J. Environ. Sci. Technol. 2022, 19, 8085–8112. [Google Scholar] [CrossRef]
- Liu, H.; Yin, H.; Kong, F.; Middel, A.; Zheng, X.; Huang, J.; Sun, T.; Wang, D.; Lensky, I.M. Change of nutrients, microorganisms, and physical properties of exposed extensive green roof substrate. Sci. Total Environ. 2022, 805, 150344. [Google Scholar] [CrossRef]
- Fagorzi, C. The Green Deal Challenge: Exploiting Biotic Interactions from Bacterial Strains to Communities. Ph.D. Thesis, Università degli Studi di Ferrara, Ferrara, Italy, 2021. [Google Scholar]
- Zhou, W.; Li, M.; Achal, V. A comprehensive review on environmental and human health impacts of chemical pesticide usage. Emerg. Contam. 2024, 11, 100410. [Google Scholar] [CrossRef]
- Singh, R.; Choudhary, P.; Kumar, S.; Daima, H.K. Mechanistic approaches for crosstalk between nanomaterials and plants: Plant immunomodulation, defense mechanisms, stress resilience, toxicity, and perspectives. Environ. Sci. Nano 2024, 11, 2324–2351. [Google Scholar] [CrossRef]
- Ionata, E.; Caputo, E.; Mandrich, L.; Marcolongo, L. Moving towards biofuels and high-value products through phytoremediation and biocatalytic processes. Catalysts 2024, 14, 118. [Google Scholar] [CrossRef]
- Lehnert, W.; Traum, Y. The ‘new’ Renewable Energy Directive (RED III): An overview. Eur. Energy Clim. J. 2024, 12, 40–47. [Google Scholar] [CrossRef]
- Onori, F.; Milletti, T.; Rossi, M.; Comodi, G. Towards the target of the Renewable Energy Directive (RED) III using photovoltaic and batteries: The case study of Italy. J. Phys. Conf. Ser. 2024, 2893, 012004. [Google Scholar] [CrossRef]
- Fermeglia, M.; Perišić, M. Nature-based solution to man-made problems: Fostering the uptake of phytoremediation and low-iluc biofuels in the EU. J. Eur. Environ. Plan. Law 2023, 20, 145–167. [Google Scholar] [CrossRef]
- Migliavacca, G.; Carlini, C.; Domenighini, P.; Zagano, C. Hydrogen: Prospects and Criticalities for Future Development and Analysis of Present EU and National Regulation. Energies 2024, 17, 4827. [Google Scholar] [CrossRef]
- Devi Chinmayee, M.; Swapna, T.S. Application of Biodiesel Plant (Jatropha curcus L.) for Phytoremediation of Heavy Metal Contaminated Soil. In Plant Genetic Resource Utilization. An Appraisal; Swapna, T.S., Suhaa Beevy, S., Radhamany, P.M., Eds.; Department of Botany, University of Kerala: Thiruvananthapuram, India, 2021; pp. 156–163. [Google Scholar]
- Wijekoon, W.; Priyashantha, H.; Gajanayake, P.; Manage, P.; Liyanage, C.; Jayarathna, S.; Kumarasinghe, U. Review and Prospects of Phytoremediation: Harnessing Biofuel-Producing Plants for Environmental Remediation. Sustainability 2025, 17, 822. [Google Scholar] [CrossRef]
- Obiora, N.K.; Ujah, C.O.; Asadu, C.O.; Kolawole, F.O.; Ekwueme, B.N. Production of hydrogen energy from biomass: Prospects and challenges. Green Technol. Sustain. 2024, 2, 100100. [Google Scholar] [CrossRef]
- Poore, J.; Nemecek, T. Reducing food’s environmental impacts through producers and consumers. Science 2018, 360, 987–992. [Google Scholar] [CrossRef]
- Hait, M.; Patel, D.; Izah, S.C. Molecular Techniques and Technologies in Biomonitoring for Environmental Sustainability. In Biomonitoring of Pollutants in the Global South; Izah, S.C., Ogwu, M.C., Hamidifar, H., Eds.; Springer Nature: Singapore, 2024; pp. 605–637. [Google Scholar] [CrossRef]
- Parida, S.K.; Satpathy, A.; Dalai, A.; Kullu, S.; Hota, S.; Mishra, S. Novel Methods and Techniques for the Remediation of Mining Waste Residues. In Sustainable Management of Mining Waste and Tailings; Das, A.P., van Hullebusch, E.D., Akçil, A., Eds.; CRC Press: Boca Raton, FL, USA, 2024; pp. 1–29. [Google Scholar]
- Tan, H.W.; Pang, Y.L.; Lim, S.; Chong, W.C. A state-of-the-art of phytoremediation approach for sustainable management of heavy metals recovery. Environ. Technol. Innov. 2023, 30, 103043. [Google Scholar] [CrossRef]
- Bao, C.; Cao, Y.; Zhao, L.; Li, X.; Zhang, J.; Mao, C. Biofuel Production from Phytoremediated Biomass via Various Conversion Routes: A Review. Energies 2025, 18, 822. [Google Scholar] [CrossRef]
- Placido, D.F.; Lee, C.C. Potential of industrial hemp for phytoremediation of heavy metals. Plants 2022, 11, 595. [Google Scholar] [CrossRef] [PubMed]
- De Vos, B.; Souza, M.F.; Michels, E.; Meers, E. Industrial hemp (Cannabis sativa L.) in a phytoattenuation strategy: Remediation potential of a Cd, Pb and Zn contaminated soil and valorization potential of the fibers for textile production. Ind. Crops Prod. 2022, 178, 114592. [Google Scholar] [CrossRef]
- Ummalyma, S.B.; Udayan, A.; Sreekumar, N. Phycoremediation of emerging contaminants and heavy metals from industrial wastewater: A sustainable green approach for bioeconomy. Bioresour. Technol. Rep. 2024, 27, 101920. [Google Scholar] [CrossRef]
- Blanco-Vieites, M.; Álvarez-Gil, M.; Delgado, F.; García-Ruesgas, L.; Rodríguez, E. Livestock wastewater bioremediation through indigenous microalgae culturing as a circular bioeconomy approach as cattle feed. Algal Res. 2024, 78, 103424. [Google Scholar] [CrossRef]
- Singh, A.; Kostova, I. Health effects of heavy metal contaminants Vis-à-Vis microbial response in their bioremediation. Inorganica Chim. Acta 2024, 568, 122068. [Google Scholar] [CrossRef]
- Ezhumalai, G.; Arun, M.; Manavalan, A.; Rajkumar, R.; Heese, K. A holistic approach to circular bioeconomy through the sustainable utilization of microalgal biomass for biofuel and other value-added products. Microb. Ecol. 2024, 87, 61. [Google Scholar] [CrossRef]
- Rabbani, M.; Rabbani, M.T.; Muthoni, F.; Sun, Y.; Vahidi, E. Advancing phytomining: Harnessing plant potential for sustainable rare earth element extraction. Bioresour.Technol. 2024, 401, 130751. [Google Scholar] [CrossRef]
- Kikis, C.; Thalassinos, G.; Antoniadis, V. Soil Phytomining: Recent Developments—A Review. Soil Syst. 2024, 8, 8. [Google Scholar] [CrossRef]
- Akinbile, B.J.; Mbohwa, C. Incorporating hyperaccumulating plants in phytomining, remediation and resource recovery: Recent trends in the African region—A review. RSC Sustain. 2025, 3, 1652–1671. [Google Scholar] [CrossRef]
- Kumar, P.; Singh, V.P. The Potential of Chrysopogon Zizanioides (L.) Nash in Remediation of Heavy. In Proceedings of Indian Geotechnical and Geoenvironmental Engineering Conference (IGGEC); Agnihotri, A.K., Reddy, K.R., Chore, H.S., Eds.; Springer Nature: Singapore, 2021; Volume 2, pp. 63–74. [Google Scholar]
- Campbell, B.M.; Beare, D.J.; Bennett, E.M.; Hall-Spencer, J.M.; Ingram, J.S.; Jaramillo, F.; Ortiz, R.; Ramankutty, N.; Sayer, J.A.; Shindell, D. Agriculture production as a major driver of the Earth system exceeding planetary boundaries. Ecol. Soc. 2017, 22, 8. [Google Scholar] [CrossRef]
- Tefera, M.L.; Carletti, A.; Altea, L.; Rizzu, M.; Migheli, Q.; Seddaiu, G. Land degradation and the upper hand of sustainable agricultural intensification in sub-Saharan Africa—A systematic review. J. Agric. Rural. Dev. Trop. Subtrop. (JARTS) 2024, 125, 63–83. [Google Scholar] [CrossRef]
- Vamshi, M.; Jagadeesan, R.; Lamani, H.D.; Rout, S.; VijayKumar, R.; Jagadesh, M.; Sachan, K. The Revolutionary Impact of Regenerative Agriculture on Ecosystem Restoration and Land Vitality: A Review. J. Geogr. Environ. Earth Sci. Int. 2024, 28, 1–14. [Google Scholar] [CrossRef]
- Ikanović, J.; Popović, V.; Gavrilović, M.; Ljubičić, N.; Rakašćan, N.; Isakov, M.; Kaiš, K. Agropyrum repens in the function of phytoremediation and soil protection. In Book of Proceedings, 6th IRASA International Scientific Conference-Science, Education, Technology and Innovation (SETI VI 2024), Belgrade, 12 October 2024; International Research Academy of Science and Art (IRASA): Belgrade, Serbia, 2024; pp. 63–83. [Google Scholar] [CrossRef]
- Vidadala, R. Reimagining Agroforestry: Climate-Resilient Landscapes for Regenerative Agriculture. In Agroforestry Solutions for Climate Change and Environmental Restoration; Kumar, S., Alam, B., Taria, S., Singh, P., Yadov, A., Arunachalam, A., Eds.; Springer Nature: Singapore, 2024; pp. 171–201. [Google Scholar] [CrossRef]
- Gassner, V.T.; Symeonidis, D.; Koukaras, K. Harvesting of Agricultural Nutrient Runoff with Algae, to Produce New Soil Amendments for Urban and Peri-urban Olive Tree Agroforestry Systems in Southern Europe. In Nature-Based Solutions for Circular Management of Urban Water. Circular Economy and Sustainability; Stefanakis, A., Oral, H.V., Calheiros, C., Carvalho, P., Eds.; Springer: Cham, Switzerland, 2024; pp. 405–441. [Google Scholar] [CrossRef]
- Beattie, G.A.; Edlund, A.; Esiobu, N.; Gilbert, J.; Nicolaisen, M.H.; Jansson, J.K.; Jensen, P.; van der Meer, J.R. Soil microbiome interventions for carbon sequestration and climate mitigation. mSystems 2024, 10, e01129-24. [Google Scholar] [CrossRef] [PubMed]
- Uroz, S.; Picard, L.; Turpault, M.P. Recent progress in understanding the ecology and molecular genetics of soil mineral weathering bacteria. Trends Microbiol. 2022, 30, 882–897. [Google Scholar] [CrossRef]
- Maqsood, Q.; Waseem, R.; Sumrin, A.; Wajid, A.; Tariq, M.R.; Ali, S.W.; Mahnoor, M. Recent trends in bioremediation and bioaugmentation strategies for mitigation of marine based pollutants: Current perspectives and future outlook. Discov. Sustain. 2024, 5, 524. [Google Scholar] [CrossRef]
- Nookongbut, P.; Thiravetyan, P.; Salsabila, S.; Widiana, A.; Krobthong, S.; Yingchutrakul, Y.; Treesubsuntorn, C. Application of Acinetobacter indicus to promote cigarette smoke particulate matter phytoremediation: Removal efficiency and plant–microbe interactions. Environ. Sci. Pollut. Res. 2024, 31, 52352–52370. [Google Scholar] [CrossRef]
- Gill, R.; Gupta, V.; Patel, M. Utilization of genetically modified weed plants against industrial contaminants: A promising tool of phytoremediation. In Bioremediation of Emerging Contaminants from Soils; Kumar, P., Chaudhary, V., van Hullebusch, E.D., Busquets, R., Srivastav, A.L., Eds.; Elsevier: Amsterdam, The Netherlands, 2024; pp. 611–634. [Google Scholar] [CrossRef]
- Gomes, M.P. Nanophytoremediation: Advancing phytoremediation efficiency through nanotechnology integration. Discov. Plants 2025, 2, 8. [Google Scholar] [CrossRef]
- Gulzar, A.B.M.; Mazumder, P.B. Helping plants to deal with heavy metal stress: The role of nanotechnology and plant growth promoting rhizobacteria in the process of phytoremediation. Environ. Sci. Pollut. Res. 2022, 29, 40319–40341. [Google Scholar] [CrossRef]
- Yasin, M.U.; Haider, Z.; Munir, R.; Zulfiqar, U.; Rehman, M.; Javaid, M.H.; Ahmad, I.; Nana, C.; Saeed, M.S.; Ali, B.; et al. The synergistic potential of biochar and nanoparticles in phytoremediation and enhancing cadmium tolerance in plants. Chemosphere 2024, 354, 141672. [Google Scholar] [CrossRef]
- Raja, V.; Singh, K.; Qadir, S.U.; Singh, J.; Kim, K.H. Alleviation of cadmium-induced oxidative damage through application of zinc oxide nanoparticles and strigolactones in Solanum lycopersicum L. Environ. Sci. Nano 2024, 11, 2633–2654. [Google Scholar] [CrossRef]
Plant | Contamination | Reference |
---|---|---|
Populus sp. | Cd, Hg, Pb, and As | [59] |
Salix sp. | heavy metals, petroleum substances | [60,62] |
Sinapis sp. | polycyclic aromatic hydrocarbons (PAHs) | [61] |
Festuca sp. | Cd, Pb, Zn, Ni, Cr, Cu | [63,64,65] |
Medicago sativa L. | Cd, Pb, | [64] |
Dactylis glomerate | Cd, Pb | [64] |
Alyssum saxatile L. | Zn, Cd, Ni, Pb, Cr, and Cu | [65] |
Poa pratensis L. | Cr, Cd | [66] |
Cannabis sativa L. | Se, Co, benzo(a)pyrene, naphthalene, and chrysene | [67] |
Medicago falcata L. | petroleum substance | [68] |
Lolium perenne L. | polycyclic aromatic hydrocarbons (PAHs) | [69] |
Miscanthus sp. | poly(ethylene terephthalate) and poly(lactic acid) | [70] |
Arabidopsis sp. | 2-mercaptobenzothiazole (MBT) | [71] |
Salix sp., Populus sp. | per- and polyfluoroalkyl substances (PFASs) | [72] |
Salix sp. | perfluoroalkyl | [73] |
Medicago sativa L. | di-n-butyl | [74] |
Mentha piperita | chlorpyrifos | [75] |
Plantago major L., Helianthus annus L. | diazinon | [76] |
Vigna radiata | estrogen | [77] |
Helianthus annuus Linn. | carbofuran | [78] |
Emerging Contaminants (ECs) | Compound | Degrading Microbial Agent | Reference |
---|---|---|---|
Additives for food and feed | 2,6-di-tert-butyl-4-methylphenol (BTH) | Komagataella phaffii (Pichia pastoris) | [89] |
Endocrine-disrupting compounds (EDCs) | estrone 17β-estradiol | Sphingomonas sp. | [90] |
Sphingobacterium sp. | [91] | ||
Pseudomonas putida | [92] | ||
estrogen | Actinobacteria, Proteobacteria, Rhodococcus equi, Rhodococcus zopfii, Novosphingobium tardaugens NBRC 16725, Sphingomonas spp. | [93] | |
Chaetomium sp. | [94] | ||
phthalate acid esters (PAEs) | Pseudomonas sp. YJB6 | [95] | |
Pesticides | diazinon | Ochrobactrum sp., Stenotrophomonas sp., Lactobacillus brevis, Serratia marcescens, Aspergillus niger, Rhodotorula glutinis, Rhodotorula rubra | [96] |
dichlorvos | Trichoderma atroviride mutant AMT-28 | [97] | |
Pseudomonas stutzeri smk | [98] | ||
Consortium: Pseudomonas, Xanthomonas, Sphingomonas, Acidovorax, Agrobacterium Chryseobacterium | [99] | ||
chlorpyrifos-methyl | Pseudomonas citronellolis CF3 | [100] | |
Alcaligenes faecalis, Bacillus weihenstephanensis, Bacillus toyonensis, Alcaligenes sp. SCAU23, Pseudomonas sp. PB845W, Brevundimonas diminuta, uncultured bacterium clone 99 | [101] | ||
Pseudomonas diminuta | [102] | ||
Pseudomonas aeruginosa RNC3 | [103] | ||
Pseudomonas putida MAS-1 | [104] | ||
Stenotrophomonas maltophilia RNC7 | [103] | ||
Ochrobactrum intermedium PDB-3 | [105] | ||
malathion | Shewanella oneidensis | [106] | |
Bacillus cereus | [107] | ||
Aspergillus niger | [108] | ||
endosulfan | Pseudomonas sp., Staphylococcus sp. | [109] | |
carbofuran | Pseudomonas, Flavobacterium, Achromobacterium sp., Sphingomonas sp., Arthrobacter sp., Enterobacter sp., Burkholderia PLC3, Cupriavidus sp. ISTL7, Bacillus sp. | [110] | |
Pharmaceuticals | diclofenac | Rhodococcus ruber IEGM 345 | [111] |
Trametes trogii | [112] | ||
ibuprofen | Achromobacter spanius S1 | [113] | |
Klebsiella pneumoniae TIBU2.1, Mycolicibacterium aubagnense HPB1.1 | [114] | ||
paracetamol | Bacillus cereus, Brevibacterium frigoritolerans, Corynebacterium nuruki, Enterococcus faecium | [115] | |
carbamazepine | Gordonia polyophrenivoran | [116] | |
Phthalate esters | dibutyl phthalate (DnBP) | Bacillus subtilis HB-T2 | [117] |
Pseudomonas aureginosa PS1 | [118] | ||
di(2-ethylhexyl) phthalate (DEHP) | Fusarium culmorum | [119] | |
Plastics | polyvinyl chloride | Micrococcus sp. | [120] |
Pseudomonas citronellolis, Bacillus flexus | [121] | ||
poly(ethylene terephthalate) | Thermomyces lanuginosus, Thermobifida fusca, Fusarium solani | [122] | |
polyurethane | Aspergillus flavus G10, Aspergillus tubingensis |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kowalska, A.; Biczak, R. Phytoremediation and Environmental Law: Harnessing Biomass and Microbes to Restore Soils and Advance Biofuel Innovation. Energies 2025, 18, 1860. https://doi.org/10.3390/en18071860
Kowalska A, Biczak R. Phytoremediation and Environmental Law: Harnessing Biomass and Microbes to Restore Soils and Advance Biofuel Innovation. Energies. 2025; 18(7):1860. https://doi.org/10.3390/en18071860
Chicago/Turabian StyleKowalska, Aneta, and Robert Biczak. 2025. "Phytoremediation and Environmental Law: Harnessing Biomass and Microbes to Restore Soils and Advance Biofuel Innovation" Energies 18, no. 7: 1860. https://doi.org/10.3390/en18071860
APA StyleKowalska, A., & Biczak, R. (2025). Phytoremediation and Environmental Law: Harnessing Biomass and Microbes to Restore Soils and Advance Biofuel Innovation. Energies, 18(7), 1860. https://doi.org/10.3390/en18071860