Combustion of Polycarbonate and Polycarbonate–Carbon Nanotube Composites Using Fluidized Bed Technology
Abstract
1. Introduction
2. Materials
3. Methods
4. Results
4.1. Simultaneous Thermal Analysis in Air and Oxygen-Poor Atmosphere
4.2. Fluidized Bed Combustion of PC and PC-CNT
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Davis, A.; Golden, J.H. Stability of polycarbonate. J. Macromol. Sci. Part C 1969, 3, 49–68. [Google Scholar]
- Bendler, J.T. Handbook of Polycarbonate Science and Technology; CRC Press: Boca Raton, FL, USA, 1999. [Google Scholar]
- Nishitsuji, S.; Watanabe, Y.; Ito, H.; Ishikawa, M.; Inoue, T.; Takenaka, M. Molecular weight dependence of the physical aging of polycarbonate. Polymer 2019, 178, 121571. [Google Scholar]
- Raj, P.; Kumar, R. A Brief Review: Study on Mechanical Properties of Polycarbonate with Different Nanofiller Materials. In Advances in Materials and Manufacturing Engineering: Select Proceedings of ICMME 2021; Springer: Berlin/Heidelberg, Germany, 2021; pp. 285–291. [Google Scholar]
- King, J.A. Synthesis of Polycarbonates. In Handbook of Science and Technology; MIT: Cambridge, MA, USA, 1999; pp. 23–42. [Google Scholar]
- Al-Hakami, Y.M.N.; Wahab, M.A.; Yildirir, E.; Ates, F. Thermal degradation kinetics, thermodynamics and pyrolysis behaviour of polycarbonate by TGA and Py-GC/MS. J. Energy Inst. 2024, 113, 101499. [Google Scholar]
- Charde, S.J.; Sonawane, S.S.; Sonawane, S.H.; Shimpi, N.G. Degradation kinetics of polycarbonate composites: Kinetic parameters and artificial neural network. Chem. Biochem. Eng. Q. 2018, 32, 151–165. [Google Scholar]
- Połomska, J.; Żukowski, W.; Baron, J. Polycarbonate combustion in a fluidised bed reactor. Proc. ECO Pole 2011, 5, 87–96. [Google Scholar]
- Komarov, F.F.; Mironov, A.M. Carbon nanotubes: Present and future. Phys. Chem. Solid State 2004, 5, 411–429. [Google Scholar]
- Katoch, R.; Singh, R.S.; Patidar, R.D. Carbon Nanostructure Functionalization for Electromagnetic Shielding Applications. In Handbook of Functionalized Carbon Nanostructures: From Synthesis Methods to Applications; Springer International Publishing: Cham, Switzerland, 2024; pp. 1–38. [Google Scholar]
- Zhang, J.; Panwar, A.; Bello, D.; Isaacs, J.A.; Jozokos, T.; Mead, J. The effects of recycling on the structure and properties of carbon nanotube-filled polycarbonate. Polym. Eng. Sci. 2018, 58, 1278–1284. [Google Scholar]
- Kumar, S.; Prakash, R.; Murugan, S.; Singh, R.K. Performance and emission analysis of blends of waste plastic oil obtained by catalytic pyrolysis of waste HDPE with diesel in a CI engine. Energy Convers. Manag. 2013, 74, 323–331. [Google Scholar]
- Saito, K.; Jehanno, C.; Meabe, L.; Olmedo-Martínez, J.L.; Mecerreyes, D.; Fukushima, K.; Sardon, H. From plastic waste to polymer electrolytes for batteries through chemical upcycling of polycarbonate. J. Mater. Chem. A 2020, 8, 13921–13926. [Google Scholar]
- Brunelle, D.J. Polycarbonates. In Encyclopedia of Polymer Science and Technology; Wiley: Hoboken, NJ, USA, 2002. [Google Scholar]
- Li, X.; Hristov, H.A.; Yee, A.H.; Gidley, D.W. Influence of cyclic fatigue on the mechanical properties of amorphous polycarbonate. Polymer 1995, 36, 759–765. [Google Scholar]
- Awoyera, P.O.; Adesina, A. Plastic wastes to construction products: Status, limitations and future perspective. Case Stud. Constr. Mater. 2020, 12, e00330. [Google Scholar]
- Zhao, X.; Korey, M.; Li, K.; Copenhaver, K.; Tekinalp, H.; Celik, S.; Kalaitzidou, K.; Ruan, R.; Ragauskas, A.J.; Ozcan, S. Plastic waste upcycling toward a circular economy. Chem. Eng. J. 2022, 428, 131928. [Google Scholar] [CrossRef]
- Wielgosiński, G. Pollutant Formation in Combustion Processes. In Advances in Chemical Engineering; Nawaz, Z., Naveed, S., Eds.; InTech: Rijeka, Croatia, 2012; pp. 295–324. [Google Scholar]
- Knox, A. An Overview of Incineration and EFW Technology as Applied to the Management of Municipal Solid Waste (MSW); ONEIA Energy Subcommitte: Toronto, ON, USA, 2005. [Google Scholar]
- Iannello, S.; Morrin, S.; Materazzi, M. Fluidised bed reactors for the thermochemical conversion of biomass and waste. KONA Powder Part. J. 2020, 37, 114–131. [Google Scholar]
- Kwong, K.Y.; Marek, E.J. Combustion of biomass in fluidized beds: A review of key phenomena and future perspectives. Energy Fuels 2021, 35, 16303–16334. [Google Scholar]
- Apaydin-Varol, E.; Polat, S.; Pütün, A. Pyrolysis kinetics and thermal decomposition behavior of polycarbonate-a TGA-FTIR study. Therm. Sci. 2014, 18, 833–842. [Google Scholar] [CrossRef]
- Xu, F.; Wang, B.; Yang, D.; Hao, J.; Qiao, Y.; Tian, Y. Thermal degradation of typical plastics under high heating rate conditions by TG-FTIR: Pyrolysis behaviors and kinetic analysis. Energy Convers. Manag. 2018, 171, 1106–1115. [Google Scholar]
- Moon, S.C.; Kim, J.Y.; Oh, B.T. Mechanical and flame resistant properties of polycarbonate-carbon nanotubes-ochre composites. Polym. Eng. Sci. 2014, 54, 1289–1299. [Google Scholar] [CrossRef]
- Janhäll, S.; Petersson, M.; Davidsson, K.; Öman, T.; Sommertune, J.; Karedal, M.; Messing, M.E.; Rissler, J. Release of carbon nanotubes during combustion of polymer nanocomposites in a pilot-scale facility for waste incineration. NanoImpact 2021, 24, 100357. [Google Scholar]
- Berkowicz-Platek, G.; Leski, K.; Żukowski, W.; Wrona, J. Processing of low-density waste in fluidized bed made out of lightweight expanded clay aggregate. J. Clean. Prod. 2022, 349, 131328. [Google Scholar] [CrossRef]
- Antonakou, E.V.; Kalogiannis, K.G.; Stefanidis, S.D.; Karakoulia, S.A.; Triantafyllidis, K.S.; Lappas, A.A.; Achilias, D.S. Catalytic and thermal pyrolysis of polycarbonate in a fixed-bed reactor: The effect of catalysts on products yields and composition. Polym. Degrad. Stab. 2014, 110, 482–491. [Google Scholar]
- Salah, L.S.; Ouslimani, N.; Chouai, M.; Danlée, Y.; Huynen, I.; Aksas, H. Predictive optimization of electrical conductivity of polycarbonate composites at different concentrations of carbon nanotubes: A valorization of conductive nanocomposite theoretical models. Materials 2021, 14, 1687. [Google Scholar] [CrossRef] [PubMed]
- Han, M.S.; Lee, Y.K.; Kim, W.N.; Lee, H.S.; Joo, J.S.; Park, M.; Lee, H.J.; Park, C.R. Effect of multi-walled carbon nanotube dispersion on the electrical, morphological and rheological properties of polycarbonate/multi-walled carbon nanotube composites. Macromol. Res. 2009, 17, 863–869. [Google Scholar] [CrossRef]
- Żukowski, W.; Berkowicz, G. The combustion of liquids and low-density solids in a cenospheric fluidised bed. Combust. Flame 2019, 206, 476–489. [Google Scholar] [CrossRef]
- Castillo, F.Y.; Socher, R.; Krause, B.; Headrick, R.; Grady, B.P.; Prada-Silvy, R.; Pötschke, P. Electrical, mechanical, and glass transition behavior of polycarbonate-based nanocomposites with different multi-walled carbon nanotubes. Polymer 2011, 52, 3835–3845. [Google Scholar] [CrossRef]
- Kashiwagi, T.; Du, F.; Winey, K.I.; Groth, K.M.; Shields, J.R.; Bellayer, S.P.; Kim, H.; Douglas, J.F. Flammability properties of polymer nanocomposites with single-walled carbon nanotubes: Effects of nanotube dispersion and concentration. Polymer 2005, 46, 471–481. [Google Scholar] [CrossRef]
- Bourbigot, S.; Duquesne, S.; Jama, C. Polymer nanocomposites: How to reach low flammability? Macromol. Symp. 2006, 233, 180–190. [Google Scholar] [CrossRef]
- Kashiwagi, T.; Grulke, E.; Hilding, J.; Groth, K.; Harris, R.; Butler, K.; Shields, J.; Kharchenko, S.; Douglas, J. Thermal and flammability properties of polypropylene/carbon nanotube nanocomposites. Polymer 2004, 45, 4227–4239. [Google Scholar] [CrossRef]
- Bocchini, S.; Frache, A.; Camino, G.; Claes, M. Polyethylene thermal oxidative stabilisation in carbon nanotubes based nanocomposites. Eur. Polym. J. 2007, 43, 3222–3235. [Google Scholar] [CrossRef]
- Gupta, R.; Singh, M.K.; Rangappa, S.M.; Siengchin, S.; Dhakal, H.N.; Zafar, S. Recent progress in additive inorganic flame retardants polymer composites: Degradation mechanisms, modeling and applications. Heliyon 2024, 10, e39662. [Google Scholar] [CrossRef]
- Sabet, M.; Mohammadian, E. The inclusion of graphene nanoplatelet on the mechanical, thermal, and electrical characteristics of polycarbonate. Polym. Bull. 2023, 80, 2153–2169. [Google Scholar] [CrossRef]
- Kim, Y.; Lee, S.; Yoon, H. Fire-safe polymer composites: Flame-retardant effect of nanofillers. Polymers 2021, 13, 540. [Google Scholar] [CrossRef]
Fluidized Bed | ||||||||
---|---|---|---|---|---|---|---|---|
Cenospheres | Fe2O3 Cenospheres | |||||||
Bed Temp., °C | Umf, cm/s | U, cm/s | U/Umf | Utr, cm/s | Umf, cm/s | U, cm/s | U/Umf | Utr, cm/s |
20 | 2.57 | 6.91 | 2.69 | 116.8 | 2.88 | 6.91 | 2.40 | 127.4 |
550 | 1.18 | 19.4 | 16.4 | 84.9 | 1.33 | 19.4 | 14.5 | 94.3 |
600 | 1.13 | 20.6 | 18.1 | 82.5 | 1.28 | 20.6 | 16.1 | 91.7 |
650 | 1.08 | 21.8 | 20.0 | 80.2 | 1.22 | 21.8 | 17.8 | 89.2 |
750 | 1.01 | 24.1 | 24.0 | 76.1 | 1.13 | 24.1 | 21.3 | 84.7 |
850 | 0.93 | 26.5 | 28.2 | 72.3 | 1.06 | 26.5 | 25.1 | 80.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salah, L.S.; Berkowicz-Płatek, G.; Żukowski, W.; Danlée, Y.; Huynen, I.; Wencel, K.; Wrona, J.; Taler, D. Combustion of Polycarbonate and Polycarbonate–Carbon Nanotube Composites Using Fluidized Bed Technology. Energies 2025, 18, 1833. https://doi.org/10.3390/en18071833
Salah LS, Berkowicz-Płatek G, Żukowski W, Danlée Y, Huynen I, Wencel K, Wrona J, Taler D. Combustion of Polycarbonate and Polycarbonate–Carbon Nanotube Composites Using Fluidized Bed Technology. Energies. 2025; 18(7):1833. https://doi.org/10.3390/en18071833
Chicago/Turabian StyleSalah, Lakhdar Sidi, Gabriela Berkowicz-Płatek, Witold Żukowski, Yann Danlée, Isabelle Huynen, Kinga Wencel, Jan Wrona, and Dawid Taler. 2025. "Combustion of Polycarbonate and Polycarbonate–Carbon Nanotube Composites Using Fluidized Bed Technology" Energies 18, no. 7: 1833. https://doi.org/10.3390/en18071833
APA StyleSalah, L. S., Berkowicz-Płatek, G., Żukowski, W., Danlée, Y., Huynen, I., Wencel, K., Wrona, J., & Taler, D. (2025). Combustion of Polycarbonate and Polycarbonate–Carbon Nanotube Composites Using Fluidized Bed Technology. Energies, 18(7), 1833. https://doi.org/10.3390/en18071833