Properties of Earth-to-Air Heat Exchangers (EAHE): Insights and Perspectives Based on System Performance
Abstract
:1. Introduction and Background Analysis
1.1. Geothermal Energy
1.2. Recent Applications of Geothermal Systems
1.3. Energy Consumption in Buildings
1.4. Geothermal Role in EAHE
1.5. EAHE Systems’ Component and Operation
1.6. Application and Benefits of EAHE
1.7. General Analysis of the Geothermal Energy Systems
2. Methodology
3. Pipes in Earth-to-Air Heat Exchange Systems
3.1. Impact of Pipe Properties on EAHE Technology
3.1.1. Pipe Material Type
3.1.2. Effect of Pipe Length and Diameter
3.1.3. Pipe Depth
4. Effect of Air Velocity
5. Bonding of Soil with Pipes
6. Conclusions and Future Directions for Research
- The local climate, especially temperature extremes, impacts the EAHE system’s efficiency. In colder regions, EAHEs may preheat the inflowing air, while in warmer climates, they may pre-cool it. The temperature variation for the soil and inflowing air determines the efficiency of pre-cooling or pre-heating.
- The efficiency of EAHE systems varies with seasons. They tend to be more effective during extreme weather conditions (winter and summer) when the temperature differential between the external air and the subsurface is larger.
- Materials with high thermal conductivity, such as High-Density Polyethylene (HDPE) or PVC, are commonly used. The choice of material should consider factors like the durability, corrosion resistance, and thermal properties.
- The heat exchange capacity is influenced by the diameter and length of the pipes in the system. Larger pipes (more than 30 cm diameter) with lengths between (80 m and 120 m) can exchange more heat, but they may occupy more space and incur higher installation costs.
- The cooling and heating capacity of an EAHE system enhances as the pipe depth increases, until a specific point (about 3 m), beyond which no significant output occurs.
- The difference in temperature for the air entering and exiting the pipe increases per its length. However, it reaches a length (about 100 m) where no further effects are observed.
- The potential of the EAHE system to heat or cool a facility goes up by reducing the pipe diameter (less than 20 cm) at a given airflow rate.
Funding
Conflicts of Interest
References
- D’Agostino, D.; Marino, C.; Minichiello, F. The use of Earth-to-Air and Air-to-Air Exchangers for Different Italian Climates. Int. J. Heat Technol. 2016, 34, s287–s294. [Google Scholar] [CrossRef]
- Kaushal, M. Performance analysis of clean energy using geothermal earth to air heat exchanger (GEAHE) in Lower Himalayan Region—Case study scenario. Energy Build. 2021, 248, 111166. [Google Scholar] [CrossRef]
- Cadelano, G.; Cicolin, F.; Emmi, G.; Mezzasalma, G.; Poletto, D.; Galgaro, A.; Bernardi, A. Improving the energy efficiency, limiting costs and reducing CO2 emissions of a museum using geothermal energy and energy management policies. Energies 2019, 12, 3192. [Google Scholar] [CrossRef]
- Dickson, M.H.; Fanelli, M. What is GEOTHERMAL ENERGY? In Renewable Energy; Sørensen, B., Ed.; Routledge: London, UK, 2018. [Google Scholar] [CrossRef]
- Trota, A.; Ferreira, P.; Gomes, L.; Cabral, J.; Kallberg, P. Power production estimates from geothermal resources by means of small-size compact climeon heat power converters: Case studies from Portugal (Sete cidades, Azores and Longroiva spa, mainland). Energies 2019, 12, 2838. [Google Scholar] [CrossRef]
- Ghosal, M.K.; Tiwari, G.N. Modeling and parametric studies for thermal performance of an earth to air heat exchanger integrated with a greenhouse. Energy Convers. Manag. 2006, 47, 13–14. [Google Scholar] [CrossRef]
- GEOGRID PROJECT. Available online: www.geogrid.it (accessed on 15 March 2025).
- Italian-Lead Research Project to Demonstrate Use of Low Enthalpy Geothermal in Emirates. Available online: https://www.thinkgeoenergy.com/italian-lead-research-project-to-demonstrate-use-of-low-enthalpy-geothermal-in-emirates/ (accessed on 15 March 2025).
- Battaglia, V.; Ceglia, F.; Laudiero, D.M.; Maione, A.; Marrasso, E.; Vanoli, L. Empowering Energy Communities through Geothermal Systems. Energies 2024, 17, 1248. [Google Scholar] [CrossRef]
- Pishkariahmadabad, M.; Ayed, H.; Xia, W.F.; Aryanfar, Y.; Almutlaq, A.M.; Bouallegue, B. Thermo-economic analysis of working fluids for a ground source heat pump for domestic uses. Case Stud. Therm. Eng. 2021, 27, 101330. [Google Scholar] [CrossRef]
- D’Agostino, D.; Marino, C.; Minichiello, F. Earth-to-Air Versus Air-to-Air Heat Exchangers: A Numerical Study on the Energetic, Economic, and Environmental Performances for Italian Office Buildings. Heat Transf. Eng. 2020, 41, 1040–1051. [Google Scholar] [CrossRef]
- International Energy Agency. Transition to Sustainable Buildings: Strategies and Opportunities to 2050. Available online: https://globalabc.org/resources/publications/transition-sustainable-buildings-strategies-and-opportunities-2050 (accessed on 19 January 2025).
- Építésügyi Minőségellenőrző és Innovációs. National Building Energy Performance Strategy. 2015. Available online: https://energy.ec.europa.eu/document/download/9eee3d91-28a7-4cac-8a86-d3b0e2946020_en?filename=2014_article4_hungary_en%20translation.pdf (accessed on 21 March 2025).
- Karytsas, S.; Theodoropoulou, H. Public awareness and willingness to adopt ground source heat pumps for domestic heating and cooling. Renew. Sustain. Energy Rev. 2014, 34, 49–57. [Google Scholar] [CrossRef]
- Li, Y.; Liu, X.; Li, W.; Jian, Y.; Arıcı, M.; Chen, Y.; Shen, Q. Thermal environment evaluation of plastic greenhouses in southern China and optimization by phase change materials. J. Build. Eng. 2022, 57, 104882. [Google Scholar] [CrossRef]
- Gorjian, S.; Calise, F.; Kant, K.; Ahamed, S.; Copertaro, B.; Najafi, G.; Zhang, X.; Aghaei, M.; Shamshiri, R.R. A review on opportunities for implementation of solar energy technologies in agricultural greenhouses. J. Clean Prod. 2021, 285, 124807. [Google Scholar] [CrossRef]
- Jacovides, C.P.; Mihalakakou, G.; Santamouris, M.; Lewis, J.O. On the ground temperature profile for passive cooling applications in buildings. Sol. Energy 1996, 57, 167–175. [Google Scholar] [CrossRef]
- Agrawal, K.K.; Misra, R.; Agrawal, G.D.; Bhardwaj, M.; Jamuwa, D.K. The state of art on the applications, technology integration, and latest research trends of earth-air-heat exchanger system. Geothermics 2019, 82, 34–50. [Google Scholar] [CrossRef]
- Koshlak, H. Earth-Air Heat Exchangers: A Comprehensive Review. 2025. Available online: https://www.preprints.org/manuscript/202501.1370/v1 (accessed on 21 March 2025).
- Wu, H.; Wang, S.; Zhu, D. Modelling and evaluation of cooling capacity of earth–air–pipe systems. Energy Convers. Manag. 2007, 48, 1462–1471. [Google Scholar] [CrossRef]
- Bojic, M.; Trifunovic, N.; Papadakis, G.; Kyritsis, S. Numerical simulation, technical and economic evaluation of air-to-earth heat exchanger coupled to a building. Energy 1997, 22, 1151–1158. [Google Scholar] [CrossRef]
- Greco, A.; Masselli, C. The optimization of the thermal performances of an earth to air heat exchanger for an air conditioning system: A numerical study. Energies 2020, 13, 6414. [Google Scholar] [CrossRef]
- Bisoniya, T.S.; Kumar, A.; Baredar, P. Experimental and analytical studies of earth–air heat exchanger (EAHE) systems in India: A review. Renew. Sustain. Energy Rev. 2013, 19, 238–246. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, J.; Li, L.; Wang, F.; Gang, W. Utilization of earth-to-air heat exchanger to pre-cool/heat ventilation air and its annual energy performance evaluation: A case study. Sustainability 2020, 12, 8330. [Google Scholar] [CrossRef]
- Hu, Z.; Yang, Q.; Tao, Y.; Shi, L.; Tu, J.; Wang, Y. A review of ventilation and cooling systems for large-scale pig farms. Sustain. Cities Soc. 2023, 89, 104372. [Google Scholar] [CrossRef]
- D’Agostino, D.; Esposito, F.; Greco, A.; Masselli, C.; Minichiello, F. Parametric analysis on an earth-to-air heat exchanger employed in an air conditioning system. Energies 2020, 13, 2925. [Google Scholar] [CrossRef]
- Samuel, D.G.L.; Nagendra, S.M.S.; Maiya, M.P. Passive alternatives to mechanical air conditioning of building: Areview. Build. Environ. 2013, 66, 54–64. [Google Scholar] [CrossRef]
- Kaushal, M. Geothermal cooling/heating using ground heat exchanger for various experimental and analytical studies: Comprehensive review. Energy Build. 2017, 139, 634–652. [Google Scholar] [CrossRef]
- Singh, R.; Sawhney, R.L.; Lazarus, I.J.; Kishore, V.V.N. Recent advancements in earth air tunnel heat exchanger (EATHE) system for indoor thermal comfort application. Renew. Sustain. Energy Rev. 2018, 82, 2162–2185. [Google Scholar] [CrossRef]
- Chel, A.; Tiwari, G.N. Performance evaluation and life cycle cost analysis of earth to air heat exchanger integrated with adobe building for New Delhi composite climate. Energy Build. 2009, 41, 56–66. [Google Scholar] [CrossRef]
- Rodrigues, L.T.; Gillott, M. A novel low-carbon space conditioning system incorporating phase-change materials and earth-air heat exchangers. Int. J. Low-Carbon Technol. 2013, 10, 176–187. [Google Scholar] [CrossRef]
- Deglin, D.; Van Caenegem, L.; Dehon, P. Subsoil heat exchangers for the air conditioning of livestock buildings. J. Agric. Eng. Res. 1999, 73, 179–188. [Google Scholar] [CrossRef]
- Hsu, C.Y.; Huang, P.C.; De Liang, J.; Chiang, Y.C.; Chen, S.L. The in-situ experiment of earth-air heat exchanger for a cafeteria building in subtropical monsoon climate. Renew. Energy 2020, 157, 741–753. [Google Scholar] [CrossRef]
- Boutera, Y.; Boultif, N.; Moummi, N.; Arıcı, M.; Saleh, M.S.; Rouag, A.; Kethiri, M.A.; Beldjani, C. Evaluation of the earth-air heat exchanger’s performance in improving the indoor conditions of an industrial poultry house using computational fluid dynamics verified with field tests. J. Clean Prod. 2024, 434, 140218. [Google Scholar] [CrossRef]
- Li, Z.X.; Shahsavar, A.; Al-Rashed, A.A.A.A.; Kalbasi, R.; Afrand, M.; Talebizadehsardari, P. Multi-objective energy and exergy optimization of different configurations of hybrid earth-air heat exchanger and building integrated photovoltaic/thermal system. Energy Convers. Manag. 2019, 195, 1098–1110. [Google Scholar] [CrossRef]
- Belloufi, Y.; Brima, A.; Zerouali, S.; Atmani, R.; Aissaoui, F.; Rouag, A.; Moummi, N. Numerical and experimental investigation on the transient behavior of an earth air heat exchanger in continuous operation mode. Int. J. Heat Technol. 2017, 35, 279–288. [Google Scholar] [CrossRef]
- Maerefat, M.; Haghighi, A.P. Passive cooling of buildings by using integrated earth to air heat exchanger and solar chimney. Renew. Energy 2010, 35, 2316–2324. [Google Scholar] [CrossRef]
- Aslan, A.; Yüksel, B.; Akyol, T. Effects of different operating conditions of Gonen geothermal district heating system on its annual performance. Energy Convers. Manag. 2014, 79, 554–567. [Google Scholar] [CrossRef]
- Soni, S.K.; Pandey, M.; Bartaria, V.N. Energy metrics of a hybrid earth air heat exchanger system for summer cooling requirements. Energy Build. 2016, 129, 1–8. [Google Scholar] [CrossRef]
- Ahmed, S.F.; Khan, M.M.K.; Amanullah, M.T.O.; Rasul, M.G.; Hassan, N.M.S. Thermal performance of building-integrated horizontal earth-air heat exchanger in a subtropical hot humid climate. Geothermics 2022, 99, 102313. [Google Scholar] [CrossRef]
- Ozgener, L.; Ozgener, O. Energetic performance test of an underground air tunnel system for greenhouse heating. Energy 2010, 35, 4079–4085. [Google Scholar] [CrossRef]
- Ozgener, O.; Ozgener, L. Determining the optimal design of a closed loop earth to air heat exchanger for greenhouse heating by using exergoeconomics. Energy Build. 2011, 43, 960–965. [Google Scholar] [CrossRef]
- Qi, D.; Liu, Q.; Zhao, C.; Li, S.; Song, B.; Li, A. Optimizing the thermal environment of greenhouse with multi-pipe earth-to-air heat exchanger system using the Taguchi method. Appl. Therm. Eng. 2024, 242, 122469. [Google Scholar] [CrossRef]
- Florides, G.; Kalogirou, S. Ground heat exchangers—A review of systems, models and applications. Renew. Energy 2007, 32, 2461–2478. [Google Scholar] [CrossRef]
- Gan, G. Dynamic interactions between the ground heat exchanger and environments in earth-air tunnel ventilation of buildings. Energy Build. 2014, 85, 12–22. [Google Scholar] [CrossRef]
- Serageldin, A.A.; Abdeen, A.; Ahmed, M.M.S.; Radwan, A.; Shmroukh, A.N.; Ookawara, S. Solar chimney combined with earth to-air heat exchanger for passive cooling of residential buildings in hot areas. Sol. Energy 2020, 206, 145–162. [Google Scholar] [CrossRef]
- Agrawal, K.K.; Misra, R.; Agrawal, G.D.; Bhardwaj, M.; Jamuwa, D.K. Effect of different design aspects of pipe for earth air tunnel heat exchanger system: A state of art. Int. J. Green Energy 2019, 16, 598–614. [Google Scholar] [CrossRef]
- Bordoloi, N.; Sharma, A.; Nautiyal, H.; Goel, V. An intense review on the latest advancements of Earth Air Heat Exchangers. Renew. Sustain. Energy Rev. 2018, 89, 261–280. [Google Scholar] [CrossRef]
- Shahare, S.; Harinarayana, T. Energy Efficient Air Conditioning System Using Geothermal Cooling-Solar Heating in Gujarat, India. J. Power Energy Eng. 2016, 4, 57–71. [Google Scholar] [CrossRef]
- Noman, S.; Tirumalachetty, H.; Athikesavan, M.M. A comprehensive review on experimental, numerical and optimization analysis of EAHE and GSHP systems. Environ. Sci. Pollut. Res. 2022, 29, 67559–67603. [Google Scholar] [CrossRef]
- Ascione, F.; Bellia, L.; Minichiello, F. Earth-to-air heat exchangers for Italian climates. Renew. Energy 2011, 36, 2177–2188. [Google Scholar] [CrossRef]
- Alves, A.B.M.; Schmid, A.L. Cooling and heating potential of underground soil according to depth and soil surface treatment in the Brazilian climatic regions. Energy Build. 2015, 90, 41–50. [Google Scholar] [CrossRef]
- Adamovsky, D.; Neuberger, P.; Adamovsky, R. Changes in energy and temperature in the ground mass with horizontal heat exchangers—The energy source for heat pumps. Energy Build. 2015, 92, 107–115. [Google Scholar] [CrossRef]
- Go, G.H.; Lee, S.R.; Yoon, S.; Kim, M.J. Optimum design of horizontal ground-coupled heat pump systems using spiral-coil-loop heat exchangers. Appl. Energy 2016, 162, 330–345. [Google Scholar] [CrossRef]
- Salhein, K.; Kobus, C.J.; Zohdy, M. Control of Heat Transfer in a Vertical Ground Heat Exchanger for a Geothermal Heat Pump System. Energies 2022, 15, 5300. [Google Scholar] [CrossRef]
- Bisoniya, T.S. Design of earth–air heat exchanger system. Geotherm. Energy 2015, 3, 18. [Google Scholar] [CrossRef]
- Salhein, K.; Kobus, C.J.; Zohdy, M.; Annekaa, A.M.; Alhawsawi, E.Y.; Salheen, S.A. Heat Transfer Performance Factors in a Vertical Ground Heat Exchanger for a Geothermal Heat Pump System. Energies 2024, 17, 5003. [Google Scholar] [CrossRef]
- Santamouris, M.; Mihalakakou, G.; Balaras, C.A.; Lewis, J.O.; Vallindras, M.; Argiriou, A. Energy conservation in greenhouses with buried pipes. Energy 1996, 21, 353–360. [Google Scholar] [CrossRef]
- Singh, B.; Asati, A.K.; Kumar, R. Temperature Difference findings from Earth Air Heat Exchanger System in Hot-Dry Climate. Indian J. Sci. Technol. 2017, 10, 1–4. [Google Scholar] [CrossRef]
- Kondratiev, V.V.; Sysoev, I.A.; Kolosov, A.D.; Galishnikova, V.V.; Gladkikh, V.A.; Karlina, A.I.; Karlina, Y.I. Development and Testing of the Thermoelectric Thermal Energy Conversion Device in the Conditions of Existing Aluminum Production. Materials 2022, 15, 8526. [Google Scholar] [CrossRef]
- Sakhri, N.; Menni, Y.; Chamkha, A.; Salmi, M.; Ameur, H. Earth to Air Heat Exchanger and Its Applications in Arid Regions—An Updated Review. Ital. J. Eng. Sci. 2020, 64, 83–90. [Google Scholar] [CrossRef]
- Rosa, N.; Soares, N.; Costa, J.J.; Santos, P.; Gervásio, H. Assessment of an earth-air heat exchanger (EAHE) system for residential buildings in warm-summer Mediterranean climate. Sustain. Energy Technol. Assess. 2020, 38, 100649. [Google Scholar] [CrossRef]
- Bansal, V.; Misra, R.; Agrawal, G.D.; Mathur, J. Performance analysis of earth–pipe–air heat exchanger for winter heating. Energy Build. 2009, 41, 1151–1154. [Google Scholar] [CrossRef]
- Serageldin, A.A.; Abdelrahman, A.K.; Ookawara, S. Earth-Air Heat Exchanger thermal performance in Egyptian conditions: Experimental results, mathematical model, and Computational Fluid Dynamics simulation. Energy Convers. Manag. 2016, 122, 25–38. [Google Scholar] [CrossRef]
- Rosa, N.; Santos, P.; Costa, J.J.; Gervásio, H. Modelling and performance analysis of an earth-to-air heat exchanger in a pilot installation. J. Build. Phys. 2018, 42, 259–287. [Google Scholar] [CrossRef]
- Agrawal, K.K.; Agrawal, G.D.; Misra, R.; Bhardwaj, M.; Jamuwa, D.K. A review on effect of geometrical, flow and soil properties on the performance of Earth air tunnel heat exchanger. Energy Build. 2018, 176, 120–138. [Google Scholar] [CrossRef]
- Agrawal, K.K.; Misra, R.; Agrawal, G.D. To study the effect of different parameters on the thermal performance of ground-air heat exchanger system: In situ measurement. Renew. Energy 2020, 146, 2070–2083. [Google Scholar] [CrossRef]
- Bansal, V.; Misra, R.; Agarwal, G.D.; Mathur, J. Transient effect of soil thermal conductivity and duration of operation on performance of Earth Air Tunnel Heat Exchanger. Appl. Energy 2013, 103, 1–11. [Google Scholar] [CrossRef]
- de la Rocha Camba, E.; Petrakopoulou, F. Earth-cooling air tunnels for thermal power plants: Initial design by CFD modelling. Energies 2020, 13, 797. [Google Scholar] [CrossRef]
- Mihalakakou, G.; Santamouris, M.; Asimakopoulos, D.; Tselepidaki, I. Parametric prediction of the buried pipes cooling potential for passive cooling applications. Sol. Energy 1995, 55, 163–173. [Google Scholar] [CrossRef]
- Mihalakakou, G.; Santamouris, M.; Lewis, J.O.; Asimakopoulos, D.N. On the application of the energy balance equation to predict ground temperature profiles. Sol. Energy 1997, 60, 181–190. [Google Scholar] [CrossRef]
- Koshlak, H. A Review of Earth-Air Heat Exchangers: From Fundamental Principles to Hybrid Systems with Renewable Energy Integration. Energies 2025, 18, 1017. [Google Scholar] [CrossRef]
- Mihalakakou, G.; Santamouris, M.; Asimakopoulos, D.; Papanikolaou, N. Impact of ground cover on the efficiencies of earth-to-air heat exchangers. Appl. Energy 1994, 48, 19–32. [Google Scholar] [CrossRef]
- Ahmed, S.F.; Amanullah, M.T.O.; Khan, M.M.K.; Rasul, M.G.; Hassan, N.M.S. Parametric study on thermal performance of horizontal earth pipe cooling system in summer. Energy Convers. Manag. 2016, 114, 324–337. [Google Scholar] [CrossRef]
- Sanusi, A.N.Z.; Shao, L.; Ibrahim, N. Passive ground cooling system for low energy buildings in Malaysia (hot and humid climates). Renew. Energy 2013, 49, 193–196. [Google Scholar] [CrossRef]
- Khan, T.A.; Shabbir, K.; Khan, M.M.; Siddiqui, F.A.; Taseer, M.Y.R.; Imtiaz, S. Earth-Tube System to Control Indoor Thermal Environment in Residential Buildings. Tech. J. Univ. Eng. Technol. 2020, 25, 33–40. [Google Scholar]
- Kabashnikov, V.P.; Danilevskii, L.N.; Nekrasov, V.P.; Vityaz, I.P. Analytical and numerical investigation of the characteristics of a soil heat exchanger for ventilation systems. Int. J. Heat Mass. Transf. 2002, 45, 2407–2418. [Google Scholar] [CrossRef]
- Mihalakakou, G.; Lewis, J.O.; Santamouris, M. The influence of different ground covers on the heating potential of earth-to-air heat exchangers. Renew. Energy 1996, 7, 33–46. [Google Scholar] [CrossRef]
- Benhammou, M.; Draoui, B. Parametric study on thermal performance of earth-to-air heat exchanger used for cooling of buildings. Renew. Sustain. Energy Rev. 2015, 44, 348–355. [Google Scholar] [CrossRef]
- Bansal, V.; Misra, R.; Agrawal, G.D.; Mathur, J. Performance analysis of earth–pipe–air heat exchanger for summer cooling. Energy Build. 2010, 42, 645–648. [Google Scholar] [CrossRef]
- Student, M.T.; Deptt, M. Earth Air Heat Exchanger in Parallel Connection. Int. J. Eng. Trends Technol. 2013, 1, 2463–2467. [Google Scholar]
- Niu, F.; Yu, Y.; Yu, D.; Li, H. Heat and mass transfer performance analysis and cooling capacity prediction of earth to air heat exchanger. Appl. Energy 2015, 137, 211–221. [Google Scholar] [CrossRef]
- Sehli, A.; Hasni, A.; Tamali, M. The Potential of Earth-air Heat Exchangers for Low Energy Cooling of Buildings in South Algeria. Energy Procedia 2012, 18, 496–506. [Google Scholar] [CrossRef]
- Das, B.; Sawicki, A. Fundamentals of Geotechnical Engineering. Appl. Mech. Rev. 2001, 54, B103–B104. [Google Scholar] [CrossRef]
- Santamouris, M. Use of Earth to Air Heat Exchanger for Cooling; International Energy Agency, Energy Conservation in Buildings and Community Systems Programme: Paris, France, 2006. [Google Scholar]
- Salhein, K.; Kobus, C.J.; Zohdy, M. Heat Transfer Control Mechanism in a Vertical Ground Heat Exchanger: A Novel Approach. Fundam. Res. Appl. Phys. Sci. 2023, 5, 59–90. [Google Scholar] [CrossRef]
- Natural Resources Canada, Earth to Air Thermal Exchanger (EATEX): Design Principles and Concept Design Tool. 2021. Available online: https://publications.gc.ca/site/eng/9.903329/publication.html (accessed on 21 March 2025).
- Choi, W.; Ooka, R. Effect of natural convection on thermal response test conducted in saturated porous formation: Comparison of gravel-backfilled and cement-grouted borehole heat exchangers. Renew. Energy 2016, 96, 891–903. [Google Scholar] [CrossRef]
- Dong, S.; Liu, G.; Zhan, T.; Yao, Y.; Ni, L. Performance study of cement-based grouts based on testing and thermal conductivity modeling for ground-source heat pumps. Energy Build 2022, 272, 112351. [Google Scholar] [CrossRef]
- Berndt, M.L. Strength and permeability of steel fibre reinforced grouts. Constr. Build. Mater. 2010, 24, 768–1772. [Google Scholar] [CrossRef]
- Pascual-Muñoz, P.; Indacoechea-Vega, I.; Zamora-Barraza, D.; Castro-Fresno, D. Experimental analysis of enhanced cement-sand-based geothermal grouting materials. Constr. Build. Mater. 2018, 185, 481–488. [Google Scholar] [CrossRef]
- Al-Ameen, Y.; Ianakiev, A.; Evans, R. Recycling construction and industrial landfill waste material for backfill in horizontal ground heat exchanger systems. Energy 2018, 151, 556–568. [Google Scholar] [CrossRef]
- Wu, R.; Chen, P.; Liu, X.; Xu, H.; Zhang, G.; Chen, A. Investigation of the Long-Term Performance of Waste Backfill Materials of High Thermal Conductivity in Vertical Ground Heat Exchangers. Buildings 2024, 14, 1699. [Google Scholar] [CrossRef]
- Głuchowski, A. Optimizing Backfill Materials for Ground Heat Exchangers: A Study on Recycled Concrete Aggregate and Fly Ash for Enhanced Thermal Conductivity. Materials 2024, 17, 5876. [Google Scholar] [CrossRef]
- Jahanbin, A. Thermal performance of the vertical ground heat exchanger with a novel elliptical single U-tube. Geothermics 2020, 86, 101804. [Google Scholar] [CrossRef]
- Dehkordi, S.E.; Schincariol, R.A. Effect of thermal-hydrogeological and borehole heat exchanger properties on performance and impact of vertical closed-loop geothermal heat pump systems. Hydrogeol. J. 2014, 22, 189–203. [Google Scholar] [CrossRef]
- Ma, Y.; Wang, J.; Hu, F.; Yan, E.; Zhang, Y.; Huang, Y.; Deng, H.; Gao, X.; Kang, J.; Shi, H.; et al. Analysis of the Heat Transfer Performance of a Buried Pipe in the Heating Season Based on Field Testing. Energies 2024, 17, 5466. [Google Scholar] [CrossRef]
- Liu, L.; Jie, X. Basic theories and applied exploration of functional backfill in mines. Meitan Xuebao/J. China Coal Soc. 2018, 43, 1811–1820. [Google Scholar] [CrossRef]
- Smith, M.D.; Perry, R.L. Borehole grouting: Field studies and thermal performance testing. ASHRAE Trans. 1999, 105, 451. [Google Scholar]
- Philippacopoulos, A.J.; Berndt, M.L. Influence of debonding in ground heat exchangers used with geothermal heat pumps. Geothermics 2001, 30, 527–545. [Google Scholar] [CrossRef]
No. | Property | Findings | References |
---|---|---|---|
1 | Pipe material |
| [58,59] [61] [65,66] |
2 | Pipe length |
| [66,68] [69] |
3 | Pipe diameter |
| [47,64,67,69] |
4 | Pipe depth |
| [20,75] |
5 | Pipe spacing |
| [64] [62] |
6 | Air velocity |
| [62,77] [64,78,79] [69,73,81,83] |
7 | Bonding of soil with pipes |
| [84] [68,85] [57] [89,90,91] [92] [93,94] [100] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kouki, N.; D’Agostino, D.; Vityi, A. Properties of Earth-to-Air Heat Exchangers (EAHE): Insights and Perspectives Based on System Performance. Energies 2025, 18, 1759. https://doi.org/10.3390/en18071759
Kouki N, D’Agostino D, Vityi A. Properties of Earth-to-Air Heat Exchangers (EAHE): Insights and Perspectives Based on System Performance. Energies. 2025; 18(7):1759. https://doi.org/10.3390/en18071759
Chicago/Turabian StyleKouki, Nadjat, Diana D’Agostino, and Andrea Vityi. 2025. "Properties of Earth-to-Air Heat Exchangers (EAHE): Insights and Perspectives Based on System Performance" Energies 18, no. 7: 1759. https://doi.org/10.3390/en18071759
APA StyleKouki, N., D’Agostino, D., & Vityi, A. (2025). Properties of Earth-to-Air Heat Exchangers (EAHE): Insights and Perspectives Based on System Performance. Energies, 18(7), 1759. https://doi.org/10.3390/en18071759