Harnessing a Renewable Resource for Sustainability: The Role of Geothermal Energy in Italy’s Business Sector
Abstract
:1. Introduction
2. Literature Review
2.1. Geothermal Systems: Geological, Hydrological, and Atmospheric Risks and Their Impact on Social Acceptance
2.2. Geothermal Energy Use: Benefits, Forms, and Future Scenarios
2.3. Theoretical Foundation and Hypothesis Development
3. Methods and Materials
3.1. Sampling
3.2. Data Collection and Analysis
3.3. Variables and Measures
4. Results and Interpretation
5. Discussion, Conclusions, and Policy Recommendations
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Idroes, G.M.; Hardi, I.; Hilal, I.S.; Utami, R.T.; Noviandy, T.R.; Idroes, R. Economic Growth and Environmental Impact: Assessing the Role of Geothermal Energy in Developing and Developed Countries. Innov. Green Dev. 2024, 33, 100144. [Google Scholar] [CrossRef]
- Shamoushaki, M.; Koh, S.C. Solar Cells Combined with Geothermal or Wind Power Systems Reduces Climate and Environmental Impact. Commun. Earth Environ. 2024, 5, 572. [Google Scholar] [CrossRef]
- Sharmin, T.; Khan, N.R.; Akram, M.S.; Ehsan, M.M. A State-of-the-Art Review on Geothermal Energy Extraction, Utilization, and Improvement Strategies: Conventional, Hybridized, and Enhanced Geothermal Systems. Int. J. Thermofluids 2023, 18, 100323. [Google Scholar] [CrossRef]
- Ball, P.J. A Review of Geothermal Technologies and Their Role in Reducing Greenhouse Gas Emissions in the USA. J. Energy Resour. Technol. 2021, 143, 010904. [Google Scholar] [CrossRef]
- Vargas, C.A.; Caracciolo, L.; Ball, P.J. Geothermal Energy as a Means to Decarbonize the Energy Mix of Megacities. Commun. Earth Environ. 2022, 3, 66. [Google Scholar] [CrossRef]
- Beardsmore, G.; Ballesteros, M.; Davidson, C.; Larking, A.; Pujol, M. Country Update—Australia. In Proceedings of the World Geothermal Congress 2023, Melbourne, Australia, 15–17 September 2023; Geothermal Energy Association: Melbourne, Australia, 2023. [Google Scholar]
- Gutiérrez-Negrín, L.C.A. Evolution of Worldwide Geothermal Power 2020–2023. Geotherm. Energy 2024, 12, 14. [Google Scholar] [CrossRef]
- Della Vedova, B.; Bottio, I.; Cei, M.; Conti, P.; Giudetti, G.; Gola, G.; Spadoni, L.; Vaccaro, M.; Xodo, L. Geothermal Energy Use, Country Update for Italy. In Proceedings of the European Geothermal Congress 2022, Berlin, Germany, 17–21 October 2022; Volume 1, pp. 1–12. Available online: https://hdl.handle.net/11568/1161549 (accessed on 5 January 2025).
- Fornasiero, R.; Tolio, T.A.M. (Eds.) Analysis of the Italian Manufacturing Sector. In The Future of Manufacturing: The Italian Roadmap; Springer: Cham, Switzerland, 2024; pp. 15–34. [Google Scholar] [CrossRef]
- Manzella, A.; Bonciani, R.; Allansdottir, A.; Botteghi, S.; Donato, A.; Giamberini, S.; Lenzi, A.; Paci, M.; Pellizzone, A.; Scrocca, D. Environmental and Social Aspects of Geothermal Energy in Italy. Geothermics 2018, 72, 232–248. [Google Scholar] [CrossRef]
- Jolie, E.; Scott, S.; Faulds, J.; Chambefort, I.; Axelsson, G.; Gutiérrez-Negrín, L.C.; Regenspurg, S.; Ziegler, M.; Ayling, B.; Richter, A.; et al. Geological Controls on Geothermal Resources for Power Generation. Nat. Rev. Earth Environ. 2021, 2, 324–339. [Google Scholar] [CrossRef]
- Wang, K.; Yuan, B.; Ji, G.; Wu, X. A Comprehensive Review of Geothermal Energy Extraction and Utilization in Oilfields. J. Pet. Sci. Eng. 2018, 168, 465–477. [Google Scholar] [CrossRef]
- Meirbekova, R.; Bonciani, D.; Olafsson, D.I.; Korucan, A.; Derin-Güre, P.; Harcouët-Menou, V.; Bero, W. Opportunities and Challenges of Geothermal Energy: A Comparative Analysis of Three European Cases—Belgium, Iceland, and Italy. Energies 2024, 17, 4134. [Google Scholar] [CrossRef]
- Soltani, M.; Kashkooli, F.M.; Souri, M.; Rafiei, B.; Jabarifar, M.; Gharali, K.; Nathwani, J.S. Environmental, Economic, and Social Impacts of Geothermal Energy Systems. Renew. Sustain. Energy Rev. 2021, 140, 110750. [Google Scholar] [CrossRef]
- Chen, S.; Zhang, Q.; Andrews-Speed, P.; Mclellan, B. Quantitative Assessment of the Environmental Risks of Geothermal Energy: A Review. J. Environ. Manag. 2020, 276, 111287. [Google Scholar] [CrossRef]
- Goertz-Allmann, B.P.; Wiemer, S. Geomechanical Modeling of Induced Seismicity Source Parameters and Implications for Seismic Hazard Assessment. Geophysics 2013, 78, 25–39. [Google Scholar] [CrossRef]
- Parks, M.; Sigmundsson, F.; Sigurðsson, Ó.; Hooper, A.; Hreinsdóttir, S.; Ófeigsson, B.; Michalczewska, K. Deformation Due to Geothermal Exploitation at Reykjanes, Iceland. J. Volcanol. Geotherm. Res. 2018, 391, 106438. [Google Scholar] [CrossRef]
- Shi, H.; Wang, G.; Zhang, W.; Ma, F.; Lin, W.; Ji, M. Predicting the Potential of China’s Geothermal Energy in Industrial Development and Carbon Emission Reduction. Sustainability 2023, 15, 7508. [Google Scholar] [CrossRef]
- Schumacker, R.E. Correlation Tests of Association. In Learning Statistics Using R; SAGE Publications: Thousand Oaks, CA, USA, 2015; pp. 215–235. [Google Scholar]
- Vine, E.; Prahl, R.; Meyers, S.; Turiel, I. An Approach for Evaluating the Market Effects of Energy Efficiency Programs. Energy Effic. 2009, 3, 257–266. [Google Scholar] [CrossRef]
- Naqvi, M.; Yan, J.; Dahlquist, E.; Naqvi, S.R. Off-Grid Electricity Generation Using Mixed Biomass Compost: A Scenario-Based Study with Sensitivity Analysis. Appl. Energy 2017, 201, 363–370. [Google Scholar] [CrossRef]
- Ökmen, Ö.; Öztaş, A. Scenario-Based Evaluation of a Cost Risk Model through Sensitivity Analysis. Eng. Constr. Archit. Manag. 2015, 22, 403–423. [Google Scholar] [CrossRef]
- Meissner, P.; Brands, C.; Wulf, T. Quantifying Blind Spots and Weak Signals in Executive Judgment: A Structured Integration of Expert Judgment into the Scenario Development Process. Int. J. Forecast. 2016, 33, 244–253. [Google Scholar] [CrossRef]
- Royo, P.; Acevedo, L.; Ferreira, V.J.; García-Armingol, T.; López-Sabirón, A.M.; Ferreira, G. High-Temperature PCM-Based Thermal Energy Storage for Industrial Furnaces Installed in Energy-Intensive Industries. Energy 2019, 173, 1030–1040. [Google Scholar] [CrossRef]
- Witter, J.B.; Trainor-Guitton, W.J.; Siler, D.L. Uncertainty and Risk Evaluation During the Exploration Stage of Geothermal Development: A Review. Geothermics 2019, 78, 233–242. [Google Scholar] [CrossRef]
- Jeanne, P.; Rutqvist, J.; Rinaldi, A.P.; Dobson, P.F.; Walters, M.; Hartline, C.; Garcia, J. Seismic and Aseismic Deformations and Impact on Reservoir Permeability: The Case of EGS Stimulation at The Geysers, California, USA. J. Geophys. Res. Solid Earth 2015, 120, 7863–7882. [Google Scholar] [CrossRef]
- Kara, H.; Yetis, A.D.; Kalkan, S. The Impact of Geothermal Fluid Discharge on Drainage Water and Groundwater Quality in Terms of Toxic Contaminants in the Agricultural Harran Plain, Turkey. Geothermics 2022, 105, 102502. [Google Scholar] [CrossRef]
- Zhou, W.; Lanza, F.; Grigoratos, I.; Schultz, R.; Cousse, J.; Trutnevyte, E.; Muntendam-Bos, A.; Wiemer, S. Managing Induced Seismicity Risks from Enhanced Geothermal Systems: A Good Practice Guideline. Rev. Geophys. 2024, 62, e2024RG000849. [Google Scholar] [CrossRef]
- Chavot, P.; Heimlich, C.; Masseran, A.; Serrano, Y.; Zoungrana, J.; Bodin, C. Social Shaping of Deep Geothermal Projects in Alsace: Politics, Stakeholder Attitudes and Local Democracy. Geotherm. Energy 2018, 6, 26. [Google Scholar] [CrossRef]
- Kunze, C.; Hertel, M. Contested Deep Geothermal Energy in Germany—The Emergence of an Environmental Protest Movement. Energy Res. Soc. Sci. 2017, 27, 174–180. [Google Scholar] [CrossRef]
- Pellizzone, A.; Allansdottir, A.; De Franco, R.; Muttoni, G.; Manzella, A. Geothermal Energy and the Public: A Case Study on Deliberative Citizens’ Engagement in Central Italy. Energy Policy 2016, 101, 561–570. [Google Scholar] [CrossRef]
- Renoth, R.; Buchner, E.; Schmieder, M.; Keim, M.; Plechaty, M.; Drews, M. Social Acceptance of Geothermal Technology on a Global View: A Systematic Review. Energy Sustain. Soc. 2023, 13, 49. [Google Scholar] [CrossRef]
- Vargas Payera, S.V. Understanding Social Acceptance of Geothermal Energy: Case Study for Araucanía Region, Chile. Geothermics 2018, 72, 138–144. [Google Scholar] [CrossRef]
- Yu, P.; Xu, Y.; Liu, H.; Liu, X.; Fu, J.; Xu, M.; Zhou, D. Regional-Scale Assessment of the Potential for Shallow Geothermal Energy Development Using Vertical Ground Source Heat Pumps. Energies 2024, 17, 4363. [Google Scholar] [CrossRef]
- Yudha, S.W.; Tjahjono, B.; Longhurst, P. Sustainable Transition from Fossil Fuel to Geothermal Energy: A Multi-Level Perspective Approach. Energies 2022, 15, 7435. [Google Scholar] [CrossRef]
- Lund, J.W.; Toth, A.N. Direct Utilization of Geothermal Energy 2020 Worldwide Review. Geothermics 2020, 90, 101915. [Google Scholar] [CrossRef]
- Wong, K.V.; Tan, N. Feasibility of Using More Geothermal Energy to Generate Electricity. J. Energy Resour. Technol. 2014, 137, 041201. [Google Scholar] [CrossRef]
- Shortall, R.; Davidsdottir, B.; Axelsson, G. Geothermal Energy for Sustainable Development: A Review of Sustainability Impacts and Assessment Frameworks. Renew. Sustain. Energy Rev. 2015, 44, 391–406. [Google Scholar] [CrossRef]
- Self, S.J.; Reddy, B.V.; Rosen, M.A. Geothermal Heat Pump Systems: Status Review and Comparison with Other Heating Options. Appl. Energy 2013, 101, 341–348. [Google Scholar] [CrossRef]
- Beckers, K.F.; Kolker, A.; Pauling, H.; McTigue, J.D.; Kesseli, D. Evaluating the Feasibility of Geothermal Deep Direct-Use in the United States. Energy Convers. Manag. 2021, 243, 114335. [Google Scholar] [CrossRef]
- Qu, H.; Masud, M.H.; Islam, M.; Khan, M.I.H.; Ananno, A.A.; Karim, A. Sustainable Food Drying Technologies Based on Renewable Energy Sources. Crit. Rev. Food Sci. Nutr. 2021, 62, 6872–6886. [Google Scholar] [CrossRef]
- Focaccia, S.; Tinti, F.; Monti, F.; Amidei, S.; Bruno, R. Shallow Geothermal Energy for Industrial Applications: A Case Study. Sustain. Energy Technol. Assess. 2016, 16, 93–105. [Google Scholar] [CrossRef]
- Lund, J.W.; Huttrer, G.W.; Toth, A.N. Characteristics and Trends in Geothermal Development and Use, 1995 to 2020. Geothermics 2022, 105, 102522. [Google Scholar] [CrossRef]
- Manzella, A. Geothermal Energy. EPJ Web Conf. 2017, 148, 00012. [Google Scholar] [CrossRef]
- Enel Green Power. Geothermal Energy in Italy. Available online: https://www.enelgreenpower.com/learning-hub/renewable-energies/geothermal-energy/italy (accessed on 5 January 2025).
- Alimonti, C.; Soldo, E.; Scrocca, D. Looking Forward to a Decarbonized Era: Geothermal Potential Assessment for Oil & Gas Fields in Italy. Geothermics 2021, 93, 102070. [Google Scholar] [CrossRef]
- Ali, Y.; Ciaschini, M.; Pretaroli, R.; Socci, C. Measuring the Economic Landscape of Italy: Target Efficiency and Control Effectiveness. J. Ind. Bus. Econ. 2015, 42, 297–321. [Google Scholar] [CrossRef]
- Italian Business Register. An Overview of Italian Companies. Available online: https://italianbusinessregister.it/en/an-overview-of-italian-companies (accessed on 14 March 2025).
- De Castro, M.; Baptista, J.; Matos, C.; Valente, A.; Briga-Sá, A. Energy Efficiency in Winemaking Industry: Challenges and Opportunities. Sci. Total Environ. 2024, 930, 172383. [Google Scholar] [CrossRef] [PubMed]
- Pearson-Grant, S.C.; Bertrand, E.A. Topography as a Major Influence on Geothermal Circulation in the Taupo Volcanic Zone, New Zealand. Geophys. Res. Lett. 2021, 48, e2020GL092248. [Google Scholar] [CrossRef]
- Dalla Longa, F.D.; Nogueira, L.P.; Limberger, J.; Van Wees, J.; Van Der Zwaan, B. Scenarios for Geothermal Energy Deployment in Europe. Energy 2020, 206, 118060. [Google Scholar] [CrossRef]
- Van Der Zwaan, B.; Dalla Longa, F.D. Integrated Assessment Projections for Global Geothermal Energy Use. Geothermics 2019, 82, 203–211. [Google Scholar] [CrossRef]
- Masini, A.; Menichetti, E. Investment Decisions in the Renewable Energy Sector: An Analysis of Non-Financial Drivers. Technol. Forecast. Soc. Change 2013, 80, 510–524. [Google Scholar] [CrossRef]
- Da Silva Pereira, E.J.; Pinho, J.T.; Galhardo, M.A.B.; Macêdo, W.N. Methodology of Risk Analysis by Monte Carlo Method Applied to Power Generation with Renewable Energy. Renew. Energy 2014, 69, 347–355. [Google Scholar] [CrossRef]
- Purkus, A.; Barth, V. Geothermal Power Production in Future Electricity Markets—A Scenario Analysis for Germany. Energy Policy 2010, 39, 349–357. [Google Scholar] [CrossRef]
- Creswell, J.W.; Guetterman, T.C. Educational Research: Planning, Conducting, and Evaluating Quantitative and Qualitative Research, 7th ed.; Pearson: Boston, MA, USA, 2024. [Google Scholar]
- Creswell, J.W.; Creswell, J.D. Research Design: Qualitative, Quantitative, and Mixed Methods Approaches, 6th ed.; SAGE Publications, Inc.: Thousand Oaks, CA, USA, 2022. [Google Scholar]
- Gerald, B. A Brief Review of Independent, Dependent and One Sample t-Test. Int. J. Appl. Math. Theor. Phys. 2018, 4, 50–54. [Google Scholar] [CrossRef]
- Parapar, J.; Losada, D.E.; Presedo-Quindimil, M.A.; Barreiro, A. Using Score Distributions to Compare Statistical Significance Tests for Information Retrieval Evaluation. J. Assoc. Inf. Sci. Technol. 2019, 71, 98–113. [Google Scholar] [CrossRef]
- Borgonovo, E.; Plischke, E. Sensitivity Analysis: A Review of Recent Advances. Eur. J. Oper. Res. 2016, 248, 869–887. [Google Scholar] [CrossRef]
- Paltsev, S. Energy Scenarios: The Value and Limits of Scenario Analysis. Wiley Interdiscip. Rev. Energy Environ. 2016, 6, e242. [Google Scholar] [CrossRef]
- Magazzino, C. On the Relationship between Disaggregated Energy Production and GDP in Italy. Energy Environ. 2012, 23, 1191–1207. [Google Scholar] [CrossRef]
Variable | Mean | Median | Standard Deviation | Skewness | Kurtosis | IQR |
---|---|---|---|---|---|---|
Share of Geothermal Energy | 0.326 | 0.350 | 0.154 | 0.083 | −1.411 | 0.270 |
Risk Communication | 0.325 | 0.000 | 0.474 | 0.747 | −1.442 | 1.000 |
Social Criticism/Resistance | 0.725 | 1.000 | 0.452 | −1.006 | −0.984 | 1.000 |
Pre-Geo. Energy Cost | 108.130 | 114.500 | 14.463 | −0.960 | −0.078 | 18.750 |
Post-Geo. Energy Cost | 99.325 | 104.000 | 10.944 | −1.311 | 0.735 | 11.750 |
Pre-Geo. CO2 Emission | 346.950 | 159.000 | 483.650 | 2.113 | 2.786 | 243.250 |
Post-Geo. CO2 Emission | 303.070 | 125.000 | 433.830 | 2.103 | 2.754 | 220.000 |
Risk Communication | Social Acceptance Challenges | Total | |
---|---|---|---|
Yes | No | ||
Yes | 0 | 27 | 27 |
0.00 | 100.00 | 100.0 | |
0.00 | 93.10 | 67.50 | |
0.00 | 67.50 | 67.50 | |
No | 11 | 2 | 13 |
84.62 | 15.38 | 100.0 | |
100.00 | 6.90 | 32.50 | |
27.50 | 5.00 | 32.50 | |
Total | 11 | 29 | 40 |
27.50 | 72.50 | 100.0 | |
100.00 | 100.00 | 100.0 | |
27.50 | 72.50 | 100.0 |
Pearson Chi2 | 31.5119 (Pr = 0.000) |
Likelihood-Ratio Chi2 | 35.8911 (Pr = 0.000) |
Cramér’s V | −0.8876 |
Gamma | −1.0000 (ASE = 0.000) |
Kendall’s tau-b | −0.8876 (ASE = 0.073) |
Fisher’s Exact | 0.000 |
Change in CO2 Emissions (tons) | Mean | Median | Standard Deviation | IQR |
---|---|---|---|---|
1% to 5% | 99 | 99 | 2.912 | 5.526 |
6% to 15% | 85 | 85 | 5.577 | 10.131 |
16% to 25% | 67 | 67 | 5.577 | 10.131 |
26% to 40% | 44 | 44 | 2.238 | 14.736 |
Change in Energy Costs (euro/MWh) | Mean | Median | Standard Deviation | IQR |
---|---|---|---|---|
1% to 5% | −1.5 | −1.5 | 0.386 | 0.733 |
6% to 15% | −3.3 | −3.3 | 0.740 | 1.344 |
16% to 25% | −5.8 | −5.8 | 0.740 | 1.344 |
26% to 40% | −8.8 | −8.8 | 1.093 | 1.955 |
Change in CO2 Emissions on Share of Geothermal Energy | ||||||
---|---|---|---|---|---|---|
Coef. | Std. Err. | t | p > |t| | Lower 95% | Upper 95% | |
Share of Geothermal Energy | −184.196 | 44.285 | −4.159 | 0.000 | −273.845 | −94.547 |
Intercept | 104.383 | 16.023 | 6.514 | 0.000 | 71.946 | 136.821 |
Obs.: 40; F(1,38): 17.300 (0.000); R-Squared: 0.313; Adj R-Squared: 0.295; RMSE: 42.483 | ||||||
Change inEnergy Costs on Share of Geothermal Energy | ||||||
Coef. | Std. Err. | t | p > |t| | Lower 95% | Upper 95% | |
Share of Geothermal Energy | −24.435 | 1.444 | −16.924 | 0.000 | −27.358 | −21.512 |
Intercept | −0.773 | 0.522 | −1.480 | 0.147 | −1.831 | 0.285 |
Obs.: 40; F(1,38): 286.432 (0.000); R-Squared: 0.883; Adj R-Squared: 0.880; RMSE: 1.385 |
Pre- and Post-Adoption of Geothermal Energy (CO2 Emissions) | ||||||
---|---|---|---|---|---|---|
Obs. | Mean | Std. Err. | Std. Dev. | Lower 95% | Upper 95% | |
Pre | 40 | 346.95 | 76.47198 | 483.6513 | 192.2708 | 501.6292 |
Post | 40 | 303.075 | 68.59444 | 433.8293 | 164.3297 | 441.8203 |
Diff. | 40 | 43.875 | 7.998733 | 50.58843 | 27.69604 | 60.05396 |
t-statistic: 5.4852; Deg. of Freedom = 39 | ||||||
Pre- and Post-Adoption of Geothermal Energy (Energy Costs) | ||||||
Obs. | Mean | Std. Err. | Std. Dev. | Lower 95% | Upper 95% | |
Pre | 40 | 108.125 | 2.28686 | 14.46337 | 103.4994 | 112.7506 |
Post | 40 | 99.325 | 1.730343 | 10.94365 | 95.82505 | 102.8249 |
Diff. | 40 | 8.8 | 0.6316442 | 3.994869 | 7.522379 | 10.07762 |
t-statistic: 13.9319; Deg. of Freedom = 39 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arcuri, A.; Giolli, L.; Magazzino, C. Harnessing a Renewable Resource for Sustainability: The Role of Geothermal Energy in Italy’s Business Sector. Energies 2025, 18, 1590. https://doi.org/10.3390/en18071590
Arcuri A, Giolli L, Magazzino C. Harnessing a Renewable Resource for Sustainability: The Role of Geothermal Energy in Italy’s Business Sector. Energies. 2025; 18(7):1590. https://doi.org/10.3390/en18071590
Chicago/Turabian StyleArcuri, Angelo, Lorenzo Giolli, and Cosimo Magazzino. 2025. "Harnessing a Renewable Resource for Sustainability: The Role of Geothermal Energy in Italy’s Business Sector" Energies 18, no. 7: 1590. https://doi.org/10.3390/en18071590
APA StyleArcuri, A., Giolli, L., & Magazzino, C. (2025). Harnessing a Renewable Resource for Sustainability: The Role of Geothermal Energy in Italy’s Business Sector. Energies, 18(7), 1590. https://doi.org/10.3390/en18071590