The Evolution of AI Applications in the Energy System Transition: A Bibliometric Analysis of Research Development, the Current State and Future Challenges
Abstract
:1. Introduction
2. A Review of the State of the Art
2.1. Current State of AI Applications to Support TE
2.2. Challenges of AI Applications to Support TE
3. Methodology
4. Analysis of Results
4.1. Annual Publication Statistics
4.2. Network Analysis
- Among the most prominent AI domains for the energy sector are the domains of “ML”, “DL”, “Predictive Analytics”, “Computer Vision”, “Neural Networks”, and “Optimization.”
- Although there is a long history of using optimization techniques in the energy sector, the current taxonomy of AI is very restricted to rather metaheuristic algorithms. After analyzing high-impact works, articles of global interest were published in world-renowned journals and had a high impact, according to JCR. Additionally, the number of citations for each article is quite significant despite several recent publications. The development of the publications of the main authors in the area of interest and those who develop collaborative work with other prominent authors is highlighted. New, relatively young authors are emerging in these growth areas; they may be the creators of future developments in AI&ET.
- -
- Large-scale integration: While most studies focus on specific AI applications, there is a notable lack of research addressing the holistic integration of multiple AI technologies into entire energy systems at the national or regional scale. Current implementations tend to be siloed and lack integration frameworks. Studies currently available for large-scale energy planning, such as EnergyPLAN, Message, Elena, and others, still lack platforms or features that include artificial intelligence tools, which would make energy planning models much more complex and present opportunities for research and development.
- -
- Economic aspects: Existing studies predominantly focus on technical feasibility, with a scarcity of research comprehensively evaluating the economic and financial aspects of implementing AI-based solutions, particularly in emerging economies. Cost–benefit analyses and return on investment studies for large-scale AI implementations are notably lacking.
- -
- Standardization: A significant gap exists in the literature regarding the standardization of protocols and methodologies for AI implementation in energy systems. This lack of standardization hinders the replicability and scalability of proposed solutions across different contexts and regions.
- -
- System resilience: Current publications inadequately address how AI-based systems can maintain their effectiveness in the face of disruptive events or significant changes in operating conditions. The robustness of AI solutions under various stress scenarios requires further investigation.
- -
- Developing countries: There is a marked absence of studies examining AI solution implementation in developing country contexts, where energy infrastructures may be less advanced. This gap is particularly relevant given that these countries often face unique challenges in energy transition.
- -
- Social aspects: The literature lacks deep research on the social impact of AI implementation in energy systems, including aspects such as public acceptance, job market implications, and equity in access. The human dimension of AI-driven energy transitions remains understudied.
- -
- Human Development: No research has yet been identified in prestigious journals that includes human development indicators resulting from these new technological developments.
5. Discussion
- Integrating renewable energy: The variability in sources such as solar and wind can make integrating them into the grid difficult. AI can help predict energy production and manage demand, optimizing the use of renewable energy.
- Energy efficiency: Improving energy consumption efficiency is critical. AI can analyze consumption patterns and suggest strategies to reduce energy use in buildings and industrial processes.
- Smart grid management: Implementing smart grids requires complex management. AI can facilitate real-time monitoring and control, ensuring efficient and reliable energy distribution.
- Energy storage: Storage systems are crucial to balancing supply and demand. AI can optimize the use of batteries and other storage systems, improving their performance and extending their lifespan.
- Changing consumer behavior: The energy transition involves changes in how consumers use energy. AI can personalize recommendations and incentives to encourage more responsible consumption.
- Innovation in clean technologies: AI can accelerate the research and development of new energy technologies, helping to discover more efficient and sustainable solutions.
- Inequality in energy access: The energy transition must be inclusive. AI can analyze social and economic data to identify areas where energy access needs to be improved.
- Regulation and policies: Designing effective policies for the energy transition is complex. AI can provide predictive analysis that informs policy decisions and regulations.
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
AI | Artificial intelligence |
AI&ET | Artificial intelligence and energy transition |
ANN | Artificial neural network |
BESS | Battery Energy Storage System |
CO2 | Carbon dioxide |
DL | Deep learning |
ESS | Energy storage solution |
GA | Genetic algorithm |
GHG | Greenhouse gas |
HED | High-quality energy development |
IEA | International Energy Agency |
ML | Machine learning |
O&M | Operation and maintenance |
PV | Photovoltaic |
RD&D | Research, development, and demonstration |
RE | Renewable energy |
RES | Renewable energy source |
SCD | Scopus custom data |
TES | Thermal energy storage |
UN | United Nations |
WTO | World Trade Organization |
References
- Xu, A.; Darbandi, M.; Javaheri, D.; Navimipour, N.J.; Yalcin, S.; Salameh, A.A. The Management of IoT-Based Organizational and Industrial Digitalization Using Machine Learning Methods. Sustainability 2023, 15, 5932. [Google Scholar] [CrossRef]
- Vetrivel, S.C.; Arun, V.P.; Saravanan, T.P.; Maheswari, R.; Mohanasundari, M. Socio-Economic Impacts of Digital Innovations in Renewable Energy Adoption. In Digital Innovations for Renewable Energy and Conservation; IGI Global Scientific Publishing: New York, NY, USA, 2025; pp. 277–312. ISBN 9798369365328. [Google Scholar]
- AlMakinah, R.; Goodarzi, M.; Tok, B.; Canbaz, M.A. Mapping Artificial Intelligence Bias: A Network-Based Framework for Analysis and Mitigation. AI Ethics 2024, 1, 1–20. [Google Scholar] [CrossRef]
- Khan, M.A.; Saleh, A.M.; Waseem, M.; Sajjad, I.A. Artificial Intelligence Enabled Demand Response: Prospects and Challenges in Smart Grid Environment. IEEE Access 2023, 11, 1477–1505. [Google Scholar] [CrossRef]
- Lugo-Morin, D.R. Artificial Intelligence on Food Vulnerability: Future Implications within a Framework of Opportunities and Challenges. Societies 2024, 14, 106. [Google Scholar] [CrossRef]
- Executive Summary—Electricity 2024—Analysis. Available online: https://www.iea.org/reports/electricity-2024/executive-summary (accessed on 10 December 2024).
- Halbrügge, S. Accelerating Sustainability in Electricity Systems through Digitalization: Coping with Complexity in Times of Transition. Doctoral Thesis, Universitaet Bayreuth, Bayreuth, Germany, 2023. [Google Scholar]
- Di Silvestre, M.L.; Favuzza, S.; Riva Sanseverino, E.; Zizzo, G. How Decarbonization, Digitalization and Decentralization Are Changing Key Power Infrastructures. Renew. Sustain. Energy Rev. 2018, 93, 483–498. [Google Scholar] [CrossRef]
- Net Zero Roadmap: A Global Pathway to Keep the 1.5 °C Goal in Reach—Analysis. Available online: https://www.iea.org/reports/net-zero-roadmap-a-global-pathway-to-keep-the-15-0c-goal-in-reach (accessed on 10 December 2024).
- Panda, G.; Ramasamy, T.N.; Elghali, S.B.; Affijulla, S. Digital Communication and Soft Computing Approaches Towards Sustainable Energy Developments: Proceedings of ISSETA 2023; Springer Nature: Berlin/Heidelberg, Germany, 2024; ISBN 978-981-9988-86-0. [Google Scholar]
- Akpahou, R.; Mensah, L.D.; Quansah, D.A.; Kemausuor, F. Energy Planning and Modeling Tools for Sustainable Development: A Systematic Literature Review. Energy Rep. 2024, 11, 830–845. [Google Scholar] [CrossRef]
- Veronezi, D.; Soulier, M.; Kocsis, T. Energy Solutions for Decarbonization of Industrial Heat Processes. Energies 2024, 17, 5728. [Google Scholar] [CrossRef]
- Behzadi, A.; Duwig, C.; Ploskic, A.; Holmberg, S.; Sadrizadeh, S. Application to Novel Smart Techniques for Decarbonization of Commercial Building Heating and Cooling through Optimal Energy Management. Appl. Energy 2024, 376, 124224. [Google Scholar] [CrossRef]
- De Blasio, N.; Pflugmann, F. Geopolitical and Market Implications of Renewable Hydrogen: New Dependencies in a Low-Carbon Energy World. Environ. Nat. Resour. Program Rep. 2020. [Google Scholar]
- Doo, F.X.; Kulkarni, P.; Siegel, E.; Toland, M.; Yi, P.H.; Carlos, R.C.; Parekh, V.S. Economic and Environmental Costs of Cloud for Medical Imaging and Radiology Artificial Intelligence. J. Am. Coll. Radiol. 2023, 21, 248–256. [Google Scholar] [CrossRef]
- Blakers, A.; Stocks, M.; Lu, B.; Cheng, C. The Observed Cost of High Penetration Solar and Wind Electricity. Energy 2021, 233, 121150. [Google Scholar] [CrossRef]
- Ueckerdt, F.; Brecha, R.; Luderer, G. Analyzing Major Challenges of Wind and Solar Variability in Power Systems. Renew. Energy 2015, 81, 1–10. [Google Scholar] [CrossRef]
- Bautista-Puig, N.; Barreiro-Gen, M.; Statulevičiūtė, G.; Stančiauskas, V.; Dikmener, G.; Akylbekova, D.; Lozano, R. Unraveling Public Perceptions of the Sustainable Development Goals for Better Policy Implementation. Sci. Total Environ. 2023, 912, 169114. [Google Scholar] [CrossRef]
- Abdel-mawgoud, H.; Kamel, S.; Shahinzadeh, H. Strategic Planning for Incorporating Inverter-Based Wind Turbine in Distribution Networks Using Arithmetic Optimization Algorithm. In Proceedings of the 2022 9th Iranian Conference on Renewable Energy & Distributed Generation (ICREDG), Mashhad, Iran, 23–24 February 2022; pp. 1–7. [Google Scholar]
- Bamisile, O.; Wang, X.; Adun, H.; Joseph Ejiyi, C.; Obiora, S.; Huang, Q.; Hu, W. A 2030 and 2050 Feasible/Sustainable Decarbonization Perusal for China’s Sichuan Province: A Deep Carbon Neutrality Analysis and EnergyPLAN. Energy Convers. Manag. 2022, 261, 115605. [Google Scholar] [CrossRef]
- Iglesias-Sanfeliz Cubero, Í.M.; Meana-Fernández, A.; Ríos-Fernández, J.C.; Ackermann, T.; Gutiérrez-Trashorras, A.J. Analysis of Neural Networks Used by Artificial Intelligence in the Energy Transition with Renewable Energies. Appl. Sci. 2024, 14, 389. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, F.; Li, R.; Sun, J. Does Artificial Intelligence Promote Energy Transition and Curb Carbon Emissions? The Role of Trade Openness. J. Clean. Prod. 2024, 447, 141298. [Google Scholar] [CrossRef]
- Marot, A.; Kelly, A.; Naglic, M.; Barbesant, V.; Cremer, J.; Stefanov, A.; Viebahn, J. Perspectives on Future Power System Control Centers for Energy Transition. J. Mod. Power Syst. Clean Energy 2022, 10, 328–344. [Google Scholar] [CrossRef]
- Çelik, D.; Meral, M.E.; Waseem, M. Investigation and Analysis of Effective Approaches, Opportunities, Bottlenecks and Future Potential Capabilities for Digitalization of Energy Systems and Sustainable Development Goals. Electr. Power Syst. Res. 2022, 211, 108251. [Google Scholar] [CrossRef]
- Conte, F.; D’Antoni, F.; Natrella, G.; Merone, M. A New Hybrid AI Optimal Management Method for Renewable Energy Communities. Energy AI 2022, 10, 100197. [Google Scholar] [CrossRef]
- Tostado-Véliz, M.; Rezaee Jordehi, A.; Amir Mansouri, S.; Jurado, F. Day-Ahead Scheduling of 100% Isolated Communities under Uncertainties through a Novel Stochastic-Robust Model. Appl. Energy 2022, 328, 120257. [Google Scholar] [CrossRef]
- Sahin, H.; Solomon, A.A.; Aghahosseini, A.; Breyer, C. Systemwide Energy Return on Investment in a Sustainable Transition towards Net Zero Power Systems. Nat. Commun. 2024, 15, 208. [Google Scholar] [CrossRef]
- Ferdaus, M.M.; Dam, T.; Anavatti, S.; Das, S. Digital Technologies for a Net-Zero Energy Future: A Comprehensive Review. Renew. Sustain. Energy Rev. 2024, 202, 114681. [Google Scholar] [CrossRef]
- Anđelić, N.; Lorencin, I.; Mrzljak, V.; Car, Z. On the Application of Symbolic Regression in the Energy Sector: Estimation of Combined Cycle Power Plant Electrical Power Output Using Genetic Programming Algorithm. Eng. Appl. Artif. Intell. 2024, 133, 108213. [Google Scholar] [CrossRef]
- Phosung, R.; Areerak, K.; Areerak, K. Design and Optimization of Control System for More Electric Aircraft Power Systems Using Adaptive Tabu Search Algorithm Based on State-Variables-Averaging Model. IEEE Access 2024, 12, 76579–76588. [Google Scholar] [CrossRef]
- Olabi, A.G.; Abdelghafar, A.A.; Maghrabie, H.M.; Sayed, E.T.; Rezk, H.; Radi, M.A.; Obaideen, K.; Abdelkareem, M.A. Application of Artificial Intelligence for Prediction, Optimization, and Control of Thermal Energy Storage Systems. Therm. Sci. Eng. Prog. 2023, 39, 101730. [Google Scholar] [CrossRef]
- Kilinc-Ata, N.; Rahman, M.P. Digitalization and Financial Development Contribution to the Green Energy Transition in Malaysia: Findings from the BARDL Approach. In Natural Resources Forum 2024; Blackwell Publishing Ltd.: Oxford, UK, 2024. [Google Scholar] [CrossRef]
- Abbas, J.; Wang, L.; Ben Belgacem, S.; Pawar, P.S.; Najam, H.; Abbas, J. Investment in Renewable Energy and Electricity Output: Role of Green Finance, Environmental Tax, and Geopolitical Risk: Empirical Evidence from China. Energy 2023, 269, 126683. [Google Scholar] [CrossRef]
- Gonzalez-Urango, H.; Mu, E.; Ujwary-Gil, A.; Florek-Paszkowska, A. Analytic Network Process in Economics, Finance and Management: Contingency Factors, Current Trends and Further Research. Expert Syst. Appl. 2024, 237, 121415. [Google Scholar] [CrossRef]
- Duke, R.; Mahajan, J.; K, R.; Khan, M.H.; Sharma, M.; Saxena, A. “Enhancing Electricity Price Forecasting”: Integrating Macro-Economic Factors And Renewable Energy Dynamics in A Machine Learning Approach. In Proceedings of the 2024 International Conference on Trends in Quantum Computing and Emerging Business Technologies, Pune, India, 22–23 March 2024; pp. 1–6. [Google Scholar]
- Afonso, T.L.; Marques, A.C.; Fuinhas, J.A. Strategies to Make Renewable Energy Sources Compatible with Economic Growth. Energy Strategy Rev. 2017, 18, 121–126. [Google Scholar] [CrossRef]
- Amer, K.; Irhouma, M.; Hamdan, M.; Aqila, A.; Ahmed, A.; Fakher, M.; Alkhazmi, A. Economic-Environmental-Energetic (3E) Analysis of Photovoltaic Solar Energy Systems: Case Study of Mechanical & Renewable Energy Engineering Departments at Wadi AlShatti University. Wadi Alshatti Univ. J. Pure Appl. Sci. 2025, 51–58. [Google Scholar]
- Wood, G. Latin America: Renewables at the Crossroads of Multiple Drivers. In From Fossil Fuels to Low Carbon Energy Transition: New Regulatory Trends in Latin America; Wood, G., Neira-Castro, J.F., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 3–19. ISBN 978-3-031-00299-1. [Google Scholar]
- Santillán Vera, M.; García Manrique, L.; Rodríguez Peña, I.; De La Vega Navarro, A. Drivers of Electricity GHG Emissions and the Role of Natural Gas in Mexican Energy Transition. Energy Policy 2023, 173, 113316. [Google Scholar] [CrossRef]
- Ali, M.; Wazir, R.; Imran, K.; Ullah, K.; Janjua, A.K.; Ulasyar, A.; Khattak, A.; Guerrero, J.M. Techno-Economic Assessment and Sustainability Impact of Hybrid Energy Systems in Gilgit-Baltistan, Pakistan. Energy Rep. 2021, 7, 2546–2562. [Google Scholar] [CrossRef]
- Miller, T.; Durlik, I.; Kostecka, E.; Łobodzińska, A.; Matuszak, M. The Emerging Role of Artificial Intelligence in Enhancing Energy Efficiency and Reducing GHG Emissions in Transport Systems. Energies 2024, 17, 6271. [Google Scholar] [CrossRef]
- Joung, T.-H.; Kang, S.-G.; Lee, J.-K.; Ahn, J. The IMO Initial Strategy for Reducing Greenhouse Gas(GHG) Emissions, and Its Follow-up Actions towards 2050. J. Int. Marit. Saf. Environ. Aff. Shipp. 2020, 4, 1–7. [Google Scholar] [CrossRef]
- Abbas, S.; Ahmed, Z.; Sinha, A.; Mariev, O.; Mahmood, F. Toward Fostering Environmental Innovation in OECD Countries: Do Fiscal Decentralization, Carbon Pricing, and Renewable Energy Investments Matter? Gondwana Res. 2024, 127, 88–99. [Google Scholar] [CrossRef]
- Balza, L.; Mata, C.; Matías, D.; Ríos, R. Navigating the Energy Transition in Latin America and the Caribbean: Volatility and Price Signaling in Short-Term Electricity Markets. IDB Publ. 2024. [Google Scholar] [CrossRef]
- Lund, H.; Andersen, A.N.; Østergaard, P.A.; Mathiesen, B.V.; Connolly, D. From Electricity Smart Grids to Smart Energy Systems – A Market Operation Based Approach and Understanding. Energy 2012, 42, 96–102. [Google Scholar] [CrossRef]
- Hughes, L.; Dwivedi, Y.K.; Rana, N.P.; Williams, M.D.; Raghavan, V. Perspectives on the Future of Manufacturing within the Industry 4.0 Era. Prod. Plan. Control 2022, 33, 138–158. [Google Scholar] [CrossRef]
- AIPRM AI Statistics 2024 · AIPRM. Available online: https://www.aiprm.com/ai-statistics/ (accessed on 19 December 2024).
- Artificial Intelligence Market Set to Cross USD 2740.46 Billion by 2032. Available online: https://northeast.newschannelnebraska.com/story/52106745/artificial-intelligence-market-set-to-cross-usd-274046-billion-by-2032 (accessed on 13 March 2025).
- Peña, M.; Esther, R. Responsible Decision-Making in Trustworthy Human-AI Interaction: Linking Counterfactual Explanations and Regret; Universidad de Valladolid: Valladolid, Spain, 2024. [Google Scholar] [CrossRef]
- New Report Examines How Artificial Intelligence May Shape Future of International Trade. Available online: https://www.wto.org/english/news_e/news24_e/publ_21nov24_e.htm (accessed on 19 December 2024).
- Rahmani, S.; Aghalar, H.; Jebreili, S.; Goli, A. Optimization and Computing Using Intelligent Data-Driven Approaches for Decision-Making. In Optimization and Computing Using Intelligent Data-Driven Approaches for Decision-Making; CRC Press: Boca Raton, FL, USA, 2024; ISBN 978-1-00-353679-6. [Google Scholar]
- Augmenting Artificial Intelligence Design and Performance With Human Physiological and Behavioral Information—ProQuest. Available online: https://www.proquest.com/openview/8f3e85d372b16d6ca1d552b8bd854867/1?pq-origsite=gscholar&cbl=18750&diss=y (accessed on 19 December 2024).
- Flores-Vázquez, C.; Angulo, C.; Vallejo-Ramírez, D.; Icaza, D.; Pulla Galindo, S. Technical Development of the CeCi Social Robot. Sensors 2022, 22, 7619. [Google Scholar] [CrossRef]
- Agarwala, A.; Tahsin, T.; Ali, M.F.; Sarker, S.K.; Abhi, S.H.; Das, S.K.; Das, P.; Hasan, M.M.; Tasneem, Z.; Islam, M.M.; et al. Towards next Generation Power Grid Transformer for Renewables: Technology Review. Eng. Rep. 2024, 6, e12848. [Google Scholar] [CrossRef]
- Child, M.; Kemfert, C.; Bogdanov, D.; Breyer, C. Flexible Electricity Generation, Grid Exchange and Storage for the Transition to a 100% Renewable Energy System in Europe. Renew. Energy 2019, 139, 80–101. [Google Scholar] [CrossRef]
- Ohalete, N.C.; Aderibigbe, A.O.; Ani, E.C.; Ohenhen, P.E.; Akinoso, A.E. Data science in energy consumption analysis: A review of ai techniques in identifying patterns and efficiency opportunities. Eng. Sci. Technol. J. 2023, 4, 357–380. [Google Scholar] [CrossRef]
- Rashid, A.B.; Kausik, M.A.K. AI Revolutionizing Industries Worldwide: A Comprehensive Overview of Its Diverse Applications. Hybrid Adv. 2024, 7, 100277. [Google Scholar] [CrossRef]
- Zahraee, S.M.; Khalaji Assadi, M.; Saidur, R. Application of Artificial Intelligence Methods for Hybrid Energy System Optimization. Renew. Sustain. Energy Rev. 2016, 66, 617–630. [Google Scholar] [CrossRef]
- Nurhaeni, H.; Delhi, A.; Daeli, O.P.M.; Anjani, S.A.; Yusuf, N.A. Optimizing Electrical Energy Use through AI: An Integrated Approach for Efficiency and Sustainability. Int. Trans. Artif. Intell. 2024, 2, 106–113. [Google Scholar] [CrossRef]
- Lukač, N.; Špelič, D.; Štumberger, G.; Žalik, B. Optimisation for Large-Scale Photovoltaic Arrays’ Placement Based on Light Detection And Ranging Data. Appl. Energy 2020, 263, 114592. [Google Scholar] [CrossRef]
- Abubakar, A.; Jibril, M.M.; Almeida, C.F.M.; Gemignani, M.; Yahya, M.N.; Abba, S.I. A Novel Hybrid Optimization Approach for Fault Detection in Photovoltaic Arrays and Inverters Using AI and Statistical Learning Techniques: A Focus on Sustainable Environment. Processes 2023, 11, 2549. [Google Scholar] [CrossRef]
- Khanal, S.; Zhang, H.; Taeihagh, A. Development of New Generation of Artificial Intelligence in China: When Beijing’s Global Ambitions Meet Local Realities. J. Contemp. China 2024, 34, 19–42. [Google Scholar] [CrossRef]
- Full Translation: China’s “New Generation Artificial Intelligence Development Plan” (2017). DigiChina. Available online: https://digichina.stanford.edu/work/full-translation-chinas-new-generation-artificial-intelligence-development-plan-2017/ (accessed on 13 March 2025).
- China Is the Largest Contributor to Global Patent Applications, Substantially Ahead of Other Countries. Available online: https://ourworldindata.org/data-insights/china-is-the-largest-contributor-to-global-patent-applications-substantially-ahead-of-other-countries (accessed on 19 December 2024).
- Buntz, B. China Leads U.S. in AI Patent Volume in 2024 but Lags in Citations. Available online: https://www.rdworldonline.com/quality-vs-quantity-us-and-china-chart-different-paths-in-global-ai-patent-race-in-2024/ (accessed on 19 December 2024).
- Gao, W.; Han, M.; Chen, L.; Ai, C.; Liu, S.; Cao, S.; Wei, L. Life Cycle Carbon Emission Accounting of a Typical Coastal Wind Power Generation Project in Hebei Province, China. Energy Convers. Manag. 2025, 324, 119243. [Google Scholar] [CrossRef]
- Zhao, Z.; Zhao, Q.; Li, S.; Yan, J. Artificial Intelligence-Driven Regional Energy Transition:Evidence from China. Econ. Anal. Policy 2025, 85, 48–60. [Google Scholar] [CrossRef]
- Moura, R. Profit or Power: Determinants of Chinese Financing to the Developing World. J. Contemp. China 2024, 34, 198–213. [Google Scholar] [CrossRef]
- Martinescu, L. Want to Get Serious About Artificial Intelligence? You’ll Need an AI Strategy. Available online: https://oxfordinsights.com/insights/want-to-get-serious-about-artificial-intelligence-youll-need-an-ai-strategy/ (accessed on 12 March 2025).
- Ahmad, T.; Zhang, D.; Huang, C.; Zhang, H.; Dai, N.; Song, Y.; Chen, H. Artificial Intelligence in Sustainable Energy Industry: Status Quo, Challenges and Opportunities. J. Clean. Prod. 2021, 289, 125834. [Google Scholar] [CrossRef]
- AI Needs Policy Support and Industry Standards. BloombergNEF 2019. Available online: https://about.bnef.com/blog/ai-needs-policy-support-industry-standards/ (accessed on 12 March 2025).
- Lund, H.; Thellufsen, J.Z.; Østergaard, P.A.; Sorknæs, P.; Skov, I.R.; Mathiesen, B.V. EnergyPLAN—Advanced Analysis of Smart Energy Systems. Smart Energy 2021, 1, 100007. [Google Scholar] [CrossRef]
- Godoy, J.C.; Villamar, D.; Soria, R.; Vaca, C.; Hamacher, T.; Ordóñez, F. Preparing the Ecuador’s Power Sector to Enable a Large-Scale Electric Land Transport. Energies 2021, 14, 5728. [Google Scholar] [CrossRef]
- Rivera-González, L.; Bolonio, D.; Mazadiego, L.F.; Valencia-Chapi, R. Long-Term Electricity Supply and Demand Forecast (2018–2040): A LEAP Model Application towards a Sustainable Power Generation System in Ecuador. Sustainability 2019, 11, 5316. [Google Scholar] [CrossRef]
- Hainoun, A.; Seif Aldin, M.; Almoustafa, S. Formulating an Optimal Long-Term Energy Supply Strategy for Syria Using MESSAGE Model. Energy Policy 2010, 38, 1701–1714. [Google Scholar] [CrossRef]
- Khalil, L.; Liaquat Bhatti, K.; Arslan Iqbal Awan, M.; Riaz, M.; Khalil, K.; Alwaz, N. Optimization and Designing of Hybrid Power System Using HOMER Pro. Mater. Today Proc. 2021, 47, S110–S115. [Google Scholar] [CrossRef]
- Sayed-Mouchaweh, M. Prologue: Artificial Intelligence for Energy Transition. In Artificial Intelligence Techniques for a Scalable Energy Transition: Advanced Methods, Digital Technologies, Decision Support Tools, and Applications; Sayed-Mouchaweh, M., Ed.; Springer International Publishing: Berlin/Heidelberg, Germany, 2020; pp. 1–12. ISBN 978-3-030-42726-9. [Google Scholar]
- Chen, W.; Zou, W.; Zhong, K.; Aliyeva, A. Machine Learning Assessment under the Development of Green Technology Innovation: A Perspective of Energy Transition. Renew. Energy 2023, 214, 65–73. [Google Scholar] [CrossRef]
- Icaza, D.; González-Ladrón-de-Guevara, F. Data Analytics and Artificial Intelligence Applied to the Energy Transition. Galapagos Case Study. In Proceedings of the 2024 12th International Conference on Smart Grid (icSmartGrid), Setubal, Portugal, 27–29 May 2024; pp. 753–760. [Google Scholar]
- Višković, A.; Franki, V.; Jevtić, D. Artificial Intelligence as a Facilitator of the Energy Transition. In Proceedings of the 2022 45th Jubilee International Convention on Information, Communication and Electronic Technology (MIPRO), Opatija, Croatia, 23–27 May 2022; pp. 494–499. [Google Scholar]
- Vanegas Cantarero, M.M. Of Renewable Energy, Energy Democracy, and Sustainable Development: A Roadmap to Accelerate the Energy Transition in Developing Countries. Energy Res. Soc. Sci. 2020, 70, 101716. [Google Scholar] [CrossRef]
- Icaza, D.; Borge-Diez, D.; Galindo, S.P. Proposal of 100% Renewable Energy Production for the City of Cuenca- Ecuador by 2050. Renew. Energy 2021, 170, 1324–1341. [Google Scholar] [CrossRef]
- Horvey, S.S.; Odei-Mensah, J.; Moloi, T.; Bokpin, G.A. Digital Economy, Financial Development and Energy Transition in Africa: Exploring for Synergies and Nonlinearities. Appl. Energy 2024, 376, 124297. [Google Scholar] [CrossRef]
- Díaz-Rodríguez, N.; Del Ser, J.; Coeckelbergh, M.; López de Prado, M.; Herrera-Viedma, E.; Herrera, F. Connecting the Dots in Trustworthy Artificial Intelligence: From AI Principles, Ethics, and Key Requirements to Responsible AI Systems and Regulation. Inf. Fusion 2023, 99, 101896. [Google Scholar] [CrossRef]
- Chehri, A.; Fofana, I.; Yang, X. Security Risk Modeling in Smart Grid Critical Infrastructures in the Era of Big Data and Artificial Intelligence. Sustainability 2021, 13, 3196. [Google Scholar] [CrossRef]
- Norouzi, F.; Hoppe, T.; Elizondo, L.R.; Bauer, P. A Review of Socio-Technical Barriers to Smart Microgrid Development. Renew. Sustain. Energy Rev. 2022, 167, 112674. [Google Scholar] [CrossRef]
- Karthikeyan, C.; Singh, S. Skill Development Challenges in the Era of Artificial Intelligence (AI). In Integrating Technology in Problem-Solving Educational Practices; IGI Global Scientific Publishing: New York, NY, USA, 2025; pp. 189–218. ISBN 9798369367452. [Google Scholar]
- Vinuesa, R.; Azizpour, H.; Leite, I.; Balaam, M.; Dignum, V.; Domisch, S.; Felländer, A.; Langhans, S.D.; Tegmark, M.; Fuso Nerini, F. The Role of Artificial Intelligence in Achieving the Sustainable Development Goals. Nat. Commun. 2020, 11, 233. [Google Scholar] [CrossRef] [PubMed]
- Yao, R.; Song, J.; Li, Z.; Yu, H.; Wang, Y. Smart Meter Data Sharing for AI-Enhanced Energy Systems: A Review of Relevant Techniques and Detailed Case Studies. IEEE Power Energy Mag. 2024, 22, 42–53. [Google Scholar] [CrossRef]
- Franki, V.; Majnarić, D.; Višković, A. A Comprehensive Review of Artificial Intelligence (AI) Companies in the Power Sector. Energies 2023, 16, 1077. [Google Scholar] [CrossRef]
- Singh, M.; Kumar, B.; Chattopadhyay, R.; Amarjyothi, K.; Sutar, A.K.; Roy, S.; Rao, S.A.; Nanjundiah, R.S. Artificial Intelligence and Machine Learning in Earth System Sciences with Special Reference to Climate Science and Meteorology in South Asia.|EBSCOhost. Available online: https://openurl.ebsco.com/contentitem/doi:10.18520%2Fcs%2Fv122%2Fi9%2F1019-1030?sid=ebsco:plink:crawler&id=ebsco:doi:10.18520%2Fcs%2Fv122%2Fi9%2F1019-1030 (accessed on 23 December 2024).
- Kiasari, M.; Ghaffari, M.; Aly, H.H. A Comprehensive Review of the Current Status of Smart Grid Technologies for Renewable Energies Integration and Future Trends: The Role of Machine Learning and Energy Storage Systems. Energies 2024, 17, 4128. [Google Scholar] [CrossRef]
- Ayub Khan, A.; Ali Laghari, A.; Rashid, M.; Li, H.; Rehman Javed, A.; Reddy Gadekallu, T. Artificial Intelligence and Blockchain Technology for Secure Smart Grid and Power Distribution Automation: A State-of-the-Art Review. Sustain. Energy Technol. Assess. 2023, 57, 103282. [Google Scholar] [CrossRef]
- Pimenow, S.; Pimenowa, O.; Prus, P. Challenges of Artificial Intelligence Development in the Context of Energy Consumption and Impact on Climate Change. Energies 2024, 17, 5965. [Google Scholar] [CrossRef]
- Olawade, D.B.; Wada, O.Z.; David-Olawade, A.C.; Fapohunda, O.; Ige, A.O.; Ling, J. Artificial Intelligence Potential for Net Zero Sustainability: Current Evidence and Prospects. Next Sustain. 2024, 4, 100041. [Google Scholar] [CrossRef]
- Kaack, L.H.; Donti, P.L.; Strubell, E.; Kamiya, G.; Creutzig, F.; Rolnick, D. Aligning Artificial Intelligence with Climate Change Mitigation. Nat. Clim. Change 2022, 12, 518–527. [Google Scholar] [CrossRef]
- Shafik, W. Incorporating Artificial Intelligence for Urban and Smart Cities’ Sustainability. In Maintaining a Sustainable World in the Nexus of Environmental Science and AI; IGI Global Scientific Publishing: New York, NY, USA, 2024; pp. 23–58. ISBN 9798369363362. [Google Scholar]
- Andreu-Andres, M.-A.; Gonzalez-Ladron-de-Guevara, F.R.; Garcia-Carbonell, A.; Watts-Hooge, F. Contrasting Innovation Competence FINCODA Model in Software Engineering: Narrative Review. J. Ind. Eng. Manag. JIEM 2018, 11, 715–734. [Google Scholar] [CrossRef]
- Martins, J.; Gonçalves, R.; Branco, F. A Bibliometric Analysis and Visualization of E-Learning Adoption Using VOSviewer. Univers. Access Inf. Soc. 2024, 23, 1177–1191. [Google Scholar] [CrossRef]
- Oyewola, D.O.; Dada, E.G. Exploring Machine Learning: A Scientometrics Approach Using Bibliometrix and VOSviewer. SN Appl. Sci. 2022, 4, 143. [Google Scholar] [CrossRef] [PubMed]
- CiteSpace Home. Available online: https://citespace.podia.com/ (accessed on 13 March 2025).
- Analytic Technologies - Versions. Available online: https://sites.google.com/site/ucinetsoftware/versions (accessed on 13 March 2025).
- Posit. Posit. The Comprehensive R Archive Network. Available online: https://cran.rstudio.com/ (accessed on 13 March 2025).
- Mostafa Hatami, A.; Sabour, M.R.; Haj Babaei, M.R.; Nematollahi, H. Global Trends of VOSviewer Research, Emphasizing Environment and Energy Areas: A Bibliometric Analysis During 2000–2020. Environ. Energy Econ. Res. 2022, 6, 1–11. [Google Scholar] [CrossRef]
- Jacsó, P. The H-index, H-core Citation Rate and the Bibliometric Profile of the Scopus Database. Online Inf. Rev. 2011, 35, 492–501. [Google Scholar] [CrossRef]
- Schotten, M.; Meester, W.J.; Steiginga, S.; Ross, C.A. A Brief History of Scopus: The World’s Largest Abstract and Citation Database of Scientific Literature. In Research Analytics; Auerbach Publications: Boca Raton, FL, USA, 2017; ISBN 978-1-315-15589-0. [Google Scholar]
- Mejia, C.; Wu, M.; Zhang, Y.; Kajikawa, Y. Exploring Topics in Bibliometric Research Through Citation Networks and Semantic Analysis. Front. Res. Metr. Anal. 2021, 6. [Google Scholar] [CrossRef] [PubMed]
- Thelwall, M.; Pinfield, S. The Accuracy of Field Classifications for Journals in Scopus. Scientometrics 2024, 129, 1097–1117. [Google Scholar] [CrossRef]
- Elistratov, V.V. Renewable Energy Trends within the Concept of Low-Carbon Development. Appl. Sol. Energy 2022, 58, 594–599. [Google Scholar] [CrossRef]
- Paraschiv, S. Analysis of the Variability of Low-Carbon Energy Sources, Nuclear Technology and Renewable Energy Sources, in Meeting Electricity Demand. Energy Rep. 2023, 9, 276–283. [Google Scholar] [CrossRef]
- Barrat, J. Our Final Invention: Artificial Intelligence and the End of the Human Era; Quercus; Thomas Dunne Books: New York, NY, USA, 2023; ISBN 978-1-5294-3463-7. [Google Scholar]
- Farrar, N.O.; Ali, M.H.; Dasgupta, D. Artificial Intelligence and Machine Learning in Grid Connected Wind Turbine Control Systems: A Comprehensive Review. Energies 2023, 16, 1530. [Google Scholar] [CrossRef]
- Shoaei, M.; Noorollahi, Y.; Hajinezhad, A.; Moosavian, S.F. A Review of the Applications of Artificial Intelligence in Renewable Energy Systems: An Approach-Based Study. Energy Convers. Manag. 2024, 306, 118207. [Google Scholar] [CrossRef]
- Su, W.; Eichi, H.; Zeng, W.; Chow, M.-Y. A Survey on the Electrification of Transportation in a Smart Grid Environment. IEEE Trans. Ind. Inform. 2012, 8, 1–10. [Google Scholar] [CrossRef]
- Tahir, H. Optimization of Energy Storage Systems for Integration of Renewable Energy Sources — A Bibliometric Analysis. J. Energy Storage 2024, 94, 112497. [Google Scholar] [CrossRef]
- Mahmoud, M.A.; Md Nasir, N.R.; Gurunathan, M.; Raj, P.; Mostafa, S.A. The Current State of the Art in Research on Predictive Maintenance in Smart Grid Distribution Network: Fault’s Types, Causes, and Prediction Methods—A Systematic Review. Energies 2021, 14, 5078. [Google Scholar] [CrossRef]
- Jong, F.C.; Ahmed, M.M.; Lau, W.K.; Denis Lee, H.A. A New Hybrid Artificial Intelligence (AI) Approach for Hydro Energy Sites Selection and Integration. Heliyon 2022, 8, e10638. [Google Scholar] [CrossRef] [PubMed]
- Shern, S.J.; Sarker, M.T.; Haram, M.H.S.M.; Ramasamy, G.; Thiagarajah, S.P.; Al Farid, F. Artificial Intelligence Optimization for User Prediction and Efficient Energy Distribution in Electric Vehicle Smart Charging Systems. Energies 2024, 17, 5772. [Google Scholar] [CrossRef]
- Hu, J.; Lin, Y.; Li, J.; Hou, Z.; Chu, L.; Zhao, D.; Zhou, Q.; Jiang, J.; Zhang, Y. Performance Analysis of AI-Based Energy Management in Electric Vehicles: A Case Study on Classic Reinforcement Learning. Energy Convers. Manag. 2024, 300, 117964. [Google Scholar] [CrossRef]
- Ahmad, T.; Zhu, H.; Zhang, D.; Tariq, R.; Bassam, A.; Ullah, F.; AlGhamdi, A.S.; Alshamrani, S.S. Energetics Systems and Artificial Intelligence: Applications of Industry 4.0. Energy Rep. 2022, 8, 334–361. [Google Scholar] [CrossRef]
- Yussuf, R.O.; Asfour, O.S. Applications of Artificial Intelligence for Energy Efficiency throughout the Building Lifecycle: An Overview. Energy Build. 2024, 305, 113903. [Google Scholar] [CrossRef]
- Yu, L.; Xie, W.; Xie, D.; Zou, Y.; Zhang, D.; Sun, Z.; Zhang, L.; Zhang, Y.; Jiang, T. Deep Reinforcement Learning for Smart Home Energy Management. IEEE Internet Things J. 2020, 7, 2751–2762. [Google Scholar] [CrossRef]
- Meena, M.; Shubham, S.; Paritosh, K.; Pareek, N.; Vivekanand, V. Production of Biofuels from Biomass: Predicting the Energy Employing Artificial Intelligence Modelling. Bioresour. Technol. 2021, 340, 125642. [Google Scholar] [CrossRef] [PubMed]
- Moraga, J.; Duzgun, H.S.; Cavur, M.; Soydan, H. The Geothermal Artificial Intelligence for Geothermal Exploration. Renew. Energy 2022, 192, 134–149. [Google Scholar] [CrossRef]
- Sai Ramesh, A.; Vigneshwar, S.; Vickram, S.; Manikandan, S.; Subbaiya, R.; Karmegam, N.; Kim, W. Artificial Intelligence Driven Hydrogen and Battery Technologies – A Review. Fuel 2023, 337, 126862. [Google Scholar] [CrossRef]
- Thirunavukkarasu, G.S.; Seyedmahmoudian, M.; Jamei, E.; Horan, B.; Mekhilef, S.; Stojcevski, A. Role of Optimization Techniques in Microgrid Energy Management Systems—A Review. Energy Strategy Rev. 2022, 43, 100899. [Google Scholar] [CrossRef]
- Yang, B.; Wu, S.; Zhang, H.; Liu, B.; Shu, H.; Shan, J.; Ren, Y.; Yao, W. Wave Energy Converter Array Layout Optimization: A Critical and Comprehensive Overview. Renew. Sustain. Energy Rev. 2022, 167, 112668. [Google Scholar] [CrossRef]
- Talaat, F.M.; Kabeel, A.E.; Shaban, W.M. The Role of Utilizing Artificial Intelligence and Renewable Energy in Reaching Sustainable Development Goals. Renew. Energy 2024, 235, 121311. [Google Scholar] [CrossRef]
- Mousavi, S.; Villarreal-Marroquín, M.G.; Hajiaghaei-Keshteli, M.; Smith, N.R. Data-Driven Prediction and Optimization toward Net-Zero and Positive-Energy Buildings: A Systematic Review. Build. Environ. 2023, 242, 110578. [Google Scholar] [CrossRef]
- Liu, X.; Fan, K.; Huang, X.; Ge, J.; Liu, Y.; Kang, H. Recent Advances in Artificial Intelligence Boosting Materials Design for Electrochemical Energy Storage. Chem. Eng. J. 2024, 490, 151625. [Google Scholar] [CrossRef]
- Ahmad, F.; Ashraf, I.; Iqbal, A.; Marzband, M.; Khan, I. A Novel AI Approach for Optimal Deployment of EV Fast Charging Station and Reliability Analysis with Solar Based DGs in Distribution Network. Energy Rep. 2022, 8, 11646–11660. [Google Scholar] [CrossRef]
- Allal, Z.; Noura, H.N.; Salman, O.; Chahine, K. Leveraging the Power of Machine Learning and Data Balancing Techniques to Evaluate Stability in Smart Grids. Eng. Appl. Artif. Intell. 2024, 133, 108304. [Google Scholar] [CrossRef]
- Du, P.; He, X.; Cao, H.; Garg, S.; Kaddoum, G.; Hassan, M.M. AI-Based Energy-Efficient Path Planning of Multiple Logistics UAVs in Intelligent Transportation Systems. Comput. Commun. 2023, 207, 46–55. [Google Scholar] [CrossRef]
- Jin, J.; Wan, X.; Lin, Y.; Kuang, F.; Ning, J. Public Willingness to Pay for the Research and Development of Solar Energy in Beijing, China. Energy Policy 2019, 134, 110962. [Google Scholar] [CrossRef]
- Mahmoodi-Eshkaftaki, M.; Ebrahimi, R. Integrated Deep Learning Neural Network and Desirability Analysis in Biogas Plants: A Powerful Tool to Optimize Biogas Purification. Energy 2021, 231, 121073. [Google Scholar] [CrossRef]
- Prasad, K.R.; Karanam, S.R.; Ganesh, D.; Liyakat, K.K.S.; Talasila, V.; Purushotham, P. AI in Public-Private Partnership for IT Infrastructure Development. J. High Technol. Manag. Res. 2024, 35, 100496. [Google Scholar] [CrossRef]
- Boza, P.; Evgeniou, T. Artificial Intelligence to Support the Integration of Variable Renewable Energy Sources to the Power System. Appl. Energy 2021, 290, 116754. [Google Scholar] [CrossRef]
- Qu, T. Application of Non-Linear Fingerprint Mathematical Model in Dairy Product Quality Inspection. IEEE Access 2024, 12, 184350–184365. [Google Scholar] [CrossRef]
- Sarker, I.H. Smart City Data Science: Towards Data-Driven Smart Cities with Open Research Issues. Internet Things 2022, 19, 100528. [Google Scholar] [CrossRef]
- Salvi, M.; Jensen, K.; Stoermer, E.; Scapolo, F.; Asikainen, T.; Muench, S. Towards a Green & Digital Future; Publications Office of the European Union: Luxembourg, 2022; ISBN 978-92-76-52451-9. [Google Scholar]
- Serban, A.C.; Lytras, M.D. Artificial Intelligence for Smart Renewable Energy Sector in Europe—Smart Energy Infrastructures for Next Generation Smart Cities. IEEE Access 2020, 8, 77364–77377. [Google Scholar] [CrossRef]
- Khalid, M. Smart Grids and Renewable Energy Systems: Perspectives and Grid Integration Challenges. Energy Strategy Rev. 2024, 51, 101299. [Google Scholar] [CrossRef]
- Osorio-Aravena, J.C.; Aghahosseini, A.; Bogdanov, D.; Caldera, U.; Ghorbani, N.; Mensah, T.N.O.; Haas, J.; Muñoz-Cerón, E.; Breyer, C. Synergies of Electrical and Sectoral Integration: Analysing Geographical Multi-Node Scenarios with Sector Coupling Variations for a Transition towards a Fully Renewables-Based Energy System. Energy 2023, 279, 128038. [Google Scholar] [CrossRef]
- Tostado-Véliz, M.; Arévalo, P.; Kamel, S.; Zawbaa, H.M.; Jurado, F. Home Energy Management System Considering Effective Demand Response Strategies and Uncertainties. Energy Rep. 2022, 8, 5256–5271. [Google Scholar] [CrossRef]
- Tostado-Véliz, M.; Icaza-Alvarez, D.; Jurado, F. A Novel Methodology for Optimal Sizing Photovoltaic-Battery Systems in Smart Homes Considering Grid Outages and Demand Response. Renew. Energy 2021, 170, 884–896. [Google Scholar] [CrossRef]
- Borge-Diez, D.; Icaza, D.; Açıkkalp, E.; Amaris, H. Combined Vehicle to Building (V2B) and Vehicle to Home (V2H) Strategy to Increase Electric Vehicle Market Share. Energy 2021, 237, 121608. [Google Scholar] [CrossRef]
- Barragán-Escandón, A.; Jara-Nieves, D.; Romero-Fajardo, I.; Zalamea-Leon, E.F.; Serrano-Guerrero, X. Barriers to Renewable Energy Expansion: Ecuador as a Case Study. Energy Strategy Rev. 2022, 43, 100903. [Google Scholar] [CrossRef]
- Netinant, P.; Utsanok, T.; Rukhiran, M.; Klongdee, S. Development and Assessment of Internet of Things-Driven Smart Home Security and Automation with Voice Commands. IoT 2024, 5, 79–99. [Google Scholar] [CrossRef]
- Arévalo, P.; Ochoa-Correa, D.; Villa-Ávila, E. Optimizing Microgrid Operation: Integration of Emerging Technologies and Artificial Intelligence for Energy Efficiency. Electronics 2024, 13, 3754. [Google Scholar] [CrossRef]
- Halhoul Merabet, G.; Essaaidi, M.; Ben Haddou, M.; Qolomany, B.; Qadir, J.; Anan, M.; Al-Fuqaha, A.; Abid, M.R.; Benhaddou, D. Intelligent Building Control Systems for Thermal Comfort and Energy-Efficiency: A Systematic Review of Artificial Intelligence-Assisted Techniques. Renew. Sustain. Energy Rev. 2021, 144, 110969. [Google Scholar] [CrossRef]
- Mansour, D.A.; Numair, M.; Zalhaf, A.S.; Ramadan, R.; Darwish, M.M.F.; Huang, Q.; Hussien, M.G.; Abdel-Rahim, O. Applications of IoT and Digital Twin in Electrical Power Systems: A Comprehensive Survey. IET Gener. Transm. Distrib. 2023, 17, 4457–4479. [Google Scholar] [CrossRef]
- Blanco, C.; Paz, F.; Zurbriggen, I.G.; Garcia, P.; Ordonez, M. Distributed Islanding Detection in Multisource DC Microgrids: Pilot Signal Cancelation. IEEE Access 2022, 10, 78370–78383. [Google Scholar] [CrossRef]
- Chu, Z.; Zhang, Z.; Tan, W.; Chen, P. Revolutionizing Energy Practices: Unleashing the Power of Artificial Intelligence in Corporate Energy Transition. J. Environ. Manag. 2024, 357, 120806. [Google Scholar] [CrossRef] [PubMed]
- Paiva, R.G.; Melo, Y.R.; Cavalcante, C.A.; Tenório, V.A.; Do, P. Developing Data-Driven O&M Policy through Sequential Pattern Mining: A Case Study. Comput. Ind. Eng. 2024, 193, 110318. [Google Scholar] [CrossRef]
- Jing, Z.; Wang, Q.; Chen, Z.; Cao, T.; Zhang, K. Optimization of Energy Acquisition System in Smart Grid Based on Artificial Intelligence and Digital Twin Technology. Energy Inform. 2024, 7, 121. [Google Scholar] [CrossRef]
- Liu, Z.; Sun, Y.; Xing, C.; Liu, J.; He, Y.; Zhou, Y.; Zhang, G. Artificial Intelligence Powered Large-Scale Renewable Integrations in Multi-Energy Systems for Carbon Neutrality Transition: Challenges and Future Perspectives. Energy AI 2022, 10, 100195. [Google Scholar] [CrossRef]
- Pham, A.-D.; Ngo, N.-T.; Ha Truong, T.T.; Huynh, N.-T.; Truong, N.-S. Predicting Energy Consumption in Multiple Buildings Using Machine Learning for Improving Energy Efficiency and Sustainability. J. Clean. Prod. 2020, 260, 121082. [Google Scholar] [CrossRef]
- Ahmed, I.A.; Asamoah, P.B. AI-Driven Predictive Maintenance for Energy Infrastructure. Int. J. Res. Sci. Innov. 2024, 11, 507–528. [Google Scholar] [CrossRef]
- Xu, Y.; Yan, C.; Liu, H.; Wang, J.; Yang, Z.; Jiang, Y. Smart Energy Systems: A Critical Review on Design and Operation Optimization. Sustain. Cities Soc. 2020, 62, 102369. [Google Scholar] [CrossRef]
- Shi, Z.; Yao, W.; Li, Z.; Zeng, L.; Zhao, Y.; Zhang, R.; Tang, Y.; Wen, J. Artificial Intelligence Techniques for Stability Analysis and Control in Smart Grids: Methodologies, Applications, Challenges and Future Directions. Appl. Energy 2020, 278, 115733. [Google Scholar] [CrossRef]
Country | Docs | Country | Docs | Country | Docs | Country | Docs | Country | Docs |
---|---|---|---|---|---|---|---|---|---|
China | 104 | Iraq | 7 | Tunisia | 3 | Cyprus | 1 | Thailand | 1 |
United States | 43 | Mexico | 7 | Viet Nam | 3 | Czech Republic | 1 | Ukraine | 1 |
India | 37 | Singapore | 7 | Austria | 2 | Congo | 1 | United Arab Emirates | 1 |
South Korea | 20 | Egypt | 6 | Chile | 2 | Finland | 1 | Venezuela | 1 |
Iran | 18 | Poland | 6 | Colombia | 2 | Greece | 1 | Yemen | 1 |
Spain | 15 | Russian | 6 | Luxembourg | 2 | Hungary | 1 | Undefined | 16 |
Canada | 14 | Germany | 5 | Netherlands | 2 | Ireland | 1 | ||
France | 14 | Italy | 5 | Oman | 2 | Kuwait | 1 | ||
Taiwan | 12 | Brazil | 4 | Pakistan | 2 | Lebanon | 1 | ||
Malaysia | 11 | Indonesia | 4 | Portugal | 2 | Macao | 1 | ||
United Kingdom | 11 | Morocco | 4 | Romania | 2 | Norway | 1 | ||
Australia | 10 | Turkey | 4 | South Africa | 2 | Peru | 1 | ||
Saudi Arabia | 10 | Algeria | 3 | Belgium | 1 | Slovakia | 1 | ||
Hong Kong | 8 | Nigeria | 3 | Bulgaria | 1 | Switzerland | 1 | ||
Japan | 8 | Sweden | 3 | Croatia | 1 | Tanzania | 1 |
Part of the Supply Chain | Use Cases | Most Prominent AI Domain | Full Article Title | Journal | Authors | Citations | AI Application Examples |
---|---|---|---|---|---|---|---|
Energy Generation (Wind) | Wind energy forecasting and optimization | Machine Learning (ML) | “Artificial intelligence and machine learning in grid connected wind turbine control systems: A comprehensive review” [112] | Energies | Nathan Oaks Farrar, Ali, M. H., Dasgupta, D | 25 |
|
Energy Generation (Solar) | Solar energy production optimization | Deep Learning (DL) | “A review of the applications of artificial intelligence in renewable energy systems: An approach-based study” [113] | Energy Conversion and Management | Mersad Shoaei, Younes Noorollahi, Ahmad Hajinezhad, Seyed Farhan Moosavian | 50 |
|
Energy Distribution (Smart Grids) | Efficient grid management and fault detection | Optimization Algorithms and Neural Networks | “A Survey on the Electrification of Transportation in a Smart Grid Environment” [114] | IEEE Transactions on Smart Grid | Wencong Su, Habiballah Eichi, Wente Zeng, Mo-Yuen Chow | 639 |
|
Energy Storage (Batteries) | Battery life prediction and energy storage management | Predictive Analytics and Machine Learning | “Optimization of energy storage systems for integration of renewable energy sources—A bibliometric analysis” [115] | Journal of Energy Storage | Hira Tahir | 14 |
|
Energy Grids (Power Networks) | Fault prediction and grid maintenance | Computer Vision and Predictive Analytics | “The Current State of the Art in Research on Predictive Maintenance in Smart Grid Distribution Network: Fault’s Types, Causes, and Prediction Methods—A Systematic Review” [116] | Energies | Moamin A. Mahmoud 1, Naziffa Raha Md Nasir, Mathuri Gurunathan, Preveena Raj, Salama A. Mostafa | 200 |
|
Energy Generation (Hydropower) | Hydropower optimization for efficiency | Process Optimization and Simulation | “A new hybrid Artificial Intelligence (AI) approach for hydro energy sites selection and integration” [117] | Heliyon | F. Chen Jong, Musse Mohamud Ahmed, W. Kin Lau, H. Aik Denis Lee | 150 |
|
Electric Vehicles (EVs) | Optimization of EV fleet energy consumption and routing | Optimization Algorithms and Computer Vision | “Artificial Intelligence Optimization for User Prediction and Efficient Energy Distribution in Electric Vehicle Smart Charging Systems” [118] | Energies | Siow Jat Shern, Md Tanjil Sarker, Mohammed Hussein Saleh Mohammed Haram | 1 |
|
EV Charging Networks | Charging station load balancing | Supervised Learning and Predictive Analytics | “Performance analysis of AI-based energy management in electric vehicles: A case study on classic reinforcement learning” [119] | Energy Conversion and Management | Jincheng Hu, Yang Lin, Jihao Li | 210 |
|
Energy Consumption (Industry) | Industrial energy optimization for manufacturing processes | Neural Networks and Optimization Algorithms | “Energetics Systems and artificial intelligence: Applications of industry 4.0” [120] | Energy Reports | Tanveer Ahmad, Hongyu Zhu, Dongdong Zhang | 180 |
|
Energy Consumption (Smart Buildings) | Energy management in smart buildings | Intelligent Control and Neural Networks | “Applications of artificial intelligence for energy efficiency throughout the building lifecycle: An overview” [121] | Energy and Buildings | Raheemat O. Yussuf, Omar S. Asfour | 48 |
|
Energy Consumption (Homes) | Household energy usage prediction and optimization | Predictive Analytics and Optimization Algorithms | “Deep Reinforcement Learning for Smart Home Energy Management” [122] | IEEE Internet of Things Journal | Liang Yu, Weiwei Xie, Di Xie, Yulong Zou | 278 |
|
Energy Generation (Biomass) | Biomass energy production efficiency | Optimization and Predictive Modeling | “Production of biofuels from biomass: Predicting the energy employing artificial intelligence modelling” [123] | Bioresource Technology | Manish Meena, Shubham Shubham, Kunwar Paritosh | 130 |
|
Energy Generation (Geothermal) | Geothermal energy production forecasting | Optimization Algorithms and Simulation | “The Geothermal Artificial Intelligence for geothermal exploration” [124] | Renewable Energy | J. Moraga, H.S. Duzgun, M. Cavur, H. Soydan | 115 |
|
Energy Storage (Hydrogen) | Hydrogen production optimization for energy storage | Predictive Modeling and Simulation | “Artificial intelligence driven hydrogen and battery technologies—A review” [125] | Fuel | A. Sai Ramesh, S. Vigneshwar, Sundaram Vickram | 95 |
|
Microgrids (Energy Networks) | Microgrid optimization for energy distribution | Neural Networks and Control Algorithms | “Role of optimization techniques in microgrid energy management systems—A review” [126] | Energy Strategy Reviews | Gokul Sidarth Thirunavukkarasu, Mehdi Seyedmahmoudian, Elmira Jamei | 120 |
|
Energy Generation (Tidal and Wave) | Optimization of tidal and wave energy generation | Predictive Models and Computational Simulation | “Wave energy converter array layout optimization: A critical and comprehensive overview” [127] | Renewable Energy | Bo Yang, Shaocong Wu, Hao Zhang, Bingqiang Liu | 110 |
|
Energy R&D (Innovation) | AI-assisted development of new renewable energy technologies | Computational Simulation and Machine Learning | “The role of utilizing artificial intelligence and renewable energy in reaching sustainable development goals” [128] | Renewable Energy | Fatma M. Talaat, A.E. Kabeel, Warda M. Shaban | 135 |
|
Energy Consumption (Commercial) | Commercial building energy optimization | Machine Learning and Data Analytics | “Data-driven prediction and optimization toward net-zero and positive-energy buildings: A systematic review” [129] | Building and Environment | SeyedehNiloufar Mousavi, María Villarreal-Marroquín, Mostafa Hajiaghaei-Keshteli | 66 |
|
Energy Storage (Supercapacitors) | Supercapacitor optimization for fast energy storage | Neural Networks and Optimization Algorithms | “Recent advances in artificial intelligence boosting materials design for electrochemical energy storage” [130] | Chemical Engineering Journal | Xinxin Liu, Kexin Fan, Xinmeng Huang, Jiankai Ge | 24 |
|
EV Charging Infrastructure | Optimizing charging network design and maintenance | Optimization Algorithms and Predictive Analytics | “A novel AI approach for optimal deployment of EV fast charging station and reliability analysis with solar based DGs in distribution network” [131] | Energy Reports | Fareed Ahmad, Imtiaz Ashraf, Atif Iqbal | 64 |
|
Aviation (Electric Aircraft) | Optimization of electric aircraft design and operations | Computational Simulation and Machine Learning | “Design and Optimization of Control System for More Electric Aircraft Power Systems Using Adaptive Tabu Search Algorithm Based on State-Variables-Averaging Model” [30] | IEEE Access | Ratapon Phosung, Kongpan Areerak, Kongpol Areerak | 125 |
|
Energy Grids (Load Balancing) | Load balancing for energy grids | Control Algorithms and Optimization | “Leveraging the power of machine learning and data balancing techniques to evaluate stability in smart grids” [132] | Engineering Applications of Artificial Intelligence | Zaid Allal, Hassan N. Noura, Ola Salman, Khaled Chahine | 150 |
|
Energy Logistics | Optimization of energy transportation networks | Route Optimization and Machine Learning | “AI-based energy-efficient path planning of multiple logistics UAVs in intelligent transportation systems” [133] | Computer Communications | Pengfei Du, Xiang He, Haotong Cao, Sahil Garg | 33 |
|
Solar Energy R&D | Research in new solar cell technologies | Evolutionary Algorithms and Neural Networks | “Public willingness to pay for the research and development of solar energy in Beijing, China” [134] | Energy Policy | Jianjun Jin, Xinyu Wan, Yongsheng Lin | 110 |
|
Energy Generation (Biogas) | Biogas plant optimization | Control Algorithms and Optimization | “Integrated deep learning neural network and desirability analysis in biogas plants: A powerful tool to optimize biogas purification” [135] | Energy | Mahmood Mahmoodi-Eshkaftaki, Rahim Ebrahimi | 90 |
|
Energy Networks (Infrastructure) | Planning and development of energy infrastructure | AI-Based Planning and Simulation | “AI in public-private partnership for IT infrastructure development” [136] | The Journal of High Technology Management Research | K. Rajendra Prasad, Santoshachandra Rao Karanam, D. Ganesh | 32 |
|
Title of the Research | Main Focus | Technologies/Methods Used | Impact on Energy Transition | Challenges | Authors |
---|---|---|---|---|---|
“Optimization of energy acquisition system in smart grid based on artificial intelligence and digital twin technology” (2024) | Optimizing smart grids using AI for efficient energy flow management. | Optimization algorithms, neural networks, and machine learning. | Improves grid efficiency and stability, facilitating renewable energy integration. | Need for advanced infrastructure. | Zhen Jing et al. [155] |
“Artificial intelligence powered large-scale renewable integrations in multi-energy systems for carbon neutrality transition: Challenges and future perspectives”(2022) | Forecasting renewable energy generation (solar, wind) using AI for grid integration. | Machine learning, prediction algorithms, neural networks, and Big Data analysis. | Enhances renewable energy predictability, optimizing grid integration. | Variability in generation and storage. | Zhengxuan Liu et al. [156] |
“Predicting energy consumption in multiple buildings using machine learning for improving energy efficiency and sustainability” (2020) | Optimizing energy consumption in buildings and cities using AI. | Optimization algorithms, deep neural networks, and predictive analytics. | Reduces demand peaks and increases energy efficiency. | Scalability in different environments. | Anh-Duc Pham et al. [157] |
“AI-driven predictive maintenance for energy infrastructure” (2024) | Using AI for predictive maintenance in energy infrastructure. | Machine learning algorithms, Big Data analysis, and cyber–physical systems. | Improves infrastructure reliability and reduces downtime. | Complexity in integrating heterogeneous data. | Ibrahim Adeiza Ahmed and Paul Boadu Asamoah [158] |
“Smart energy systems: A critical review on design and operation optimization” (2020) | Implementing AI in energy management for smart grids. | AI algorithms, optimization, machine learning, and neural networks. | Optimizes efficiency and stability in smart grids. | Requires infrastructure upgrades. | Yizhe Xu et al. [159] |
“Application of artificial intelligence for prediction, optimization, and control of thermal energy storage systems” (2023) | Optimizing renewable energy storage systems with AI. | Optimization algorithms, neural networks, and predictive control. | Enhances storage capacity and renewable energy integration. | Cost and efficiency of storage systems. | A.G. Olabi et al. [31] |
“Does artificial intelligence promote energy transition and curb carbon emissions? The role of trade openness” (2024) | A comprehensive review of AI applications in energy transition. | Review of technologies, machine learning approaches, Big Data, and predictive analytics. | Provides a holistic view of AI in the energy transition. | Challenges in integrating diverse technologies. | Qiang Wang et al. [22] |
“Artificial intelligence techniques for stability analysis and control in smart grids: Methodologies, applications, challenges and future directions” (2020) | AI applications for enhancing the stability and reliability of power grids. | Predictive algorithms, machine learning, and Big Data analysis. | Increases the stability and resilience of power grids. | Integration of real-time control systems. | Zhongtuo Shi et al. [160] |
Current research | Evaluation of AI in the energy transition in recent years. | Using interconnection maps of the main development centers. | Identify the main AI developers and the application paths in energy transition processes. | Impact of AI on long-term energy planning. | Icaza Alvarez, D., Gonzalez L., Fernando, Rojas E., J., Borge Diez D., Pulla G. S., Flores C. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alvarez, D.I.; González-Ladrón-de-Guevara, F.; Rojas Espinoza, J.; Borge-Diez, D.; Galindo, S.P.; Flores-Vázquez, C. The Evolution of AI Applications in the Energy System Transition: A Bibliometric Analysis of Research Development, the Current State and Future Challenges. Energies 2025, 18, 1523. https://doi.org/10.3390/en18061523
Alvarez DI, González-Ladrón-de-Guevara F, Rojas Espinoza J, Borge-Diez D, Galindo SP, Flores-Vázquez C. The Evolution of AI Applications in the Energy System Transition: A Bibliometric Analysis of Research Development, the Current State and Future Challenges. Energies. 2025; 18(6):1523. https://doi.org/10.3390/en18061523
Chicago/Turabian StyleAlvarez, Daniel Icaza, Fernando González-Ladrón-de-Guevara, Jorge Rojas Espinoza, David Borge-Diez, Santiago Pulla Galindo, and Carlos Flores-Vázquez. 2025. "The Evolution of AI Applications in the Energy System Transition: A Bibliometric Analysis of Research Development, the Current State and Future Challenges" Energies 18, no. 6: 1523. https://doi.org/10.3390/en18061523
APA StyleAlvarez, D. I., González-Ladrón-de-Guevara, F., Rojas Espinoza, J., Borge-Diez, D., Galindo, S. P., & Flores-Vázquez, C. (2025). The Evolution of AI Applications in the Energy System Transition: A Bibliometric Analysis of Research Development, the Current State and Future Challenges. Energies, 18(6), 1523. https://doi.org/10.3390/en18061523