Numerical Study of the Effect of Winglets with Multiple Sweep Angles on Wind Turbine Blade Performance
Abstract
1. Introduction
2. Materials and Methods
2.1. Turbine Blade and Winglet Geometry
2.2. Computational Methods
- Fundamental equations
- 2.
- Computational domain, mesh, and boundary condition
3. Results
3.1. Validation of Computational Method
3.2. Single-Swept Configuration
3.3. Multi-Swept Configuration
- 1.
- Flow near winglet and tip vortices
- 2.
- Tangential and normal forces
- 3.
- Torque and thrust increment
- 4.
- Power and power coefficient
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ahmad, T.; Zhang, D. A critical review of comparative global historical energy consumption and future demand: The story told so far. Energy Rep. 2020, 6, 1973–1991. [Google Scholar] [CrossRef]
- Gielen, D.; Boshell, F.; Saygin, D.; Bazilian, M.D.; Wagner, N.; Gorini, R. The role of renewable energy in the global energy transformation. Energy Strategy Rev. 2019, 24, 38–50. [Google Scholar] [CrossRef]
- Micallef, D.; Akay, B.; Ferreira, C.S.; Sant, T.; Bussel, G.V. The origins of a wind turbine tip vortex. J. Phys. Conf. Ser. 2014, 555, 012074. [Google Scholar] [CrossRef]
- Arumugam, P.; Ramalingam, V.; Bhaganagar, K. A pathway towards sustainable development of small capacity horizontal axis wind turbines—Identification of influencing design parameters & their role on performance analysis. Susain. Energy Technol. Assess. 2021, 44, 101019. [Google Scholar]
- Sun, Z.; Chen, J.; Shen, W.Z.; Zhu, W.J. Improved blade element momentum theory for wind turbine aerodynamic computations. Renew. Energy 2016, 96, 824–831. [Google Scholar] [CrossRef]
- Chattot, J.-J. Effects of blade tip modifications on wind turbine performance using vortex model. Comput. Fluids. 2009, 38, 1405–1410. [Google Scholar] [CrossRef]
- Zhao, T.; Shin, B. An application of upwind difference scheme with preconditioned numerical fluxes to gas-liquid two-phase flows. Fluids 2025, 10, 38. [Google Scholar] [CrossRef]
- Zheng, G.; Xu, P.; Wang, T.; Yan, Q. Study on the bubble collapse characteristics and heat transfer mechanism of the microchannel reactor. Processes 2025, 13, 281. [Google Scholar] [CrossRef]
- Madsen, M.H.; Zahle, F.; Horcas, S.G.; Barlas, T.K.; Sørensen, N.N. CFD-based curved tip shape design for wind turbine blades. Wind Energy Sci. 2022, 7, 1471–1501. [Google Scholar] [CrossRef]
- Wardhana, B.K.; Shin, B. Numerical Investigation of the Effect of Winglet Configurations with Multiple Cant Angles on the Aerodynamic Performance of Wind Turbine Blade. Int. J. Sustain. Energy 2024, 43, 2403486. [Google Scholar] [CrossRef]
- Sy, M.S.; Abuan, B.E.; Danao, L.A.M. Aerodynamic investigation of a horizontal axis wind turbine with split winglet using computational fluid dynamics. Energies 2020, 13, 4983. [Google Scholar] [CrossRef]
- Farhan, A.; Hassanpour, A.; Burns, A. Numerical study of effect of winglet planform and airfoil on a horizontal axis wind turbine performance. Renew. Energy 2019, 131, 1255–1273. [Google Scholar] [CrossRef]
- Jiang, R.; Zhao, Z.; Liu, H.; Wang, T.; Chen, M.; Feng, J.; Wang, D. Numerical study on the influence of vortex generators on wind turbine aerodynamic performance considering rotational effect. Renew. Energy 2022, 186, 730–741. [Google Scholar] [CrossRef]
- Dejene, G.; Ramayya, V.; Bekele, A. Investigation of NREL Phase VI wind turbine blade with different winglet configuration for performance augmentation. Int. J. Sustain. Energy 2024, 43, 2321622. [Google Scholar] [CrossRef]
- Garcia-Ribeiro, D.; Flores-Mezarina, J.A.; Bravo-Mosquera, P.D. Parametric CFD analysis of the taper ratio effects of a winglet on the performance of a Horizontal Axis Wind Turbine. Sustain. Energy Technol. Assess. 2021, 47, 101489. [Google Scholar] [CrossRef]
- Aju, E.J.; Suresh, D.B.; Jin, Y. The influence of winglet pitching on the performance of a model wind turbine: Aerodynamic loads, rotating speed, and wake statistics. Energies 2020, 13, 5199. [Google Scholar] [CrossRef]
- Zhu, B.; Sun, X.; Wang, Y. Performance characteristics of a horizontal axis turbine with fusion winglet. Energy 2017, 120, 431–440. [Google Scholar] [CrossRef]
- Ferrer, E.; Munduate, X. Wind turbine blade tip comparison using CFD. J. Phys. Conf. Ser. 2007, 75, 012005. [Google Scholar] [CrossRef]
- Hansen, T.H.; Mühle, F. Winglet optimization for a model-scale wind turbine. Wind Energy 2018, 21, 634–649. [Google Scholar] [CrossRef]
- Hand, M.M.; Simms, D.A.; Fingersh, L.J. Unsteady Aerodynamics Experiment Phase VI: Wind Tunnel Test Configurations and Available Data Campaigns; National Renewable Energy Laboratory: Golden, CO, USA, 2001. [Google Scholar]
- Butterfield, C.P.; Musial, W.P.; Simms, D.A. Combined Experiment Phase I: Final Report; National Renewable Energy Laboratory: Golden, CO, USA, 1992. [Google Scholar]
- Menter, F.R. Two-equations eddy-viscocity turbulence models for engineering applications. AIAA J. 1994, 32, 1598–1605. [Google Scholar] [CrossRef]
- Wilcox, D.C. Reassesment of the scale-determining equation for advanced turbulence models. AIAA J. 1988, 26, 1299–1310. [Google Scholar] [CrossRef]
- Jones, W.P.; Launder, B.E. The calculation of low-Reynolds-number-phenomena with a two-equation model of turbulence. Int. J. Heat Mass Trans. 1973, 16, 1119–1130. [Google Scholar] [CrossRef]
- Sedighi, H.; Akbarzadeh, P.; Salavatipour, A. Aerodynamic performance enhancement of horizontal axis wind turbines by dimples on blades: Numerical investigation. Energy 2020, 195, 117056. [Google Scholar] [CrossRef]
- ANSYS. ANSYS Fluent 14.0 User’s Guide; ANSYS: Canonsburg, PA, USA, 2010. [Google Scholar]
- Moshfeghi, M.; Shams, S.; Hur, N. Aerodynamic performance enhancement analysis of horizontal axis wind turbines using a passive flow control method via split blade. J. Wind Eng. Ind. Aerodyn. 2017, 167, 148–159. [Google Scholar] [CrossRef]
- Zhang, Z.; Kuang, L.; Han, Z.; Zhou, D.; Zhao, Y.; Bao, Y.; Duan, L.; Tu, J.; Chen, Y.; Chen, M. Comparative analysis of bent and basic winglets on performance improvement of horizontal axis wind turbines. Energy 2023, 281, 128252. [Google Scholar] [CrossRef]
- Amiri, M.M.; Shadman, M.; Estefen, S.F. URANS simulations of horizontal axis wind turbine under stall condition using Reynolds stress turbulence models. Energy 2020, 213, 118766. [Google Scholar] [CrossRef]
- Tran, T.T.; Kim, D.H. A CFD study into the influence of unsteady aerodynamic interference on wind turbine surge motion. Renew. Energy 2016, 90, 204–228. [Google Scholar] [CrossRef]
- Roache, P.J. Perspective: A Method for Uniform Reporting of Grid Refinement Studies. J. Fluids Eng. 1994, 116, 405–413. [Google Scholar] [CrossRef]
- Elfarra, M.A.; Sezer-Uzol, N.; Akmandor, I.S. NREL VI rotor blade: Numerical investigation and winglet design and optimization using CFD. Wind Energy 2014, 17, 605–626. [Google Scholar] [CrossRef]
- Huang, S.; Qiu, H.; Wang, Y. Aerodynamic performance of horizontal axis wind turbine with application of dolphin head-shape and lever movement of skeleton bionic airfoils. Energy Convers. Manag. 2022, 267, 115803. [Google Scholar] [CrossRef]
- Bazilevs, Y.; Hsu, M.; Kiendl, J.; Benson, D. A computational procedure for prebending of wind turbine blades. Int. J. Numer. Methods Eng. 2012, 89, 323–336. [Google Scholar] [CrossRef]
Configuration | Sweep Angle (°) | Cant Angle (°) |
---|---|---|
A-30 | 25 | 30 |
A-45 | 25 | 45 |
A-60 | 25 | 60 |
A-75 | 25 | 75 |
A-90 | 25 | 90 |
B-30 | −25 | 30 |
B-45 | −25 | 45 |
B-60 | −25 | 60 |
B-75 | −25 | 75 |
B-90 | −25 | 90 |
Configuration | Sweep Angle (°) | Cant Angle (°) |
---|---|---|
S-0 | 0 | 30 |
S-25/A-30 | 25 | 30 |
S-50 | 50 | 30 |
S-60 | 60 | 30 |
Configuration | Sweep | Sweep Angle (°) | Cant Angle (°) |
---|---|---|---|
MS-1 | 1st (root–0.5 span) | 40 | 30 |
2nd (0.5 span–tip) | 50 | ||
MS-2 | 1st (root–0.75 span) | 40 | 30 |
2nd (0.75 span–tip) | 60 | ||
MS-3 | 1st (root–0.5 span) | 20 | 30 |
2nd (0.5 span–0.75 span) | 40 | ||
3rd (0.75 span–tip) | 60 | ||
S-50 | 1st (root–tip) | 50 | 30 |
Pitch angle | 3° |
Flap and yaw angles | 0° |
Rotating direction | Counter-clockwise (upstream view) |
Rotational speed | 72 rpm |
Wind speed | 7, 10, 15, 20, 25 m/s |
Inlet | Inlet velocity Turbulent kinetic energy = 1 m2/s2 Specific dissipation rate = 1 s−1 |
Outlet | Atmospheric pressure Turbulent kinetic energy = 1 m2/s2 Specific dissipation rate = 1 s−1 |
Blade | No-slip and moving wall |
Periodic | Rotational periodic boundary |
Mesh Cells | Torque N-m | |
---|---|---|
Fine | 3,605,446 | 340.1 |
Medium | 2,751,754 | 339.4 |
Coarse | 1,879,628 | 331.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wardhana, B.K.; Shin, B. Numerical Study of the Effect of Winglets with Multiple Sweep Angles on Wind Turbine Blade Performance. Energies 2025, 18, 1292. https://doi.org/10.3390/en18051292
Wardhana BK, Shin B. Numerical Study of the Effect of Winglets with Multiple Sweep Angles on Wind Turbine Blade Performance. Energies. 2025; 18(5):1292. https://doi.org/10.3390/en18051292
Chicago/Turabian StyleWardhana, Bayu K., and Byeongrog Shin. 2025. "Numerical Study of the Effect of Winglets with Multiple Sweep Angles on Wind Turbine Blade Performance" Energies 18, no. 5: 1292. https://doi.org/10.3390/en18051292
APA StyleWardhana, B. K., & Shin, B. (2025). Numerical Study of the Effect of Winglets with Multiple Sweep Angles on Wind Turbine Blade Performance. Energies, 18(5), 1292. https://doi.org/10.3390/en18051292