Cluster Partitioning Method for High-PV-Penetration Distribution Network Based on mGA-PSO Algorithm
Abstract
:1. Introduction
2. Distributed Cluster Partitioning Indicators
2.1. Modularity Index
2.2. Power Balance Index
2.3. Node Membership Index
2.4. Comprehensive Cluster Partitioning Index
3. Clustering Partitioning Method Based on mGA-PSO
3.1. Encoding and Initialization
3.2. mGA-PSO for Cluster Partitioning
3.2.1. Micro-GA Optimization Mechanism
3.2.2. PSO Optimization Mechanism
3.2.3. Update Strategy of PSO Optimization Mechanism
- (1)
- Individual search update
- (2)
- Modification factor during iteration
- (3)
- Individual transfer based on historical population information
- (4)
- Individual feedback
3.2.4. Algorithm Flowchart
4. Experiments and Analysis
4.1. IEEE 34-Node Case Analysis
4.1.1. Distributed PV Network Design
4.1.2. Analysis of the Impact of Index Weights on Cluster Partitioning
4.1.3. Analysis of the Indicator
4.1.4. Algorithmic Analysis of 34-Node
4.2. IEEE 110-Node Case Analysis
4.2.1. Distribution Network Design and Partition Results
4.2.2. Analysis of Algorithm Performance
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bai, M.; Yao, P.; Dong, H.; Fang, Z.; Jin, W.; Yang, X.; Liu, J.; Yu, D. Spatial-temporal characteristics analysis of solar irradiance forecast errors in Europe and North America. Energy 2024, 297, 131187. [Google Scholar] [CrossRef]
- Li, F.; Ding, J.; Zhou, C.; Yong, W.; Huang, Y.; Wang, J.; Xu, X. Key technologies of large-scale grid-connected operation of distributed photovoltaic under new-type power system. Power Syst. Technol. 2024, 48, 184–196. [Google Scholar]
- Zhang, Z.F.; Kang, C.Q. Challenges and prospects for constructing the new-type power system towards a carbon neutrality future. Proc. CSEE 2022, 42, 2806–2819. [Google Scholar]
- Fei, Z.; Yang, H.; Du, L.; Guerrero, J.M.; Meng, K.; Li, Z. Two-stage coordinated operation of a green multi-energy ship microgrid with underwater radiated noise by distributed stochastic approach. IEEE Trans. Smart Grid 2024, 16, 1062–1074. [Google Scholar] [CrossRef]
- Xu, X.; Gao, Y.; Wang, H.; Yan, Z.; Shahidehpour, M.; Tan, Z. Distributionally robust optimization of photovoltaic power with lifted linear decision rule for distribution system voltage regulation. IEEE Trans. Sustain. Energy 2023, 15, 758–772. [Google Scholar] [CrossRef]
- Sheng, W.; Wu, M.; Ji, Y.; Kou, L.; Pan, J.; Shi, H.; Niu, G.; Wang, Z.G. Key techniques and engineering practice of distributed renewable generation clusters integration. Proc. CSEE 2019, 39, 2175–2186. [Google Scholar]
- Peng, H.; Gu, J.; Hu, Y.; Song, B. Forecasting model of saturated load based on chaotic particle swarm and optimization-gaussian process regression. Autom. Electr. Power Syst. 2017, 41, 9–14. [Google Scholar]
- Liu, S.Y. Multi-objective model predictive control of grid-connected inverters in unbalanced grids. J. Electr. Eng. 2023, 18, 77–85. [Google Scholar]
- Li, B.T.; Sun, M.Y.; Chen, X.L.; Li, B.; Ji, X.; Xiao, F. Line parameter identification method for multi-ring medium-voltage distribution network based on phaseless measurement. Autom. Electr. Power Syst. 2023, 47, 22–30. [Google Scholar]
- Li, B.; Lei, C.; Fan, B.; Huang, Y.; Jia, W.; Ma, Y. Research on typical electricity consumption law based on daily load indicator and improved distributed k-means clustering. Electr. Meas. Instrum. 2023, 60, 104–111. [Google Scholar]
- Xie, Q.; Xu, H.L.; Wang, T.; Zhao, F.; Zhang, G.; Dang, J. Disconnector fault diagnosis method based on autonomous-cognition deep temporal clustering representation. J. Electr. Eng. 2024, 19, 281–289. [Google Scholar]
- Dong, M.; Liu, K.Z.; Zhao, Q.L.; Chen, L.; Yao, Y.; Zhao, X. Multi-objective optimal operation of integrated energy system based on improved particle swarm optimization algorithm. Electr. Drive 2024, 54, 41–47. [Google Scholar]
- Chai, Y.; Guo, L.; Wang, C. Network partition and voltage coordination control for distribution networks with high penetration of distributed PV units. IEEE Trans. Power Syst. 2018, 33, 3396–3407. [Google Scholar] [CrossRef]
- Ding, M.; Liu, X.; Bi, R.; Hu, D.; Ye, B.; Zhang, J. Method for cluster partition of high-penetration distributed generators based on comprehensive performance index. Autom. Electr. Power Syst. 2018, 42, 47–52. [Google Scholar]
- Yu, L.; Sun, Y.; Xu, R.; Li, K. Improved particle swarm optimization algorithm and its application in reactive power partitioning of power grid. Autom. Electr. Power Syst. 2017, 41, 89–95. [Google Scholar]
- Pan, M.Y.; Liu, N.; Lei, J.Y. Dynamic partition method for distributed energy cluster with combined heat and power unit. Autom. Electr. Power Syst. 2021, 45, 168–176. [Google Scholar]
- Gao, Y.Q.; Wang, W.; Yu, N.P. Consensus multi-agent reinforcement learning for volt-VAR control in power distribution networks. IEEE Trans. Smart Grid 2021, 12, 3594–3604. [Google Scholar] [CrossRef]
- Newman, M.E.J. Modularity and community structure in networks. Proc. Natl. Acad. Sci. USA 2006, 103, 8577–8582. [Google Scholar] [CrossRef]
- Cotilla-Sanchez, E.; Hines, P.D.; Barrows, C.; Blumsack, S.; Patel, M. Multi-attribute partitioning of power networks based on electrical distance. IEEE Trans. Power Syst. 2013, 28, 4979–4987. [Google Scholar] [CrossRef]
- Wang, J.L.; Zhang, Y.; Wang, C.M.; Sun, J.S. Power system reactive power/voltage assessment based on sensitivity analysis and optimal power flow. Power Syst. Technol. 2005, 29, 65–69. [Google Scholar]
- Xu, H.D.; Ding, Y.F.; Wang, R.S.; Geng, G.C.; Jiang, Q.Y.; Sun, F.F. Optimal allocation of shared energy storage based on transmission network zoning. Proc. CSEE 2024. Available online: http://kns.cnki.net/kcms/detail/11.2107.tm.20240624.1645.024.html (accessed on 10 January 2025).
- Kennedy, J.; Eberhart, R.C. A discrete binary version of the particle swarm algorithm. In Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics, Orlando, FL, USA, 12–15 October 1997; pp. 4104–4108. [Google Scholar]
- Mesloub, S.; Mansour, A. Hybrid PSO and GA for global maximization. Int. J. Open Probl. Compt. Math 2009, 2, 597–608. [Google Scholar]
- Wang, L.; Zhang, F.; Kou, L.F.; Xu, Y.H.; Hou, X.G. Large-scale distributed PV cluster division based on fast unfolding clustering algorithm. Acta Energiae Solaris Sin. 2021, 42, 29–34. [Google Scholar]
- Chen, J.H.; Zhang, L.J.; Lu, D.; Guo, P.; Ren, J.; Li, J.; Li, Z. Cluster partition method of distributed power supply based on improved particle swarm optimization algorithm. J. Zhengzhou Univ. (Eng. Sci.) 2023, 44, 77–85. [Google Scholar]
Algorithm | GA | PSO | GA-PSO | Ours |
---|---|---|---|---|
optimal fitness value | 0.696 | 0.712 | 0.784 | 0.798 |
modularity index | 0.672 | 0.724 | 0.773 | 0.786 |
power balance index | 0.683 | 0.684 | 0.763 | 0.781 |
node membership index | 0.741 | 0.721 | 0.821 | 0.832 |
percentage of optimal solutions % | 58 | 68 | 76 | 86 |
index of average convergence | 81 | 62.5 | 48 | 43.5 |
cost time/s | >60 | 10 | 24 | 32 |
Indicator | f | σm | φ | Cluster Number |
---|---|---|---|---|
this paper’s clustering indicator | 0.79 | 0.83 | 0.76 | 9 |
modularity indicator | 0.74 | 0.74 | 0.64 | 10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Z.; Guo, G.; Gong, D.; Xuan, L.; He, F.; Wan, X.; Zhou, D. Cluster Partitioning Method for High-PV-Penetration Distribution Network Based on mGA-PSO Algorithm. Energies 2025, 18, 1197. https://doi.org/10.3390/en18051197
Liu Z, Guo G, Gong D, Xuan L, He F, Wan X, Zhou D. Cluster Partitioning Method for High-PV-Penetration Distribution Network Based on mGA-PSO Algorithm. Energies. 2025; 18(5):1197. https://doi.org/10.3390/en18051197
Chicago/Turabian StyleLiu, Zhu, Guowei Guo, Dehuang Gong, Lingfeng Xuan, Feiwu He, Xinglin Wan, and Dongguo Zhou. 2025. "Cluster Partitioning Method for High-PV-Penetration Distribution Network Based on mGA-PSO Algorithm" Energies 18, no. 5: 1197. https://doi.org/10.3390/en18051197
APA StyleLiu, Z., Guo, G., Gong, D., Xuan, L., He, F., Wan, X., & Zhou, D. (2025). Cluster Partitioning Method for High-PV-Penetration Distribution Network Based on mGA-PSO Algorithm. Energies, 18(5), 1197. https://doi.org/10.3390/en18051197