Semantic-to-Instance Segmentation of Time-Invariant Offshore Wind Farms Using Sentinel-1 Time Series and Time-Shift Augmentation
Abstract
:1. Introduction
- Novel time-shift augmentation for time-invariant target segmentation:We propose a new augmentation strategy that randomizes the temporal order of time-series images, preventing overfitting to a fixed chronological sequence and improving generalization. Unlike conventional augmentation techniques (rotation, flipping, and noise injection), this approach is designed explicitly for time-invariant target segmentation, which addresses unique challenges in offshore wind farm detection.
- Dataset for offshore wind farm segmentation using SAR time series and benchmarking: Unlike previous datasets that focus on object detection from single-date images, this dataset contains multi-temporal SAR patches, allowing models to leverage time-series information for improved accuracy. This dataset includes over 5000 labeled patches and is publicly available. We evaluate six segmentation architectures (U-Net, U-Net++, LinkNet, FPN, DeepLabv3+, and SegFormer) to establish a benchmark for this dataset.
- Semantic-to-instance segmentation using Geographic Information System tools for instance-level detection: We introduce a simple yet effective transformation from semantic to instance segmentation using a Geographic Information System (GIS) to derive wind farm instances from pixel-wise segmentations. This method enables object-based wind farm monitoring without requiring specialized instance segmentation architectures.
2. Materials and Methods
2.1. Dataset Construction
2.2. Ground-Truth Generation
2.3. Semantic Segmentation Dataset Generation
2.4. Deep Learning Approach
2.4.1. Deep Learning Models
2.4.2. Novel Data Augmentation Strategy
2.4.3. Experiments
2.4.4. Sliding-Window Approach
2.4.5. Accuracy Metrics
3. Results
3.1. Per-Pixel Metrics
3.2. Per-Object Metrics
4. Discussion
4.1. Onshore vs. Offshore Wind Farms
4.2. Semantic Segmentation vs. Object Detection
4.3. Time-Series vs. Single-Date Image Detection
4.4. Dataset, Time-Series Augmentation, and Benchmark Evaluation
4.5. Limitations and Future Work
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sun, X.; Huang, D.; Wu, G. The current state of offshore wind energy technology development. Energy 2012, 41, 298–312. [Google Scholar] [CrossRef]
- Zheng, C.W.; Li, C.Y.; Pan, J.; Liu, M.Y.; Xia, L.L. An overview of global ocean wind energy resource evaluations. Renew. Sustain. Energy Rev. 2016, 53, 1240–1251. [Google Scholar] [CrossRef]
- Bashetty, S.; Ozcelik, S. Review on dynamics of offshore floating wind turbine platforms. Energies 2021, 14, 6026. [Google Scholar] [CrossRef]
- McMorland, J.; Collu, M.; McMillan, D.; Carroll, J. Operation and maintenance for floating wind turbines: A review. Renew. Sustain. Energy Rev. 2022, 163, 112499. [Google Scholar] [CrossRef]
- Hasager, C.B.; Mouche, A.; Badger, M.; Bingöl, F.; Karagali, I.; Driesenaar, T.; Stoffelen, A.; Peña, A.; Longépé, N. Offshore wind climatology based on synergetic use of Envisat ASAR, ASCAT and QuikSCAT. Remote Sens. Environ. 2015, 156, 247–263. [Google Scholar] [CrossRef]
- World Forum Offshore Wind (WFO). Global Offshore Wind Report 2022; Technical report, World Forum Offshore Wind; WFO: Singapore, 2023. [Google Scholar]
- International Energy Agency (IEA). Offshore Wind Outlook 2019; Technical Report; International Energy Agency: Paris, France, 2019. [Google Scholar]
- Glasson, J.; Durning, B.; Welch, K.; Olorundami, T. The local socio-economic impacts of offshore wind farms. Environ. Impact Assess. Rev. 2022, 95, 106783. [Google Scholar] [CrossRef]
- Virtanen, E.A.; Lappalainen, J.; Nurmi, M.; Viitasalo, M.; Tikanmäki, M.; Heinonen, J.; Atlaskin, E.; Kallasvuo, M.; Tikkanen, H.; Moilanen, A. Balancing profitability of energy production, societal impacts and biodiversity in offshore wind farm design. Renew. Sustain. Energy Rev. 2022, 158, 112087. [Google Scholar] [CrossRef]
- Abramic, A.; Cordero-Penin, V.; Haroun, R. Environmental impact assessment framework for offshore wind energy developments based on the marine good environmental status. Environ. Impact Assess. Rev. 2022, 97, 106862. [Google Scholar] [CrossRef]
- Bergström, L.; Kautsky, L.; Malm, T.; Rosenberg, R.; Wahlberg, M.; Capetillo, N.Å.; Wilhelmsson, D. Effects of offshore wind farms on marine wildlife—a generalized impact assessment. Environ. Res. Lett. 2014, 9, 034012. [Google Scholar] [CrossRef]
- Lane, J.V.; Jeavons, R.; Deakin, Z.; Sherley, R.B.; Pollock, C.J.; Wanless, R.J.; Hamer, K.C. Vulnerability of northern gannets to offshore wind farms; seasonal and sex-specific collision risk and demographic consequences. Mar. Environ. Res. 2020, 162, 105196. [Google Scholar] [CrossRef]
- Li, C.; Coolen, J.W.; Scherer, L.; Mogollón, J.M.; Braeckman, U.; Vanaverbeke, J.; Tukker, A.; Steubing, B. Offshore Wind Energy and Marine Biodiversity in the North Sea: Life Cycle Impact Assessment for Benthic Communities. Environ. Sci. Technol. 2023, 57, 6455–6464. [Google Scholar] [CrossRef]
- Kusters, J.E.; van Kann, F.M.; Zuidema, C. Spatial conflict resolution in marine spatial plans and permitting procedures for offshore wind energy: An analysis of measures adopted in Denmark, England and the Netherlands. Front. Mar. Sci. 2025, 12, 1468734. [Google Scholar] [CrossRef]
- Spijkerboer, R.C. The institutional dimension of integration in marine spatial planning: The case of the Dutch North Sea dialogues and agreement. Front. Mar. Sci. 2021, 8, 712982. [Google Scholar] [CrossRef]
- de Koning, S.; Steins, N.; van Hoof, L. Balancing sustainability transitions through state-led participatory processes: The case of the Dutch North Sea Agreement. Sustainability 2021, 13, 2297. [Google Scholar] [CrossRef]
- Spijkerboer, R.; Zuidema, C.; Busscher, T.; Arts, J. The performance of marine spatial planning in coordinating offshore wind energy with other sea-uses: The case of the Dutch North Sea. Mar. Policy 2020, 115, 103860. [Google Scholar] [CrossRef]
- Boussarie, G.; Kopp, D.; Lavialle, G.; Mouchet, M.; Morfin, M. Marine spatial planning to solve increasing conflicts at sea: A framework for prioritizing offshore windfarms and marine protected areas. J. Environ. Manag. 2023, 339, 117857. [Google Scholar] [CrossRef] [PubMed]
- Abramic, A.; Mendoza, A.G.; Haroun, R. Introducing offshore wind energy in the sea space: Canary Islands case study developed under Maritime Spatial Planning principles. Renew. Sustain. Energy Rev. 2021, 145, 111119. [Google Scholar] [CrossRef]
- Bonthu, S.; Purvaja, R.; Singh, K.S.; Ganguly, D.; Muruganandam, R.; Paul, T.; Ramesh, R. Offshore wind energy potential along the Indian Coast considering ecological safeguards. Ocean Coast. Manag. 2024, 249, 107017. [Google Scholar] [CrossRef]
- Galparsoro, I.; Menchaca, I.; Garmendia, J.M.; Borja, Á.; Maldonado, A.D.; Iglesias, G.; Bald, J. Reviewing the ecological impacts of offshore wind farms. npj Ocean Sustain. 2022, 1, 1–8. [Google Scholar] [CrossRef]
- Ouro, P.; Fernandez, R.; Armstrong, A.; Brooks, B.; Burton, R.R.; Folkard, A.; Ilic, S.; Parkes, B.; Schultz, D.M.; Stallard, T.; et al. Environmental impacts from large-scale offshore renewable-energy deployment. Environ. Res. Lett. 2024, 19, 063001. [Google Scholar] [CrossRef]
- Li, C.; Mogollón, J.M.; Tukker, A.; Dong, J.; von Terzi, D.; Zhang, C.; Steubing, B. Future material requirements for global sustainable offshore wind energy development. Renew. Sustain. Energy Rev. 2022, 164, 112603. [Google Scholar] [CrossRef]
- Leung, D.Y.; Yang, Y. Wind energy development and its environmental impact: A review. Renew. Sustain. Energy Rev. 2012, 16, 1031–1039. [Google Scholar] [CrossRef]
- Liu, L.; Ouyang, W.; Wang, X.; Fieguth, P.; Chen, J.; Liu, X.; Pietikäinen, M. Deep learning for generic object detection: A survey. Int. J. Comput. Vis. 2020, 128, 261–318. [Google Scholar] [CrossRef]
- Ma, L.; Liu, Y.; Zhang, X.; Ye, Y.; Yin, G.; Johnson, B.A. Deep learning in remote sensing applications: A meta-analysis and review. ISPRS J. Photogramm. Remote Sens. 2019, 152, 166–177. [Google Scholar] [CrossRef]
- Yuan, X.; Shi, J.; Gu, L. A review of deep learning methods for semantic segmentation of remote sensing imagery. Expert Syst. Appl. 2021, 169, 114417. [Google Scholar] [CrossRef]
- Alzubaidi, L.; Zhang, J.; Humaidi, A.J.; Al-Dujaili, A.; Duan, Y.; Al-Shamma, O.; Santamaría, J.; Fadhel, M.A.; Al-Amidie, M.; Farhan, L. Review of deep learning: Concepts, CNN architectures, challenges, applications, future directions. J. Big Data 2021, 8, 1–74. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Ghazali, K.H.; Han, F.; Mohamed, I.I. Review of CNN in aerial image processing. Imaging Sci. J. 2023, 71, 1–13. [Google Scholar] [CrossRef]
- Kattenborn, T.; Leitloff, J.; Schiefer, F.; Hinz, S. Review on Convolutional Neural Networks (CNN) in vegetation remote sensing. ISPRS J. Photogramm. Remote Sens. 2021, 173, 24–49. [Google Scholar] [CrossRef]
- Han, M.; Wang, H.; Wang, G.; Liu, Y. Targets mask U-Net for wind turbines detection in remote sensing images. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, 42, 475–480. [Google Scholar] [CrossRef]
- Manso-Callejo, M.Á.; Cira, C.I.; Alcarria, R.; Arranz-Justel, J.J. Optimizing the recognition and feature extraction of wind turbines through hybrid semantic segmentation architectures. Remote Sens. 2020, 12, 3743. [Google Scholar] [CrossRef]
- Manso-Callejo, M.Á.; Cira, C.I.; Garrido, R.P.A.; Matesanz, F.J.G. First dataset of wind turbine data created at national level with deep learning techniques from aerial orthophotographs with a spatial resolution of 0.5 m/pixel. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 7968–7980. [Google Scholar] [CrossRef]
- Schulz, M.; Boughattas, B.; Wendel, F. DetEEktor: Mask R-CNN based neural network for energy plant identification on aerial photographs. Energy AI 2021, 5, 100069. [Google Scholar] [CrossRef]
- de Carvalho, O.L.F.; de Carvalho Junior, O.A.; de Albuquerque, A.O.; Orlandi, A.G.; Hirata, I.; Borges, D.L.; Gomes, R.A.T.; Guimarães, R.F. A Data-Centric Approach for Wind Plant Instance-Level Segmentation Using Semantic Segmentation and GIS. Remote Sens. 2023, 15, 1240. [Google Scholar] [CrossRef]
- Zhai, Y.; Chen, X.; Cao, X.; Cui, X. Identifying wind turbines from multiresolution and multibackground remote sensing imagery. Int. J. Appl. Earth Obs. Geoinf. 2024, 126, 103613. [Google Scholar] [CrossRef]
- Chen, D.; Cheng, T.; Lu, Y.; Xiao, J.; Ji, C.; Hong, S.; Zhuang, Q.; Cheng, L. A method for fast detection of wind farms from remote sensing images using deep learning and geospatial analysis. Open Geosci. 2024, 16, 20220645. [Google Scholar] [CrossRef]
- Wong, B.A.; Thomas, C.; Halpin, P. Automating offshore infrastructure extractions using synthetic aperture radar & Google Earth Engine. Remote Sens. Environ. 2019, 233, 111412. [Google Scholar] [CrossRef]
- Xu, W.; Liu, Y.; Wu, W.; Dong, Y.; Lu, W.; Liu, Y.; Zhao, B.; Li, H.; Yang, R. Proliferation of offshore wind farms in the North Sea and surrounding waters revealed by satellite image time series. Renew. Sustain. Energy Rev. 2020, 133, 110167. [Google Scholar] [CrossRef]
- Zhang, T.; Tian, B.; Sengupta, D.; Zhang, L.; Si, Y. Global offshore wind turbine dataset. Sci. Data 2021, 8, 191. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Zhang, H.; Wang, Y.; Wang, X.; Xue, S.; Liu, W. Dynamic detection of offshore wind turbines by spatial machine learning from spaceborne synthetic aperture radar imagery. J. King Saud-Univ.-Comput. Inf. Sci. 2022, 34, 1674–1686. [Google Scholar] [CrossRef]
- Hoeser, T.; Feuerstein, S.; Kuenzer, C. DeepOWT: A global offshore wind turbine data set derived with deep learning from Sentinel-1 data. Earth Syst. Sci. Data 2022, 14, 4251–4270. [Google Scholar] [CrossRef]
- Hoeser, T.; Kuenzer, C. SyntEO: Synthetic dataset generation for earth observation and deep learning–Demonstrated for offshore wind farm detection. ISPRS J. Photogramm. Remote Sens. 2022, 189, 163–184. [Google Scholar] [CrossRef]
- Hoeser, T.; Kuenzer, C. Global dynamics of the offshore wind energy sector monitored with Sentinel-1: Turbine count, installed capacity and site specifications. Int. J. Appl. Earth Obs. Geoinf. 2022, 112, 102957. [Google Scholar] [CrossRef]
- Ding, Q.; Tian, B.; Chen, C.; Hu, Y.; Li, X. Identifying the spatio-temporal distribution characteristics of offshore wind turbines in China from Sentinel-1 imagery using deep learning. GISci. Remote Sens. 2024, 61, 2407389. [Google Scholar] [CrossRef]
- Liu, L.; Wu, M.; Zhao, J.; Bing, L.; Zheng, L.; Luan, S.; Mao, Y.; Xue, M.; Liu, J.; Liu, B. Deep learning-based monitoring of offshore wind turbines in Shandong Sea of China and their location analysis. J. Clean. Prod. 2024, 434, 140415. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, F.; Hou, Y.; Wang, J.; Guo, J. Global offshore wind turbine detection: A combined application of deep learning and Google earth engine. Int. J. Remote Sens. 2024, 45, 6601–6623. [Google Scholar] [CrossRef]
- Higgins, P.; Foley, A. The evolution of offshore wind power in the United Kingdom. Renew. Sustain. Energy Rev. 2014, 37, 599–612. [Google Scholar] [CrossRef]
- Potisomporn, P.; Vogel, C.R. Spatial and temporal variability characteristics of offshore wind energy in the United Kingdom. Wind Energy 2022, 25, 537–552. [Google Scholar] [CrossRef]
- Filipponi, F. Sentinel-1 GRD preprocessing workflow. Proceedings 2019, 18, 11. [Google Scholar] [CrossRef]
- de Carvalho, O.L.F.; de Carvalho Júnior, O.A.; Silva, C.R.e.; de Albuquerque, A.O.; Santana, N.C.; Borges, D.L.; Gomes, R.A.T.; Guimarães, R.F. Panoptic Segmentation Meets Remote Sensing. Remote Sens. 2022, 14, 965. [Google Scholar] [CrossRef]
- Chen, L.C.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-decoder with atrous separable convolution for semantic image segmentation. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 801–818. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Proceedings of the Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Munich, Germany, 5–9 October 2015; Navab, N., Hornegger, J., Wells, W., Frangi, A., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 234–241. [Google Scholar] [CrossRef]
- Zhou, Z.; Rahman Siddiquee, M.M.; Tajbakhsh, N.; Liang, J. Unet++: A nested u-net architecture for medical image segmentation. In Proceedings of the Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support: 4th International Workshop, DLMIA 2018, and 8th International Workshop, ML-CDS 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, 20 September 2018; Springer: Berlin/Heidelberg, Germany, 2018; pp. 3–11. [Google Scholar] [CrossRef]
- Lin, T.Y.; Dollár, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature pyramid networks for object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2117–2125. [Google Scholar] [CrossRef]
- Chaurasia, A.; Culurciello, E. Linknet: Exploiting encoder representations for efficient semantic segmentation. In Proceedings of the 2017 IEEE Visual Communications and Image Processing (VCIP), St. Petersburg, FL, USA, 10–13 December 2017; pp. 1–4. [Google Scholar] [CrossRef]
- Xie, E.; Wang, W.; Yu, Z.; Anandkumar, A.; Alvarez, J.M.; Luo, P. SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers. In Proceedings of the Advances in Neural Information Processing Systems, Online, 6–14 December 2021; Ranzato, M., Beygelzimer, A., Dauphin, Y., Liang, P., Vaughan, J.W., Eds.; Curran Associates, Inc.: San Francisco, CA, USA, 2021; Volume 34, pp. 12077–12090. [Google Scholar]
- Tan, M.; Le, Q. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. In Proceedings of the 36th International Conference on Machine Learning, Long Beach, CA, USA, 9–15 June 2019; Chaudhuri, K., Salakhutdinov, R., Eds.; PMLR: 2019. Volume 97, pp. 6105–6114. [Google Scholar] [CrossRef]
- de Albuquerque, A.O.; de Carvalho, O.L.F.; e Silva, C.R.; Luiz, A.S.; de Bem, P.P.; Gomes, R.A.T.; Guimarães, R.F.; de Carvalho Júnior, O.A. Dealing with clouds and seasonal changes for center pivot irrigation systems detection using instance segmentation in sentinel-2 time series. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 8447–8457. [Google Scholar] [CrossRef]
- Costa, d.M.V.C.V.; Carvalho, d.O.L.F.; Orlandi, A.G.; Hirata, I.; Albuquerque, D.A.O.; Silva, F.V.e.; Guimarães, R.F.; Gomes, R.A.T.; Júnior, O.A.d.C. Remote Sensing for Monitoring Photovoltaic Solar Plants in Brazil Using Deep Semantic Segmentation. Energies 2021, 14, 2960. [Google Scholar] [CrossRef]
- Ye, S.; Pontius, R.G., Jr.; Rakshit, R. A review of accuracy assessment for object-based image analysis: From per-pixel to per-polygon approaches. ISPRS J. Photogramm. Remote Sens. 2018, 141, 137–147. [Google Scholar] [CrossRef]
- Maxwell, A.E.; Warner, T.A.; Guillén, L.A. Accuracy assessment in convolutional neural network-based deep learning remote sensing studies—Part 1: Literature review. Remote Sens. 2021, 13, 2450. [Google Scholar] [CrossRef]
- Maxwell, A.E.; Warner, T.A.; Guillén, L.A. Accuracy assessment in convolutional neural network-based deep learning remote sensing studies—Part 2: Recommendations and best practices. Remote Sens. 2021, 13, 2591. [Google Scholar] [CrossRef]
- Rutzinger, M.; Rottensteiner, F.; Pfeifer, N. A Comparison of Evaluation Techniques for Building Extraction From Airborne Laser Scanning. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2009, 2, 11–20. [Google Scholar] [CrossRef]
- Mou, L.; Zhu, X.X. Vehicle instance segmentation from aerial image and video using a multitask learning residual fully convolutional network. IEEE Trans. Geosci. Remote Sens. 2018, 56, 6699–6711. [Google Scholar] [CrossRef]
- de Carvalho, O.L.F.; de Carvalho Júnior, O.A.; de Albuquerque, A.O.; Santana, N.C.; Guimarães, R.F.; Gomes, R.A.T.; Borges, D.L. Bounding box-free instance segmentation using semi-supervised iterative learning for vehicle detection. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 3403–3420. [Google Scholar] [CrossRef]
- De Carvalho, O.L.; de Carvalho Júnior, O.A.; de Albuquerque, A.O.; Santana, N.C.; Borges, D.L. Rethinking panoptic segmentation in remote sensing: A hybrid approach using semantic segmentation and non-learning methods. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1–5. [Google Scholar] [CrossRef]
- Amani, M.; Mohseni, F.; Layegh, N.F.; Nazari, M.E.; Fatolazadeh, F.; Salehi, A.; Ahmadi, S.A.; Ebrahimy, H.; Ghorbanian, A.; Jin, S.; et al. Remote sensing systems for ocean: A review (Part 2: Active systems). IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 1421–1453. [Google Scholar] [CrossRef]
- Amani, M.; Moghimi, A.; Mirmazloumi, S.M.; Ranjgar, B.; Ghorbanian, A.; Ojaghi, S.; Ebrahimy, H.; Naboureh, A.; Nazari, M.E.; Mahdavi, S.; et al. Ocean remote sensing techniques and applications: A review (part I). Water 2022, 14, 3400. [Google Scholar] [CrossRef]
- Amani, M.; Mehravar, S.; Asiyabi, R.M.; Moghimi, A.; Ghorbanian, A.; Ahmadi, S.A.; Ebrahimy, H.; Moghaddam, S.H.A.; Naboureh, A.; Ranjgar, B.; et al. Ocean remote sensing techniques and applications: A review (part II). Water 2022, 14, 3401. [Google Scholar] [CrossRef]
- Asiyabi, R.M.; Ghorbanian, A.; Tameh, S.N.; Amani, M.; Jin, S.; Mohammadzadeh, A. Synthetic aperture radar (SAR) for ocean: A review. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 16, 9106–9138. [Google Scholar] [CrossRef]
- Le Traon, P.Y.; Antoine, D.; Bentamy, A.; Bonekamp, H.; Breivik, L.; Chapron, B.; Corlett, G.; Dibarboure, G.; DiGiacomo, P.; Donlon, C.; et al. Use of satellite observations for operational oceanography: Recent achievements and future prospects. J. Oper. Oceanogr. 2015, 8, s12–s27. [Google Scholar] [CrossRef]
- Alexandre, C.; Devillers, R.; Mouillot, D.; Seguin, R.; Catry, T. Ship Detection With SAR C-Band Satellite Images: A Systematic Review. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 14353–14367. [Google Scholar] [CrossRef]
- Li, J.; Xu, C.; Su, H.; Gao, L.; Wang, T. Deep learning for SAR ship detection: Past, present and future. Remote Sens. 2022, 14, 2712. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, X.; Gao, G.; Lang, H.; Liu, G.; Cao, C.; Song, Y.; Guan, Y.; Dai, Y. Development and Application of Ship Detection and Classification Datasets: A review. IEEE Geosci. Remote Sens. Mag. 2024, 12, 12–45. [Google Scholar] [CrossRef]
- Baek, W.K.; Kim, E.; Jeon, H.K.; Lee, K.J.; Kim, S.W.; Lee, Y.K.; Ryu, J.H. Monitoring Maritime Ship Characteristics Using Satellite Remote Sensing Data from Different Sensors. Ocean Sci. J. 2024, 59, 8. [Google Scholar] [CrossRef]
- Chaudhary, V.; Kumar, S. Marine oil slicks detection using spaceborne and airborne SAR data. Adv. Space Res. 2020, 66, 854–872. [Google Scholar] [CrossRef]
- Jafarzadeh, H.; Mahdianpari, M.; Homayouni, S.; Mohammadimanesh, F.; Dabboor, M. Oil spill detection from Synthetic Aperture Radar Earth observations: A meta-analysis and comprehensive review. GISci. Remote Sens. 2021, 58, 1022–1051. [Google Scholar] [CrossRef]
- Alpers, W.; Holt, B.; Zeng, K. Oil spill detection by imaging radars: Challenges and pitfalls. Remote Sens. Environ. 2017, 201, 133–147. [Google Scholar] [CrossRef]
- Shokr, M.; Dabboor, M. Polarimetric SAR Applications of Sea Ice: A Review. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 16, 6627–6641. [Google Scholar] [CrossRef]
- Zakhvatkina, N.; Smirnov, V.; Bychkova, I. Satellite SAR data-based sea ice classification: An overview. Geosciences 2019, 9, 152. [Google Scholar] [CrossRef]
- Yuan, S.; Liu, C.; Liu, X.; Chen, Y.; Zhang, Y. Research advances in remote sensing monitoring of sea ice in the Bohai sea. Earth Sci. Inform. 2021, 14, 1729–1743. [Google Scholar] [CrossRef]
Location | Number of Wind Farms | Number of Patches | Split | Time Interval |
---|---|---|---|---|
3° W 54° N | 374 | 652 | Train | 14 August 2022 to 29 January 2023 |
3° W 53° N | 269 | 565 | Train | 14 August 2022 to 29 January 2023 |
0° E 53° N | 70 | 131 | Train | 16 August 2022 to 31 January 2023 |
0° E 53° N | 474 | 611 | Val | 16 August 2022 to 31 January 2023 |
1° E 53° N | 308 | 402 | Test | 16 August 2022 to 31 January 2023 |
1° E 51° N | 387 | 903 | Train | 16 August 2022 to 31 January 2023 |
1° E 51° N | 220 | 557 | Test | 16 August 2022 to 31 January 2023 |
2° E 52° N | 96 | 144 | Train | 16 August 2022 to 31 January 2023 |
2° E 51° N | 592 | 708 | Val | 16 August 2022 to 31 January 2023 |
0° W 50° N | 120 | 274 | Test | 09 August 2022 to 17 February 2023 |
Total | 2910 | 4947 | - | - |
Set | Number of Wind Farms | Number of Patches |
---|---|---|
Train | 1196 (41.1%) | 2395 (48.41%) |
Val | 1066 (36.63%) | 1319 (26.27%) |
Test | 648 (22.27%) | 1233 (24.92%) |
Metric | Formula |
---|---|
Per-Pixel Metrics | |
Overall Accuracy | |
Precision | |
Recall | |
F-Score | |
IoU (Intersection over Union) | |
Per-Object (Per-Polygon) Metrics | |
Overall Quality | |
Correctness | |
Completeness |
Model | OA | Precision | Recall | F-Score | IoU | TT (s) | IT (s) |
---|---|---|---|---|---|---|---|
Time Series with 15 images | |||||||
LinkNet | 99.96 | 87.62 | 92.29 | 89.90 | 81.65 | 32.44 | 0.04 |
U-Net | 99.96 | 87.75 | 91.59 | 89.63 | 81.21 | 27.78 | 0.04 |
U-Net++ | 99.96 | 87.43 | 92.10 | 89.71 | 81.33 | 28.40 | 0.04 |
DeepLabv3+ | 99.93 | 79.82 | 86.72 | 83.13 | 71.13 | 28.15 | 0.04 |
FPN | 99.92 | 79.81 | 85.01 | 82.33 | 69.96 | 27.97 | 0.04 |
SegFormer | 99.92 | 79.56 | 85.97 | 82.64 | 70.42 | 28.15 | 0.04 |
Time Series with 10 images | |||||||
LinkNet | 99.95 | 86.65 | 89.11 | 87.86 | 78.35 | 32.24 | 0.04 |
U-Net | 99.95 | 86.04 | 88.55 | 87.28 | 77.42 | 26.65 | 0.04 |
U-Net++ | 99.94 | 84.83 | 89.44 | 87.07 | 77.11 | 28.08 | 0.04 |
DeepLabv3+ | 99.92 | 78.82 | 83.60 | 81.14 | 68.26 | 28.20 | 0.04 |
FPN | 99.91 | 75.76 | 85.47 | 80.32 | 67.11 | 27.54 | 0.04 |
SegFormer | 99.92 | 76.57 | 85.78 | 80.91 | 67.94 | 27.89 | 0.04 |
Time Series with 5 images | |||||||
LinkNet | 99.93 | 82.94 | 86.03 | 84.45 | 73.09 | 32.89 | 0.04 |
U-Net | 99.93 | 83.29 | 85.54 | 84.40 | 73.01 | 25.65 | 0.04 |
U-Net++ | 99.93 | 83.06 | 86.47 | 84.73 | 73.51 | 27.89 | 0.04 |
DeepLabv3+ | 99.90 | 73.76 | 82.88 | 78.06 | 64.01 | 29.37 | 0.04 |
FPN | 99.90 | 72.94 | 83.00 | 77.64 | 63.46 | 27.45 | 0.04 |
SegFormer | 99.90 | 74.40 | 79.93 | 77.07 | 62.69 | 28.14 | 0.04 |
Single Image | |||||||
LinkNet | 99.90 | 76.63 | 78.42 | 77.52 | 63.29 | 33.77 | 0.04 |
U-Net | 99.90 | 71.29 | 85.51 | 77.76 | 63.61 | 20.22 | 0.03 |
U-Net++ | 99.90 | 75.34 | 79.08 | 77.16 | 62.82 | 23.70 | 0.03 |
DeepLabv3+ | 99.88 | 67.70 | 80.38 | 73.50 | 58.10 | 29.93 | 0.03 |
FPN | 99.88 | 69.76 | 77.96 | 73.63 | 58.27 | 23.24 | 0.02 |
SegFormer | 99.89 | 70.65 | 79.15 | 74.66 | 59.56 | 26.87 | 0.03 |
Time Series | OA | Precision | Recall | F-Score | IoU |
---|---|---|---|---|---|
15 | 99.90 | 90.89 | 60.67 | 72.77 | 57.20 |
10 | 99.86 | 63.87 | 73.96 | 68.55 | 52.15 |
5 | 99.89 | 87.18 | 53.39 | 66.22 | 49.50 |
Number of Images Used in the Time Series | ||||
---|---|---|---|---|
1 | 5 | 10 | 15 | |
TP | 296 | 297 | 297 | 297 |
FP | 14 | 2 | 1 | 1 |
FN | 1 | 0 | 0 | 0 |
Overall Quality (%) | 95.18 | 99.33 | 99.67 | 99.67 |
Correctness (%) | 95.48 | 99.33 | 99.67 | 99.67 |
Completeness (%) | 99.67 | 100.00 | 100.00 | 100.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Carvalho, O.L.F.; de Carvalho Junior, O.A.; de Albuquerque, A.O.; Silva, D.G.e. Semantic-to-Instance Segmentation of Time-Invariant Offshore Wind Farms Using Sentinel-1 Time Series and Time-Shift Augmentation. Energies 2025, 18, 1127. https://doi.org/10.3390/en18051127
de Carvalho OLF, de Carvalho Junior OA, de Albuquerque AO, Silva DGe. Semantic-to-Instance Segmentation of Time-Invariant Offshore Wind Farms Using Sentinel-1 Time Series and Time-Shift Augmentation. Energies. 2025; 18(5):1127. https://doi.org/10.3390/en18051127
Chicago/Turabian Stylede Carvalho, Osmar Luiz Ferreira, Osmar Abílio de Carvalho Junior, Anesmar Olino de Albuquerque, and Daniel Guerreiro e Silva. 2025. "Semantic-to-Instance Segmentation of Time-Invariant Offshore Wind Farms Using Sentinel-1 Time Series and Time-Shift Augmentation" Energies 18, no. 5: 1127. https://doi.org/10.3390/en18051127
APA Stylede Carvalho, O. L. F., de Carvalho Junior, O. A., de Albuquerque, A. O., & Silva, D. G. e. (2025). Semantic-to-Instance Segmentation of Time-Invariant Offshore Wind Farms Using Sentinel-1 Time Series and Time-Shift Augmentation. Energies, 18(5), 1127. https://doi.org/10.3390/en18051127