Dual-Vector Model Predictive Current Control with Entire-Time-Domain Current Harmonic Optimization and Robust Control Strategy
Abstract
1. Introduction
2. Model Predictive Current Control for T-Type Three-Level Inverters
2.1. Mathematical Model Analysis
2.2. Model Predictive Current Control Analysis
3. Entire-Time-Domain Current THD Optimization for DVMPC
3.1. Principles and Design of Conventional DVMPC
3.2. Determination of the Virtual Output Vector in the Entire-Time Domain
3.3. Optimization of Dual-Vector Sequences and Duty Cycle
3.3.1. Sequences Optimization
3.3.2. Duty Cycle Optimization
4. Robust MPC Using Ultra-Local Model and an Improved Extended State Observer
4.1. Novel Ultra-Local Model
4.2. Enhanced Design of the Extended State Observer
4.3. Robust Predictive Control Based on a Novel Ultra-Local Model
5. Simulation and Experimental Verification
5.1. Simulation Verification
5.1.1. Current Harmonic Optimization Verification
5.1.2. Robustness Analysis
5.2. Experimental Verification
5.2.1. Steady-State Experimental Analysis
5.2.2. Dynamic Experimental Analysis
5.2.3. Robustness Analysis
6. Conclusions
- (1)
- Compared to single-vector FCS-MPC, DVMPC effectively reduces current ripple and THD while maintaining a fixed switching frequency. Moreover, it achieves lower switching losses than the three-vector FCS-MPC, making it more suitable for high-power applications.
- (2)
- Compared to conventional DVMPC, the entire-time-domain DVMPC introduced in this paper optimizes inverter output current harmonics by incorporating simple vector timing and duty cycle optimization. This approach enhances system control performance with only a minimal increase in computational effort.
- (3)
- A novel ultra-local model of the T-type inverter is developed, with an ESO utilized to accurately estimate perturbations. By adaptively processing the ESO bandwidth, the system improves tracking performance and effectively mitigates the impact of parameter mismatches, demonstrating superior robustness compared to conventional MPC approaches.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, H.; Zhang, Y.; Ma, Q.; Guo, D. Development trend of new energy industry under the ‘double carbon’ target. Energy Storage Sci. Technol. 2022, 11, 1677–1678. [Google Scholar]
- Vijeh, M.; Rezanejad, M.; Samadaei, E.; Bertilsson, K. A General Review of Multilevel Inverters Based on Main Submodules: Structural Point of View. IEEE Trans. Power Electron. 2019, 34, 9479–9502. [Google Scholar] [CrossRef]
- Jayakumar, V.; Chokkalingam, B.; Munda, J.L. A Comprehensive Review on Space Vector Modulation Techniques for Neutral Point Clamped Multi-Level Inverters. IEEE Access 2021, 9, 112104–112144. [Google Scholar] [CrossRef]
- Zhang, G.; Cai, F.; Zhou, J. A T-type Three-level Inverter Neutral-point Potential Balancing Circuit and Control. Power Electron. 2024, 58, 123–126. [Google Scholar]
- Xin, Y.; Wang, Y.; Li, G.; Wang, C.; Wang, W. Finite Control Set Model Predictive Control Method with Fast Optimization Based on T-Type Three-Level Grid-Connected Inverter. Trans. China Electrotech. Soc. 2021, 36, 1681–1692. [Google Scholar]
- Karamanakos, P.; Liegmann, E.; Geyer, T.; Kennel, R. Model Predictive Control of Power Electronic Systems: Methods, Results, and Challenges. IEEE Open J. Ind. Appl. 2020, 1, 95–114. [Google Scholar] [CrossRef]
- Yu, F.; Zhu, C.; Wu, X.; Zhang, L. Two-Vector-Based Model Predictive Flux Control of Three-Level Based Permanent Magnet Synchronous Motor with Sector Subregion. Trans. China Electrotech. Soc. 2020, 35, 2130–2140. [Google Scholar]
- Li, X.; Xue, Z.; Yan, X.; Feng, X.; Zhang, L. Voltage Vector Rapid Screening-Based Three-Vector Model Predictive Torque Control for Permanent Magnet Synchronous Motor. Trans. China Electrotech. Soc. 2022, 33, 1666–1678. [Google Scholar]
- Guo, L.; Li, G.; Jin, N.; Li, Y.; Dou, Z. Two-Vector-Based Modulated Model Predictive Control Method for 2-Level Voltage Source Inverters: Theoretical Analysis, Experimental Verification and Extension. Trans. China Electrotech. Soc. 2021, 36, 39–49. [Google Scholar]
- Zhang, X.; Wu, X.; Tan, G.; Zhang, W.; Wang, Q. A Dual-Vector Model Predictive Control Method With Minimum Current THD. IEEE Trans. Power Electron. 2021, 36, 9758–9762. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, C.; Wang, Z.; Rodríguez, J. Motor-Parameter-Free Model Predictive Current Control for PMSM Drives. IEEE Trans. Ind. Electron. 2024, 71, 5443–5452. [Google Scholar] [CrossRef]
- Wu, X.; Zou, P.; Huang, S.; Yang, M.; Wu, T.; Huang, S. Model-Free Predictive Current Control of SPMSM Based on Enhanced Extended State Observer. IEEE Trans. Ind. Electron. 2024, 71, 3461–3471. [Google Scholar] [CrossRef]
- Wang, F.; Ke, Z.; Ke, D.; Hu, C. Model-free Predictive Current Control of Three-level Inverter-fed PMSM Based on Strong Tracking Extended Kalman Observer. Proc. CSEE 2023, 43, 8910–8921. [Google Scholar]
- Dang, C.; Wang, F.; Mu, X.; Liu, D.; Tong, X.; Song, W.; Huang, J. Dual Vector Model Predictive With Constant Frequency Control for Vienna Rectifier Based on Inductance Parameters Identification. Proc. CSEE 2022, 42, 246–255. [Google Scholar]
- Luo, B.; Yang, X.; Zhou, Y. Model-Free Predictive Current Control of Permanent Magnet Synchronous Motor Based on Estimation of Current Variations. IEEE Trans. Ind. Electron. 2024, 71, 8395–8405. [Google Scholar] [CrossRef]
- Chen, J.; Fan, Y.; Cheng, M.; Zhang, Q.; Chen, Q. Parameter-Free Ultralocal Model-Based Deadbeat Predictive Current Control for PMVMs Using Finite-Time Gradient Method. IEEE Trans. Ind. Electron. 2023, 70, 5549–5559. [Google Scholar] [CrossRef]
- Zhang, Y.; Jin, J.; Huang, L. Model-Free Predictive Current Control of PMSM Drives Based on Extended State Observer Using Ultralocal Model. IEEE Trans. Ind. Electron. 2021, 68, 993–1003. [Google Scholar] [CrossRef]
- Long, B.; Zhang, J.; Shen, D.; Rodríguez, J.; Guerrero, J.M.; Chong, K.T. Ultralocal Model-Free Predictive Control of T-Type Grid-Connected Converters Based on Extended Sliding-Mode Disturbance Observer. IEEE Trans. Power Electron. 2023, 38, 15494–15508. [Google Scholar] [CrossRef]
- Zhou, H.; Yang, J.; Chen, X.; Huang, L.; Dong, M. Model Predictive Control of Three-Level Converter Considering Dead-Zone Voltage Vector. Trans. China Electrotech. Soc. 2022, 37, 5290–5301. [Google Scholar]
- Zhao, K.; Dai, W.; Zhou, R.; Leng, A.; Liu, W.; Qiu, P.; Huang, G.; Wu, G. Novel Model-free Sliding Mode Control of Permanent Magnet Synchronous Motor Based on Extended Sliding Mode Disturbance Observer. Proc. CSEE 2022, 42, 2375–2385. [Google Scholar]
Condition | ||
---|---|---|
Parameters | Values |
---|---|
DC voltage/V | 200 |
AC load/ | 10 |
AC inductance/mH | 5 |
DC BUS capacitance/µF | 480 |
Control frequency/kHz | 10 |
Algorithms | Computational Time in One Cycle (µs) | Dynamic Response Time (ms) | Current THD (%) | Steady-State Error (A) |
---|---|---|---|---|
SVPWM | 49.6 | 2.135 | 3.87 | 0.62 |
FCS-MPC | 80.7 | 0.763 | 6.99 | 1.02 |
DVMPC | 44.5 | 0.579 | 4.02 | 0.71 |
R-DVMPC | 54.1 | 0.475 | 3.65 | 0.54 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, D.; Yang, J.; Zhou, H.; Huang, Q.; Dong, M.; Liao, L. Dual-Vector Model Predictive Current Control with Entire-Time-Domain Current Harmonic Optimization and Robust Control Strategy. Energies 2025, 18, 1117. https://doi.org/10.3390/en18051117
Guo D, Yang J, Zhou H, Huang Q, Dong M, Liao L. Dual-Vector Model Predictive Current Control with Entire-Time-Domain Current Harmonic Optimization and Robust Control Strategy. Energies. 2025; 18(5):1117. https://doi.org/10.3390/en18051117
Chicago/Turabian StyleGuo, Dahui, Jian Yang, Hanbin Zhou, Qian Huang, Mi Dong, and Liqing Liao. 2025. "Dual-Vector Model Predictive Current Control with Entire-Time-Domain Current Harmonic Optimization and Robust Control Strategy" Energies 18, no. 5: 1117. https://doi.org/10.3390/en18051117
APA StyleGuo, D., Yang, J., Zhou, H., Huang, Q., Dong, M., & Liao, L. (2025). Dual-Vector Model Predictive Current Control with Entire-Time-Domain Current Harmonic Optimization and Robust Control Strategy. Energies, 18(5), 1117. https://doi.org/10.3390/en18051117