Artificial Intelligence and Carbon Emissions: Mediating Role of Energy Efficiency, Factor Market Allocation and Industrial Structure
Abstract
:1. Introduction
2. Literature Review
3. Mechanistic Analysis of the Impact of Artificial Intelligence on Carbon Emissions
3.1. Artificial Intelligence Lowers Carbon Emissions by Enhancing Energy Efficiency
3.2. Artificial Intelligence Reduces Carbon Emissions by Optimizing Factor Allocation
3.3. AI Reduces Carbon Emissions by Optimising Industrial Structure
4. Empirical Analysis of the Impact of Artificial Intelligence on Carbon Emissions
4.1. Modeling
4.2. Description of Variables and Data Sources
4.2.1. Explanatory Variables: Prefecture-Level Cities’ Emissions
4.2.2. Core Explanatory Variable: AI Composite Development Index
4.2.3. Control Variables
4.2.4. Data Sources
4.3. Empirical Tests
4.3.1. Multicollinearity Test
4.3.2. Benchmark Regression
4.3.3. Heterogeneity Test
- ①
- The heterogeneity of urban resource endowments
- ②
- Heterogeneity of low-carbon pilot
- ③
- Heterogeneity based on regional industrialization levels
4.3.4. Mediation Effect Test
4.3.5. Robustness Test
- ①
- Exchange of explanatory variables
- ②
- Excluding developed area samples
- ③
- Subsample regression
- ④
- Endogeneity test
5. Conclusions and Implications
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Guo, J.; Wang, H. Study on carbon emission reduction effect of institutional openness in China. Sci. Rep. 2023, 13, 254. [Google Scholar] [CrossRef] [PubMed]
- Waligóra, L. The problem of energy efficiency is known as the Jevons paradox. World Sci. News 2019, 122, 218–230. [Google Scholar]
- Delanoë, P.; Tchuente, D.; Colin, G. Method and evaluations of the effective gain of artificial intelligence models for reducing CO2 emissions. J. Environ. Manag. 2023, 331, 117261. [Google Scholar] [CrossRef] [PubMed]
- Lin, B.Q.; Jiang, Z.J. Environmental Kuznets curve prediction of carbon dioxide in China and analysis of influencing factors. Manag. World 2009, 4, 27–36. [Google Scholar]
- Zhu, M.; Han, Z. Industrial upgrading, total factor energy efficiency and regional carbon emission reduction in China. J. Resour. Ecol. 2023, 14, 445–453. [Google Scholar]
- Fisher-Vanden, K.; Jefferson, G.H.; Ma, J.; Xu, J. Technology development and energy productivity in China. Energy Econ. 2006, 28, 690–705. [Google Scholar] [CrossRef]
- Irfan, M.; Mahapatra, B.; Shahbaz, M. Energy efficiency in the Indian transportation sector: Effect on carbon emissions. Environ. Dev. Sustain. 2024, 26, 6653–6676. [Google Scholar] [CrossRef]
- Waris, U.; Usman, M.; Salman, T. Analyzing the impacts of renewable energy, patents, and trade on carbon emissions—Evidence from the novel method of MMQR. Environ. Sci. Pollut. Res. 2023, 30, 122625–122641. [Google Scholar] [CrossRef] [PubMed]
- Feng, F.; Ye, A. Study on the rebound effect of technological progress on energy consumption under the perspective of technological spillover-based on spatial panel data model. Financ. Res. 2012, 38, 123–133. [Google Scholar]
- Wang, Q.; Sha, S.W. Why does China’s carbon intensity decline and India’s carbon intensity rise? A decomposition analysis on the sectors. J. Clean. Prod. 2020, 265, 121569. [Google Scholar] [CrossRef]
- Elhenawy SE, M.; Khraisheh, M.; AlMomani, F.; Walker, G. Metal-organic frameworks as a platform for CO2 capture and chemical processes: Adsorption, membrane separation, catalytic conversion, and electrochemical reduction of CO2. Catalysts 2020, 10, 1293. [Google Scholar] [CrossRef]
- Altintas, C.; Altundal, O.F.; Keskin, S.; Yildirim, R. Machine learning meets with metal-organic frameworks for gas storage and separation. J. Chem. Inf. Model. 2021, 61, 2131–2146. [Google Scholar] [CrossRef]
- Liu, J.; Liu, L.; Qian, Y.; Song, S. The effect of artificial intelligence on carbon intensity: Evidence from China’s industrial sector. Socio-Econ. Plan. Sci. 2022, 83, 101002. [Google Scholar] [CrossRef]
- Wang, Q.; Li, Y.; Li, R. Ecological footprints, carbon emissions, and energy transitions: The impact of artificial intelligence (AI). Humanit. Soc. Sci. Commun. 2024, 11, 1043. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, Y.; Pan, A.; Han, M.; Veglianti, E. Carbon emission reduction effects of industrial robot applications: Heterogeneity characteristics and influencing mechanisms. Technol. Soc. 2022, 70, 102034. [Google Scholar] [CrossRef]
- Meng, X.N.; Shi, C.X.; Jing, N.Z. How does industrial intelligence affect carbon intensity in China? J. Clean. Prod. 2022, 376, 134273. [Google Scholar] [CrossRef]
- Tang, J.H.; Wan, W.; Wang, W.D. Research into the Path and Mechanism by Which Intelligent Manufacturing Promotes Carbon Emission Reductions. Energies 2024, 17, 3925. [Google Scholar] [CrossRef]
- Fischer, M.; Hofmann, R. AI for Energy Intensive Industry: A Hybrid Optimization Approach for Flexibility Service Providers. In Energy Sustainability; American Society of Mechanical Engineers: New York, NY, USA, 2024; Volume 87899, p. V001T01A002. [Google Scholar]
- Sthankiya, K.; Saeed, N.; McSorley, G.; Jaber, M.; Clegg, R.G. A Survey on AI-driven Energy Optimisation in Terrestrial Next Generation Radio Access Networks. IEEE Access 2024, 12, 157540–157555. [Google Scholar] [CrossRef]
- Kaack, L.H.; Donti, P.L.; Strubell, E.; Kamiya, G.; Creutzig, F.; Rolnick, D. Aligning artificial intelligence with climate change mitigation. Nat. Clim. Change 2022, 12, 518–527. [Google Scholar] [CrossRef]
- Song, M.; Pan, H.; Shen, Z.; Tamayo-Verleene, K. Assessing the influence of artificial intelligence on the energy efficiency for sustainable ecological products value. Energy Econ. 2024, 131, 107392. [Google Scholar] [CrossRef]
- Liu, L.; Yang, K.; Fujii, H.; Liu, J. Artificial intelligence and energy intensity in China’s industrial sector: Effect and transmission channel. Econ. Anal. Policy 2021, 70, 276–293. [Google Scholar] [CrossRef]
- Li, Y.; Hui, Y.Z.; Qi, Y.T. Artificial intelligence, dynamic capabilities, and corporate financial asset allocation. Int. Rev. Financ. Anal. 2024, 96, 103773. [Google Scholar] [CrossRef]
- Roy, S.; Mitra, M. AI Driven Strategies For Carbon Footprint Reduction-A Scholarly Exploration. Int. J. Curr. Res. Sci. Eng. Technol. 2020, 10, 15–20. [Google Scholar]
- Moşteanu, N.R. Green Sustainable Regional Development and Digital Era; Springer International Publishing: Cham, Switzerland, 2020. [Google Scholar]
- Shahbaz, M.; Loganathan, N.; Muzaffar, A.T.; Ahmed, K.; Jabran, M.A. How urbanization affects CO2 emissions in Malaysia? The application of STIRPAT model. Renew. Sustain. Energy Rev. 2016, 57, 83–93. [Google Scholar] [CrossRef]
- Gu, G.D.; Ma, W.J. Construction and application of comprehensive development index of artificial intelligence. Res. Quant. Tech. Econ. 2021, 38, 117–134. [Google Scholar]
- Zhang, Z.; Li, H.; Chang, H.; Pan, Z.; Luo, X. Machine learning predictive framework for CO2 thermodynamic properties in solution. J. CO2 Util. 2018, 26, 152–159. [Google Scholar] [CrossRef]
- Mardani, A.; Liao, H.; Nilashi, M.; Alrasheedi, M.; Cavallaro, F. A multi-stage method to predict carbon dioxide emissions using dimensionality reduction, clustering, and machine learning techniques. J. Clean. Prod. 2020, 275, 122942. [Google Scholar] [CrossRef]
- Ma, Y.M.; Wu, Y.M.; Wu, B.J. A comprehensive evaluation of sustainable development of urbanization in the Yangtze River Delta region-based on entropy and quadrant diagram methods. Econ. Geogr. 2015, 35, 47–53. [Google Scholar]
- Liu, J.; Qian, Y.; Cao, Y.R. Manufacturing Intelligence and High-Quality Development of China’s Economy; Science Press: Beijing, China, 2022. (In Chinese) [Google Scholar]
- Wen, Z.L.; Ye, B.J. Mediation effects analysis: Methods and model development. Adv. Psychol. Sci. 2014, 22, 731–745. [Google Scholar] [CrossRef]
- Wang, X.L.; Fan, G.; Liu, P. Transformation of China’s economic growth mode and growth sustainability. Econ. Res. 2009, 44, 4–16. [Google Scholar]
- Brännlund, R.; Ghalwash, T.; Nordström, J. Increased energy efficiency and the rebound effect: Effects on consumption and emissions. Energy Econ. 2007, 29, 1–17. [Google Scholar] [CrossRef]
- Fang, X.; Yang, Z.; Zhang, Y.; Miao, X. Foreign direct investment and the structural transition of energy consumption: Impact and mechanisms. Humanit. Soc. Sci. Commun. 2024, 11, 1759. [Google Scholar] [CrossRef]
Primary Indicators | Secondary Indicators | Specific Indicators |
---|---|---|
AI Development Environment | R&D expenditure | Financial science and technology expenditures |
Infrastructure | Internet broadband subscribers per 100 population | |
Staffing inputs | Employees in the information transmission, computer services, and the software industry | |
Policy support | Frequency of intelligent keywords used in government work report | |
AI Technology Innovation | Enterprise R&D | Enterprise R&D investment |
Number of patents | Number of software copyright registrations | |
Enterprise size | Number of AI companies | |
AI Industry Development | Business income | Total business per capita in software and information technology services |
Degree of penetration | AI book value/total number of employees |
(1) | (2) | (3) | (4) | (5) | |
---|---|---|---|---|---|
Variables | N | Mean | sd | Min | Max |
3420 | 1.695 | 0.948 | 0.145 | 1.895 | |
3420 | 0.119 | 0.283 | 0.051 | 0.172 | |
3420 | 5.897 | 0.703 | 2.970 | 8.136 | |
3420 | 0.110 | 0.371 | 0.851 | 1.231 | |
3420 | 0.176 | 0.282 | 0.000 | 2.491 | |
3420 | 0.429 | 0.144 | 0.446 | 0.844 | |
3420 | 5.595 | 3.181 | 0.742 | 25.986 | |
3420 | −5.113 | .52 | −7.889 | −3.186 | |
Number of cities | 285 | 285 | 285 | 285 | 285 |
Variable | VIF | 1/VIF |
---|---|---|
1.16 | 0.862 | |
1.87 | 0.535 | |
1.56 | 0.641 | |
1.76 | 0.568 | |
1.12 | 0.893 | |
1.11 | 0.901 | |
1.32 | 0.758 | |
1.78 | 0.562 | |
1.26 | 0.794 | |
1.28 | 0.782 | |
Mean | VIF | 1.42 |
Variables | (1) FE | (2) RE | (3) GLS |
---|---|---|---|
0.025 * | 0.027 * | 0.183 *** | |
(1.72) | (1.78) | (6.20) | |
2 | −0.002 ** | −0.002 ** | −0.008 *** |
(−2.18) | (−2.20) | (−5.53) | |
Constant | 16.378 *** | 15.154 *** | 9.904 *** |
(45.79) | (44.75) | (25.97) | |
Control | Yes | Yes | Yes |
Observations | 3420 | 3420 | 3420 |
R-squared | 0.258 | 0.248 | 0.410 |
Number of cities | 285 | 285 | 285 |
(1) | (2) | |
---|---|---|
Variables | Resource-Based City | Non-Resource-Based Cities |
0.046 ** | −0.051 | |
(2.20) | (−1.56) | |
2 | −0.003 *** | 0.003 |
(−2.84) | (1.61) | |
Constant | 16.862 *** | 16.344 *** |
(15.98) | (32.22) | |
Control | Yes | Yes |
Observations | 1344 | 2028 |
R-squared | 0.270 | 0.274 |
Number of cities | 126 | 153 |
(1) | (2) | |
---|---|---|
Variables | Low-Carbon Pilot Cities | Non-Low-Carbon Pilot Cities |
0.089 *** | −0.013 | |
(3.33) | (−0.63) | |
2 | −0.005 *** | 0.000 |
(−3.25) | (0.22) | |
Constant | 16.244 *** | 16.552 *** |
(13.41) | (31.27) | |
Control | Yes | Yes |
Observations | 1224 | 2148 |
R-squared | 0.309 | 0.249 |
Number of cities | 102 | 179 |
(1) | (2) | |
---|---|---|
Variables | High Level of Industrialization | Low Level of Industrialization |
0.044 ** | −0.006 | |
(2.57) | (−0.26) | |
2 | −0.002 *** | −0.000 |
(−2.70) | (−0.08) | |
Constant | 17.694 *** | 16.073 *** |
(34.74) | (32.82) | |
Control | Yes | Yes |
Observations | 1710 | 1710 |
R-squared | 0.345 | 0.225 |
Number of cities | 106 | 179 |
(1) | (2) | (3) | (4) | (5) | (6) | |
---|---|---|---|---|---|---|
Variables | ||||||
2 | −0.006 *** | −0.005 *** | −0.002 *** | |||
(−4.36) | (−3.53) | (−2.72) | ||||
0.003 ** | 0.133 *** | 0.001 *** | 0.129 *** | 0.002 * | 0.033 ** | |
(2.68) | (4.35) | (5.98) | (4.31) | (1.65) | (2.21) | |
2 | −0.050 *** | |||||
(9.02) | ||||||
0.383 *** | ||||||
(3.01) | ||||||
2 | −0.047 *** | |||||
(−7.57) | ||||||
0.033 *** | ||||||
(3.78) | ||||||
2 | −0.172 *** | |||||
(−4.07) | ||||||
0.493 *** | ||||||
(3.88) | ||||||
Constant | 5.695 *** | 15.076 *** | 0.139 *** | 9.493 *** | 2.654 *** | 16.610 *** |
(40.66) | (17.26) | (19.85) | (24.27) | (10.80) | (43.16) | |
Control | Yes | Yes | Yes | Yes | Yes | Yes |
Observations | 3420 | 3420 | 3420 | 3420 | 3420 | 3420 |
R-squared | 0.300 | 0.081 | 0.821 | 0.248 | 0.518 | 0.245 |
Number of cities | 285 | 285 | 285 | 285 | 285 | 285 |
Mechanism Variables | 95% Confidence Interval | |
---|---|---|
Upper Limits | Lower Limits | |
0.00037 | 01191 | |
0.00327 | 0.01200 | |
0.00070 | 0.06237 |
(1) | (2) | (3) | (4) | |
---|---|---|---|---|
Variables | Exclusion Sample | Subsample | GMM | |
0.008 ** | 0.026 * | 0.153 *** | 0.039 *** | |
(2.29) | (1.75) | (4.55) | (36.50) | |
2 | −0.000 ** | −0.002 ** | −0.007 *** | −0.002 *** |
(−2.51) | (−2.20) | (−3.92) | (−34.90) | |
Constant | 2.195 *** | 16.337 *** | 9.877 *** | |
(22.69) | (45.35) | (23.92) | ||
Control | Yes | Yes | Yes | Yes |
Observations | 3420 | 3372 | 2565 | 3135 |
R-squared | 0.722 | 0.255 | 0.215 | |
Number of cities | 285 | 281 | 285 | 285 |
AR(1) | p value = 0.000 | |||
AR(2) | p value = 0.393 | |||
Hansen | 0.413 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Shen, H.; Chen, J.; Jiang, X.; Siyal, A.W. Artificial Intelligence and Carbon Emissions: Mediating Role of Energy Efficiency, Factor Market Allocation and Industrial Structure. Energies 2025, 18, 1102. https://doi.org/10.3390/en18051102
Liu J, Shen H, Chen J, Jiang X, Siyal AW. Artificial Intelligence and Carbon Emissions: Mediating Role of Energy Efficiency, Factor Market Allocation and Industrial Structure. Energies. 2025; 18(5):1102. https://doi.org/10.3390/en18051102
Chicago/Turabian StyleLiu, Jun, Hengxu Shen, Junwei Chen, Xin Jiang, and Abdul Waheed Siyal. 2025. "Artificial Intelligence and Carbon Emissions: Mediating Role of Energy Efficiency, Factor Market Allocation and Industrial Structure" Energies 18, no. 5: 1102. https://doi.org/10.3390/en18051102
APA StyleLiu, J., Shen, H., Chen, J., Jiang, X., & Siyal, A. W. (2025). Artificial Intelligence and Carbon Emissions: Mediating Role of Energy Efficiency, Factor Market Allocation and Industrial Structure. Energies, 18(5), 1102. https://doi.org/10.3390/en18051102