Applications of Renewable Energies in Low-Temperature Regions: A Scientometric Analysis of Recent Advancements and Future Research Directions
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Yearly Publications and Citations Trends
3.2. Top Leading Journals in Application of Renewable Energy in Low-Temperature Regions
3.3. Most Cited Publications
Rank | Authors | Article Title | Source Title | Total Citation (TC) |
---|---|---|---|---|
1 | Baykara [59] | Hydrogen: A brief overview on its sources, production and environmental impact | International Journal of Hydrogen Energy | 485 |
2 | Jacobson et al. [61] | Low-cost solution to the grid reliability problem with 100% penetration of intermittent wind, water, and solar for all purposes | Proceedings of the National Academy of Sciences of the United States of America | 344 |
3 | Howland et al. [62] | Wind farm power optimization through wake steering | Proceedings of the National Academy of Sciences of the United States of America | 246 |
4 | Ortega et al. [67] | A model-tested North Atlantic Oscillation reconstruction for the past millennium | Nature | 227 |
5 | Freeman et al. [68] | A small-scale solar organic Rankine cycle combined heat and power system with integrated thermal energy storage | Applied Thermal Engineering | 181 |
6 | De La Peña et al. [63] | Accelerating the energy transition to achieve carbon neutrality | Resources, Conservation and Recycling | 179 |
7 | Jewell et al. [64] | Energy security under de-carbonization scenarios: An assessment framework and evaluation under different technology and policy choices | Energy Policy | 154 |
8 | He et al. [60] | Integration of renewable hydrogen in light-duty vehicle: Nexus between energy security and low carbon emission resources | International Journal of Hydrogen Energy | 153 |
9 | Roberts [65] | Altering existing buildings in the UK | Energy Policy | 149 |
10 | Reyna et al. [66] | Energy efficiency to reduce residential electricity and natural gas use under climate change | Nature Communications | 147 |
3.4. Analysis of Author Keywords
3.5. Research Trends and Future Directions
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Milentijević, N.; Valjarević, A.; Bačević, N.; Ristić, D.; Kalkan, K.; Cimbaljević, M.; Dragojlović, J.; Savić, S.; Pantelić, M. Assessment of Observed and Projected Climate Changes in Bačka (Serbia) Using Trend Analysis and Climate Modeling. 2022. Available online: https://gery.gef.bg.ac.rs/handle/123456789/1182 (accessed on 6 February 2025).
- Bokhari, S.A.A.; Ahmad, B.; Ali, J.; Ahmad, S.; Mushtaq, H.; Rasul, G. Future climate change projections of the Kabul River Basin using a multi-model ensemble of high-resolution statistically downscaled data. Earth Syst. Environ. 2018, 2, 477–497. [Google Scholar] [CrossRef]
- Malakouti, S.M. Utilizing time series data from 1961 to 2019 recorded around the world and machine learning to create a Global Temperature Change Prediction Model. Case Stud. Chem. Environ. Eng. 2023, 7, 100312. [Google Scholar] [CrossRef]
- Abbas, A.; Ekowati, D.; Suhariadi, F.; Fenitra, R.M. Health implications, leaders societies, and climate change: A global review. In Ecological Footprints of Climate Change: Adaptive Approaches and Sustainability; Springer: Cham, Switzerland, 2023; pp. 653–675. [Google Scholar]
- Pathak, H. Impact, adaptation, and mitigation of climate change in Indian agriculture. Environ. Monit. Assess. 2023, 195, 52. [Google Scholar] [CrossRef]
- van der Walt, A.J.; Fitchett, J.M. Trend analysis of cold extremes in South Africa: 1960–2016. Int. J. Climatol. 2020, 41, 2060–2081. [Google Scholar] [CrossRef]
- Namroodi, M.; Hamidianpour, M.; Poodineh, M. Spatio-temporal analysis of changes in heat and cold waves across Iran over the statistical period 1966–2018. Arab. J. Geosci. 2021, 14, 1–14. [Google Scholar] [CrossRef]
- Díaz-Poso, A.; Lorenzo, N.; Martí, A.; Royé, D. Cold wave intensity on the Iberian Peninsula: Future climate projections. Atmos. Res. 2023, 295, 107011. [Google Scholar] [CrossRef]
- Woolway, R.I.; Jennings, E.; Shatwell, T.; Golub, M.; Pierson, D.C.; Maberly, S.C. Lake heatwaves under climate change. Nature 2021, 589, 402–407. [Google Scholar] [CrossRef]
- Thompson, V.; Mitchell, D.; Hegerl, G.C.; Collins, M.; Leach, N.J.; Slingo, J.M. The most at-risk regions in the world for high-impact heatwaves. Nat. Commun. 2023, 14, 1–8. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Q.; Ge, Y.; Du, X.; Wang, H. Growing prevalence of heat over cold extremes with overall milder extremes and multiple successive events. Commun. Earth Environ. 2022, 3, 1–13. [Google Scholar] [CrossRef]
- Allen, S.M.J.; Gough, W.A.; Mohsin, T. Changes in the frequency of extreme temperature records for Toronto, Ontario, Canada. Theor. Appl. Clim. 2015, 119, 481–491. [Google Scholar] [CrossRef]
- Parmesan, C.; Root, T.L.; Willig, M.R. Impacts of extreme weather and climate on terrestrial biota. Bull. Am. Meteorol. Soc. 2000, 81, 443–450. [Google Scholar] [CrossRef]
- Ryti, N.R.I.; Guo, Y.; Jaakkola, J.J.K. Global association of cold spells and adverse health effects: A systematic review and meta-analysis. Environ. Health Perspect. 2016, 124, 12–22. [Google Scholar] [CrossRef]
- Barnett, A.G.; Hajat, S.; Gasparrini, A.; Rocklöv, J. Cold and heat waves in the United States. Environ. Res. 2012, 112, 218–224. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Jiang, F.; Peng, L.; Zhang, J.; Geng, F.; Xu, J.; Zhen, C.; Shen, X.; Tong, S. The association between cold spells and pediatric outpatient visits for asthma in Shanghai, China. PLoS ONE 2012, 7, e42232. [Google Scholar] [CrossRef]
- Sun, Z.; Chen, C.; Xu, D.; Li, T. Effects of ambient temperature on myocardial infarction: A systematic review and meta-analysis. Environ. Pollut. 2018, 241, 1106–1114. [Google Scholar] [CrossRef]
- Chen, Z.; Liu, P.; Xia, X.; Wang, L.; Li, X. The underlying mechanisms of cold exposure-induced ischemic stroke. Sci. Total Environ. 2022, 834, 155514. [Google Scholar] [CrossRef]
- Overland, J.; Hall, R.; Hanna, E.; Karpechko, A.; Vihma, T.; Wang, M.; Zhang, X. The polar vortex and extreme weather: The Beast from the East in winter 2018. Atmosphere 2020, 11, 664. [Google Scholar] [CrossRef]
- Cohen, J.; Screen, J.A.; Furtado, J.C.; Barlow, M.; Whittleston, D.; Coumou, D.; Francis, J.; Dethloff, K.; Entekhabi, D.; Overland, J. Recent Arctic amplification and extreme mid-latitude weather. Nat. Geosci. 2014, 7, 627–637. [Google Scholar] [CrossRef]
- Ziegler, A.D.; Sheffield, J.; Maurer, E.P.; Nijssen, B.; Wood, E.F.; Lettenmaier, D.P. Detection of intensification in global-and continental-scale hydrological cycles: Temporal scale of evaluation. J. Clim. 2003, 16, 535–547. [Google Scholar] [CrossRef]
- Stott, P. How climate change affects extreme weather events. Science 2016, 352, 1517–1518. [Google Scholar] [CrossRef]
- Toromade, A.S.; Soyombo, D.A.; Kupa, E.; Ijomah, T.I. Reviewing the impact of climate change on global food security: Challenges and solutions. Int. J. Appl. Res. Soc. Sci. 2024, 6, 1403–1416. [Google Scholar] [CrossRef]
- Hoppe, T.; Coenen, F.; van den Berg, M. Illustrating the use of concepts from the discipline of policy studies in energy research: An explorative literature review. Energy Res. Soc. Sci. 2016, 21, 12–32. [Google Scholar] [CrossRef]
- Zhang, Y.; Yin, Z.; Wang, H.; He, S. 2020/21 record-breaking cold waves in east of China enhanced by the ‘Warm Arctic-Cold Siberia’ pattern. Environ. Res. Lett. 2021, 16, 094040. [Google Scholar] [CrossRef]
- Añel, J.A.; Fernández-González, M.; Labandeira, X.; López-Otero, X.; de la Torre, L. Impact of Cold Waves and Heat Waves on the Energy Production Sector. Atmosphere 2017, 8, 209. [Google Scholar] [CrossRef]
- Van Oldenborgh, G.J.; Mitchell-Larson, E.; Vecchi, G.A.; De Vries, H.; Vautard, R.; Otto, F. Cold waves are getting milder in the northern midlatitudes. Environ. Res. Lett. 2019, 14, 114004. [Google Scholar] [CrossRef]
- Galfi, V.M.; Lucarini, V. Fingerprinting Heatwaves and Cold Spells and Assessing Their Response to Climate Change Using Large Deviation Theory. Phys. Rev. Lett. 2021, 127, 058701. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.; Choi, H.M.; Lee, J.Y.; Kim, D.H.; Honda, Y.; Kim, H. Temporal changes in mortality impacts of heat wave and cold spell in Korea and Japan. Environ. Int. 2018, 116, 136–146. [Google Scholar] [CrossRef]
- Pereira, S.C.; Marta-Almeida, M.; Carvalho, A.C.; Rocha, A. Heat wave and cold spell changes in Iberia for a future climate scenario. Int. J. Climatol. 2017, 37, 5192–5205. [Google Scholar] [CrossRef]
- Zohuri, B.; Rahmani, F.M.; Behgounia, F. Knowledge Is Power in Four Dimensions: Models to Forecast Future Paradigm: With Artificial Intelligence Integration in Energy and Other Use Cases; Academic Press: Cambridge, MA, USA, 2022. [Google Scholar]
- Bhattacharya, M.; Paramati, S.R.; Ozturk, I.; Bhattacharya, S. The effect of renewable energy consumption on economic growth: Evidence from top 38 countries. Appl. Energy 2016, 162, 733–741. [Google Scholar] [CrossRef]
- Włodarczyk, A.; Mesjasz-Lech, A. Ecological and economic context of managing enterprises that are particularly harmful to the environment and the well-being of society. Energies 2021, 14, 2884. [Google Scholar] [CrossRef]
- Tomczyk, P.; Wiatkowski, M.; Kuriqi, A. Small hydropower plants’ impacts on the ecological status indicators of urban rivers. Appl. Sci. 2022, 12, 12882. [Google Scholar] [CrossRef]
- Owusu, P.A.; Asumadu-Sarkodie, S. A review of renewable energy sources, sustainability issues and climate change mitigation. Cogent Eng. 2016, 3, 1167990. [Google Scholar] [CrossRef]
- Jaramillo Nieves, L. Aceptación de Mercado y Comunitaria de la Energía Renovable en Puerto Rico. 2018. Available online: https://docta.ucm.es/entities/publication/bb7e46c9-c3e3-4ed6-8a7a-f2e426894974 (accessed on 6 February 2025).
- Yahyaoui, I. Advances in Renewable Energies and Power Technologies: Volume 1: Solar and Wind Energies; Elsevier: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Wolf, J.; Adger, W.N.; Lorenzoni, I. Heat Waves and Cold Spells: An Analysis of Policy Response and Perceptions of Vulnerable Populations in the UK. Environ. Plan. A Econ. Space 2010, 42, 2721–2734. [Google Scholar] [CrossRef]
- Ghazarian, A.; Champetier, C.; Quiroga, D.; Baqueriza, F.; Barros, N.; Souilla, L.; Sanz, R.; Gomelsky, R.; Salinas, E.; Rios, J. Just Energy Transition/Scenarios Brazil. 2024. Available online: https://scioteca.caf.com/handle//123456789/2354 (accessed on 10 January 2025).
- Rastegarfar, M.; Kamali, Y.; Maleki, A. The future of Iran’s natural gas energy policy in post-war of Ukraine. Q. J. Macro Strateg. Policies 2024, in press. [Google Scholar] [CrossRef]
- Quintella, C.M.; Rodrigues, P.D.; Ramos-de-Souza, E.; Carvalho, E.B.; Nicoleti, J.L.; Hanna, S.A. Integration of EOR/IOR and environmental technologies in BRICS and nonBRICS: A patent-based critical review. Energy Rep. 2025, 13, 747–758. [Google Scholar] [CrossRef]
- Virú-Vásquez, P.; Huapaya Pardavé, R.; Bravo-Toledo, L.; Flor, M.; Coral, C.; Curaqueo, G. Biochar and Compost in the Soil: A Bibliometric Analysis of Scientific Research. Environ. Res. Eng. Manag. 2022, 78, 73–95. [Google Scholar] [CrossRef]
- Hosseini, M.R.; Martek, I.; Zavadskas, E.K.; Aibinu, A.A.; Arashpour, M.; Chileshe, N. Critical evaluation of off-site construction research: A Scientometric analysis. Autom. Constr. 2018, 87, 235–247. [Google Scholar] [CrossRef]
- Ghaleb, H.; Alhajlah, H.H.; Bin Abdullah, A.A.; Kassem, M.A.; Al-Sharafi, M.A. A Scientometric Analysis and Systematic Literature Review for Construction Project Complexity. Buildings 2022, 12, 482. [Google Scholar] [CrossRef]
- Lrhoul, H.; Assaoui, N.E.; Turki, H. Mapping of water research in Morocco: A scientometric analysis. Mater. Today Proc. 2021, 45, 7321–7328. [Google Scholar] [CrossRef]
- Belter, C.W.; Seidel, D.J. A bibliometric analysis of climate engineering research. WIREs Clim. Change 2013, 4, 417–427. [Google Scholar] [CrossRef]
- Rúa-Ortiz, A.; Merritt, H.; Valencia-Arias, A. Innovación tecnológica inducida: Un análisis bibliométrico de la investigación en energía solar, 1960–2018. Análisis Económico 2020, 35, 239–269. [Google Scholar] [CrossRef]
- Sohail, M.; Afrouzi, H.N.; Mehranzamir, K.; Ahmed, J.; Mobin Siddique, M.B.; Tabassum, M. A comprehensive scientometric analysis on hybrid renewable energy systems in developing regions of the world. Results Eng. 2022, 16, 100481. [Google Scholar] [CrossRef]
- Thirukanthan, C.S.; Azra, M.N.; Seman, N.J.A.; Agos, S.M.; Arifin, H.; Aouissi, H.A.; Lananan, F.; Gao, H. A scientometric review of climate change and research on crabs. J. Sea Res. 2023, 193, 102386. [Google Scholar] [CrossRef]
- Iancu, T.; Tudor, V.C.; Dumitru, E.A.; Sterie, C.M.; Micu, M.M.; Smedescu, D.; Marcuta, L.; Tonea, E.; Stoicea, P.; Vintu, C.; et al. A Scientometric Analysis of Climate Change Adaptation Studies. Sustainability 2022, 14, 12945. [Google Scholar] [CrossRef]
- Aria, M.; Cuccurullo, C. bibliometrix: An R-tool for comprehensive science mapping analysis. J. Inf. 2017, 11, 959–975. [Google Scholar] [CrossRef]
- Nuar, A.N.A.; Sen, S.C. Examining the Trend of Research on Big Data Architecture: Bibliometric Analysis using Scopus Database. Procedia Comput. Sci. 2024, 234, 172–179. [Google Scholar] [CrossRef]
- Gavel, Y.; Iselid, L. Web of Science and Scopus: A journal title overlap study. Online Inf. Rev. 2008, 32, 8–21. [Google Scholar] [CrossRef]
- Aksnes, D.W.; Sivertsen, G. A criteria-based assessment of the coverage of scopus and web of science. J. Data Inf. Sci. 2019, 4, 1–21. [Google Scholar] [CrossRef]
- Gusenbauer, M. Beyond Google Scholar, Scopus, and Web of Science: An evaluation of the backward and forward citation coverage of 59 databases’ citation indices. Res. Synth. Methods 2024, 15, 802–817. [Google Scholar] [CrossRef]
- Hirsch, J.E. An index to quantify an individual’s scientific research output. Proc. Natl. Acad. Sci. USA 2005, 102, 16569–16572. [Google Scholar] [CrossRef]
- Egghe, L. Theory and practise of the g-index. Scientometrics 2006, 69, 131–152. [Google Scholar] [CrossRef]
- Abdelwahab, S.I.; Taha, M.M.E.; Duarte, A.E.; Jan, M.; Hassan, W. The top 100 most influential papers and authors in nursing education. Teach. Learn. Nurs. 2024, 19, 391–396. [Google Scholar] [CrossRef]
- Baykara, S.Z. Hydrogen: A brief overview on its sources, production and environmental impact. Int. J. Hydrogen Energy 2018, 43, 10605–10614. [Google Scholar] [CrossRef]
- He, W.; Abbas, Q.; Alharthi, M.; Mohsin, M.; Hanif, I.; Vinh Vo, X.; Taghizadeh-Hesary, F. Integration of renewable hydrogen in light-duty vehicle: Nexus between energy security and low carbon emission resources. Int. J. Hydrogen Energy 2020, 45, 27958–27968. [Google Scholar] [CrossRef]
- Jacobson, M.Z.; Delucchi, M.A.; Cameron, M.A.; Frew, B.A. Low-cost solution to the grid reliability problem with 100% penetration of intermittent wind, water, and solar for all purposes. Proc. Natl. Acad. Sci. USA 2015, 112, 15060–15065. [Google Scholar] [CrossRef]
- Howland, M.F.; Lele, S.K.; Dabiri, J.O. Wind farm power optimization through wake steering. Proc. Natl. Acad. Sci. USA 2019, 116, 14495–14500. [Google Scholar] [CrossRef] [PubMed]
- De La Peña, L.; Guo, R.; Cao, X.; Ni, X.; Zhang, W. Accelerating the energy transition to achieve carbon neutrality. Resour. Conserv. Recycl. 2022, 177, 105957. [Google Scholar] [CrossRef]
- Jewell, J.; Cherp, A.; Riahi, K. Energy security under de-carbonization scenarios: An assessment framework and evaluation under different technology and policy choices. Energy Policy 2014, 65, 743–760. [Google Scholar] [CrossRef]
- Roberts, S. Altering existing buildings in the UK. Energy Policy 2008, 36, 4482–4486. [Google Scholar] [CrossRef]
- Reyna, J.L.; Chester, M.V. Energy efficiency to reduce residential electricity and natural gas use under climate change. Nat. Commun. 2017, 8, 14916. [Google Scholar] [CrossRef]
- Ortega, P.; Lehner, F.; Swingedouw, D.; Masson-Delmotte, V.; Raible, C.C.; Casado, M.; Yiou, P. A model-tested North Atlantic Oscillation reconstruction for the past millennium. Nature 2015, 523, 71–74. [Google Scholar] [CrossRef] [PubMed]
- Freeman, J.; Guarracino, I.; Kalogirou, S.A.; Markides, C.N. A small-scale solar organic Rankine cycle combined heat and power system with integrated thermal energy storage. Appl. Therm. Eng. 2017, 127, 1543–1554. [Google Scholar] [CrossRef]
- Bravo-Toledo, L.; Barreto-Pio, C.; Herrera, J.L.; Milla-Figueroa, C.; Nuñez, A.P.; Virú-Vásquez, P. Global Research Trends in Emergy and Wastewater Treatment: A Bibliometric Analysis. Environ. Res. Eng. Manag. 2023, 79, 16–36. [Google Scholar] [CrossRef]
- Li, Q.; Wei, X.; Wang, J.; Chao, Y.; Li, Y.; Fan, H. Enhancing battery energy storage systems for photovoltaic applications in extremely cold regions: A brief review. Energy Sustain. Dev. 2024, 81, 101517. [Google Scholar] [CrossRef]
- Sarbu, I.; Mirza, M.; Muntean, D. Integration of Renewable Energy Sources into Low-Temperature District Heating Systems: A Review. Energies 2022, 15, 6523. [Google Scholar] [CrossRef]
- Quirosa, G.; Torres, M.; Soltero, V.M.; Chacartegui, R. Analysis of an ultra-low temperature district heating and cooling as a storage system for renewable integration. Appl. Therm. Eng. 2022, 216, 119052. [Google Scholar] [CrossRef]
- Ahoutou, Y.; Ilinca, A.; Issa, M. Electrochemical Cells and Storage Technologies to Increase Renewable Energy Share in Cold Climate Conditions—A Critical Assessment. Energies 2022, 15, 1579. [Google Scholar] [CrossRef]
- Marocco, P.; Ferrero, D.; Lanzini, A.; Santarelli, M. The role of hydrogen in the optimal design of off-grid hybrid renewable energy systems. J. Energy Storage 2022, 46, 103893. [Google Scholar] [CrossRef]
- Puranen, P.; Kosonen, A.; Ahola, J. Technical feasibility evaluation of a solar PV based off-grid domestic energy system with battery and hydrogen energy storage in northern climates. Sol. Energy 2021, 213, 246–259. [Google Scholar] [CrossRef]
- Baskutis, S.; Baskutiene, J.; Navickas, V.; Bilan, Y.; Cieśliński, W. Perspectives and Problems of Using Renewable Energy Sources and Implementation of Local “Green” Initiatives: A Regional Assessment. Energies 2021, 14, 5888. [Google Scholar] [CrossRef]
- Emodi, N.V.; Chaiechi, T.; Alam Beg, A.B.M.R. Are emission reduction policies effective under climate change conditions? A backcasting and exploratory scenario approach using the LEAP-OSeMOSYS Model. Appl. Energy 2019, 236, 1183–1217. [Google Scholar] [CrossRef]
- Andrade, C.; Selosse, S.; Maïzi, N. The role of power-to-gas in the integration of variable renewables. Appl. Energy 2022, 313, 118730. [Google Scholar] [CrossRef]
- Heras, A. Supply-side climate policy and fossil fuels in developing countries: A neo-Gramscian perspective. Int. Environ. Agreem. 2024, 24, 49–74. [Google Scholar] [CrossRef]
- Ocko, I.B.; Hamburg, S.P. Climate consequences of hydrogen emissions. Atmos. Chem. Phys. 2022, 22, 9349–9368. [Google Scholar] [CrossRef]
- Sattler, S.; Clemmer, S.; Richardson, J.; Cowin, R. Opportunities in energy: National policy approaches for addressing climate change. Electr. J. 2020, 33, 106693. [Google Scholar] [CrossRef]
- Galimova, T.; Satymov, R.; Keiner, D.; Breyer, C. Sustainable energy transition of Greenland and its prospects as a potential Arctic e-fuel and e-chemical export hub for Europe and East Asia. Energy 2024, 286, 129605. [Google Scholar] [CrossRef]
- Islam, R.; Sohel, R.N.; Hasan, F. Fighting Climate Change Through Technology and Innovation: Reviewing Actions of the Petroleum Industry. In Proceedings of the Offshore Technology Conference, Houston, TX, USA, 2–5 May 2022; p. D021S025R009. [Google Scholar]
- Feron, S.; Cordero, R.R.; Damiani, A.; Jackson, R.B. Climate change extremes and photovoltaic power output. Nat. Sustain. 2021, 4, 270–276. [Google Scholar] [CrossRef]
- Akaev, A.A.; Davydova, O.I. The Paris Agreement on Climate Is Coming into Force: Will the Great Energy Transition Take Place? Her. Russ. Acad. Sci. 2020, 90, 588–599. [Google Scholar] [CrossRef]
- Fragkos, P. Global Energy System Transformations to 1.5 °C: The Impact of Revised Intergovernmental Panel on Climate Change Carbon Budgets. Energy Technol. 2020, 8, 2000395. [Google Scholar] [CrossRef]
- María Villarreal Vives, A.; Wang, R.; Roy, S.; Smallbone, A. Techno-economic analysis of large-scale green hydrogen production and storage. Appl. Energy 2023, 346, 121333. [Google Scholar] [CrossRef]
- Garcia, M.; Oliva, S. Technical, economic, and CO2 emissions assessment of green hydrogen production from solar/wind energy: The case of Chile. Energy 2023, 278, 127981. [Google Scholar] [CrossRef]
- Alvear, C.; Haas, J.; Palma-Behnke, R.; Peer, R.; Medina, J.P.; Kern, J.D. Green hydrogen exports in New Zealand and Chile can improve electricity supply security if configured as local energy insurance. Energy 2024, 304, 131930. [Google Scholar] [CrossRef]
- Rodríguez-Aburto, C.; Poma-García, J.; Montaño-Pisfil, J.; Morcillo-Valdivia, P.; Oyanguren-Ramirez, F.; Santos-Mejia, C.; Rodriguez-Flores, R.; Virú-Vasquez, P.; Pilco-Nuñez, A. Bibliometric Analysis of Global Publications on Management, Trends, Energy, and the Innovation Impact of Green Hydrogen Production. Sustainability 2024, 16, 11048. [Google Scholar] [CrossRef]
- Wang, Y.; Rasheed, R.; Jiang, F.; Rizwan, A.; Javed, H.; Su, Y.; Riffat, S. Life cycle assessment of a novel biomass-based aerogel material for building insulation. J. Build. Eng. 2021, 44, 102988. [Google Scholar] [CrossRef]
- Sinke, P.; Swartz, E.; Sanctorum, H.; van der Giesen, C.; Odegard, I. Ex-ante life cycle assessment of commercial-scale cultivated meat production in 2030. Int. J. Life Cycle Assess. 2023, 28, 234–254. [Google Scholar] [CrossRef]
- Bradley, T.; Rajaeifar, M.A.; Kenny, A.; Hainsworth, C.; del Pino, V.; del Valle Inclán, Y.; Povoa, I.; Mendonça, P.; Brown, L.; Smallbone, A.; et al. Life cycle assessment of microalgae-derived biodiesel. Int. J. Life Cycle Assess. 2023, 28, 590–609. [Google Scholar] [CrossRef]
- Koj, J.C.; Zapp, P.; Wieland, C.; Görner, K.; Kuckshinrichs, W. Life cycle environmental impacts and costs of water electrolysis technologies for green hydrogen production in the future. Energy Sustain. Soc. 2024, 14, 64. [Google Scholar] [CrossRef]
- Xie, D.; Qiu, Y.; Huang, J. Multi-objective optimization for green logistics planning and operations management: From economic to environmental perspective. Comput. Ind. Eng. 2024, 189, 109988. [Google Scholar] [CrossRef]
- Nemmour, A.; Ghenai, C.; Inayat, A. Parametric study and optimization of bio-hydrogen production using steam reforming of glycerol and biodiesel fuel mixtures. Biomass Convers. Biorefin 2023, 13, 8713–8725. [Google Scholar] [CrossRef]
- Jayakumar, M.; Thiyagar, T.; Abo, L.D.; Arumugasamy, S.K.; Jabesa, A. Paddy straw as a biomass feedstock for the manufacturing of bioethanol using acid hydrolysis and parametric optimization through response surface methodology and an artificial neural network. Biomass Convers. Biorefin 2024, 15, 3803–3825. [Google Scholar] [CrossRef]
- Bamisile, O.; Cai, D.; Adedeji, M.; Dagbasi, M.; Hu, Y.; Huang, Q. Environmental impact and thermodynamic comparative optimization of CO2-based multi-energy systems powered with geothermal energy. Sci. Total Environ. 2024, 908, 168459. [Google Scholar] [CrossRef] [PubMed]
- Mahmoudi, S.M.; Maleki, A.; Rezaei Ochbelagh, D. Techno-economic assessment of hydrogen-based energy storage systems in determining the optimal configuration of the nuclear-renewable hybrid energy system. Energy Rep. 2024, 11, 4713–4725. [Google Scholar] [CrossRef]
Rank | Source | Total Citation (TC) | Total Citation/ Total Paper (TC/TP) | h_Index | g_Index | m_Index | Journal Impact Factor | Country |
---|---|---|---|---|---|---|---|---|
1 | Energy | 499 | 38.38 | 11 | 13 | 0.733 | 15.3 | United Kingdom |
2 | Energies | 179 | 13.77 | 9 | 13 | 1.286 | 6.2 | Switzerland |
3 | Applied Energy | 245 | 24.50 | 8 | 10 | 0.727 | 21.2 | United Kingdom |
4 | Energy Conversion and Management | 383 | 42.56 | 7 | 9 | 0.467 | 19 | United Kingdom |
5 | Energy Procedia | 135 | 16.88 | 7 | 8 | 0.467 | 4.4 | United Kingdom |
6 | International Journal of Hydrogen Energy | 754 | 83.78 | 7 | 9 | 0.875 | 13.5 | United Kingdom |
7 | Energy Policy | 475 | 79.17 | 6 | 6 | 0.333 | 17.3 | United Kingdom |
8 | Renewable Energy | 173 | 15.73 | 6 | 11 | 0.207 | 18.4 | United Kingdom |
9 | Renewable and Sustainable Energy Reviews | 193 | 38.60 | 5 | 5 | 0.714 | 31.2 | United Kingdom |
10 | Climate Policy | 169 | 28.17 | 4 | 6 | 0.308 | 12.9 | United Kingdom |
Item | Type of Renewable Energy | Country | Scope | Results | Reference |
---|---|---|---|---|---|
1 | Biomass used for insulation material in construction | Reino Unido | Gate-to-gate, production of 1 m3 of biomass aerogel | Climate Change Potential: 6.76 × 102 kg CO2-eq/m3. Non-Renewable Energy Consumption: 1.65 × 10⁴ MJ/m3 | [91] |
2 | Cultured meat produced with renewable energy | Europe | Cradle-to-gate, production of 1 kg of cultured meat. | Carbon Footprint: ~14 kg CO2-eq/kg of meat (global average scenario). Ambitious Scenario: <3 kg CO2-eq/kg. | [92] |
3 | Biofuel derived from microalgae | Portugal | Cradle-to-gate, combustion of 1 MJ of microalgae biodiesel. | 1.48 × 10−1 kg CO2-eq/MJ (Scenario C, photovoltaic electricity). Direct Energy Consumption: 0.99 MJ/MJ of biodiesel. | [93] |
4 | Green hydrogen produced by water electrolysis | Germany | Cradle-to-gate, considering resource extraction, plant construction and hydrogen supply. | Electricity Consumption: 55 kWh/kg H2 in 2022, projected to 35 kWh/kg H2 by 2045. CO2 Emissions Reduced by up to 93% in Wind Energy Scenarios. | [94] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodríguez-Aburto, C.; Poma-García, J.; Montaño-Pisfil, J.; Morcillo-Valdivia, P.; Solís-Farfán, R.; Curay-Tribeño, J.; Pilco-Nuñez, A.; Flores-Salinas, J.; Tineo-Cordova, F.; Virú-Vasquez, P.; et al. Applications of Renewable Energies in Low-Temperature Regions: A Scientometric Analysis of Recent Advancements and Future Research Directions. Energies 2025, 18, 904. https://doi.org/10.3390/en18040904
Rodríguez-Aburto C, Poma-García J, Montaño-Pisfil J, Morcillo-Valdivia P, Solís-Farfán R, Curay-Tribeño J, Pilco-Nuñez A, Flores-Salinas J, Tineo-Cordova F, Virú-Vasquez P, et al. Applications of Renewable Energies in Low-Temperature Regions: A Scientometric Analysis of Recent Advancements and Future Research Directions. Energies. 2025; 18(4):904. https://doi.org/10.3390/en18040904
Chicago/Turabian StyleRodríguez-Aburto, César, José Poma-García, Jorge Montaño-Pisfil, Pablo Morcillo-Valdivia, Roberto Solís-Farfán, José Curay-Tribeño, Alex Pilco-Nuñez, José Flores-Salinas, Freddy Tineo-Cordova, Paul Virú-Vasquez, and et al. 2025. "Applications of Renewable Energies in Low-Temperature Regions: A Scientometric Analysis of Recent Advancements and Future Research Directions" Energies 18, no. 4: 904. https://doi.org/10.3390/en18040904
APA StyleRodríguez-Aburto, C., Poma-García, J., Montaño-Pisfil, J., Morcillo-Valdivia, P., Solís-Farfán, R., Curay-Tribeño, J., Pilco-Nuñez, A., Flores-Salinas, J., Tineo-Cordova, F., Virú-Vasquez, P., & Bravo-Toledo, L. (2025). Applications of Renewable Energies in Low-Temperature Regions: A Scientometric Analysis of Recent Advancements and Future Research Directions. Energies, 18(4), 904. https://doi.org/10.3390/en18040904