Enhanced Raccoon Optimization Algorithm for PMSM Electrical Parameter Identification
Abstract
:1. Introduction
2. Parameter Identification of PMSM
3. Enhanced ROA
3.1. Characteristics of ROA
3.2. Adaptive Exploration Radius Strategy
3.3. Raccoon-Washing-Food-Inspired Strategy
3.4. Escaping-Predator Strategy
4. Simulation and Experimental Methods
4.1. Algorithm Testing
4.2. Simulation Analysis
4.3. Experimentation
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, Y.; Liao, W.; Huang, S.; Zhang, J.; Yang, M.; Li, C.; Huang, S. A Robust DPCC for IPMSM Based on a Full Parameter Identification Method. IEEE Trans. Ind. Electron. 2023, 70, 7695–7705. [Google Scholar] [CrossRef]
- Liu, S.; Wang, Q.; Wang, G.; Li, B.; Ding, D.; Zhang, G.; Xu, D. Virtual-Axis Injection Based Online Parameter Identification of PMSM Considering Cross Coupling and Saturation Effects. IEEE Trans. Power Electron. 2023, 38, 5791–5802. [Google Scholar] [CrossRef]
- Shen, Y.; Zheng, Z.; Wang, Q.; Liu, P.; Yang, X. DC Bus Current Sensed Space Vector Pulsewidth Modulation for Three-Phase Inverter. IEEE Trans. Transp. Electrif. 2021, 7, 815–824. [Google Scholar] [CrossRef]
- Chen, Z.; Qiu, J. Adjacent-Vector-Based Model Predictive Control for Permanent Magnet Synchronous Motors With Full Model Estimation. IEEE J. Emerg. Sel. Top. Power Electron. 2023, 11, 1317–1331. [Google Scholar] [CrossRef]
- Yang, X.; Liu, G.; Le, V.D.; Le, C.Q. A Novel Model-Predictive Direct Control for Induction Motor Drives. IEEJ Trans. Electr. Electron. Eng. 2019, 14, 1691–1702. [Google Scholar] [CrossRef]
- Woldegiorgis, A.T.; Ge, X.; Zuo, Y.; Wang, H.; Hassan, M. Sensorless Control of Interior Permanent Magnet Synchronous Motor Drives Considering Resistance and Permanent Magnet Flux Linkage Variation. IEEE Trans. Ind. Electron. 2023, 70, 7716–7730. [Google Scholar] [CrossRef]
- Liu, P.; Liu, D.; Shen, Y.; Liu, A.; Yang, X.; Zhao, J. Full Speed Range Position-Sensorless Compound Control Scheme for PMSMs. J. Power Electron. 2022, 22, 1302–1312. [Google Scholar] [CrossRef]
- Brosch, A.; Wallscheid, O.; Bocker, J. Long-Term Memory Recursive Least Squares Online Identification of Highly Utilized Permanent Magnet Synchronous Motors for Finite-Control-Set Model Predictive Control. IEEE Trans. Power Electron. 2023, 38, 1451–1467. [Google Scholar] [CrossRef]
- Huang, X.; Yu, Y.; Li, Z.; Chen, Z.; Huang, S.; Niu, F.; Zhang, J. Online Identification of Inductance and Flux Linkage for Inverter-Fed SPMSMs Using Switching State Functions. IEEE Trans. Power Electron. 2023, 38, 917–930. [Google Scholar] [CrossRef]
- Dai, S.; Wang, J.; Sun, Z.; Chong, E. Transient Performance Improvement of Deadbeat Predictive Current Control of High-Speed Surface-Mounted PMSM Drives by Online Inductance Identification. IEEE Trans. Ind. Electron. 2022, 69, 12358–12368. [Google Scholar] [CrossRef]
- Hinkkanen, M.; Pescetto, P.; Mölsä, E.; Saarakkala, S.E.; Pellegrino, G.; Bojoi, R. Sensorless Self-Commissioning of Synchronous Reluctance Motors at Standstill Without Rotor Locking. IEEE Trans. Ind. Appl. 2017, 53, 2120–2129. [Google Scholar] [CrossRef]
- Wang, G.; Qu, L.; Zhan, H.; Xu, J.; Ding, L.; Zhang, G.; Xu, D. Self-Commissioning of Permanent Magnet Synchronous Machine Drives at Standstill Considering Inverter Nonlinearities. IEEE Trans. Power Electronics. 2014, 29, 6615–6627. [Google Scholar] [CrossRef]
- Odhano, S.A.; Pescetto, P.; Awan, H.A.A.; Hinkkanen, M.; Pellegrino, G.; Bojoi, R. Parameter Identification and Self-Commissioning in AC Motor Drives: A Technology Status Review. IEEE Trans. Power Electron. 2019, 34, 3603–3614. [Google Scholar] [CrossRef]
- Zhang, J.; Peng, F.; Huang, Y.; Yao, Y.; Zhu, Z. Online Inductance Identification Using PWM Current Ripple for Position Sensorless Drive of High-Speed Surface-Mounted Permanent Magnet Synchronous Machines. IEEE Trans. Ind. Electron. 2022, 69, 12426–12436. [Google Scholar] [CrossRef]
- Yang, X.-L.; Liu, G.-R.; Chen, N.-H.; Lou, T.-S. Desensitized Ensemble Kalman Filtering for Induction Motor Estimation. IEEE Access 2019, 7, 78029–78036. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, G.; Wang, G.; Li, C.; Xu, D.G. Offline Parameter Self-Learning Method for General-Purpose PMSM Drives with Estimation Error Compensation. IEEE Trans. Power Electron. 2019, 34, 11103–11115. [Google Scholar] [CrossRef]
- Yang, Q.; Mao, K.; Zheng, S.; Zhou, C.; Zhong, Q. Position Sensorless Drive with Online Parameters Estimation for Magnetic Suspension Centrifugal Compressor. IEEE Trans. Power Electron. 2023, 38, 9384–9394. [Google Scholar] [CrossRef]
- Yu, Y.; Huang, X.; Li, Z. Overall Electrical Parameters Identification for IPMSMs Using Current Derivative to Avoid Rank Deficiency. IEEE Trans. Ind. Electron. 2023, 70, 7515–7520. [Google Scholar] [CrossRef]
- Liu, K.; Zhu, Z.Q.; Zhang, Q.; Zhang, J. Influence of Nonideal Voltage Measurement on Parameter Estimation in Permanent-Magnet Synchronous Machines. IEEE Trans. Ind. Electron. 2012, 59, 2438–2447. [Google Scholar] [CrossRef]
- Chen, K.; Xiao, L.; Zhang, B.; Yang, M.; Yang, X.; Guo, X. Decoupling Algorithm for Online Identification of Inductance in Permanent Magnet Synchronous Motors Based on Virtual Axis Injection Method and Sensorless Control. Energies 2024, 17, 6308. [Google Scholar] [CrossRef]
- Li, X.; Kennel, R. General Formulation of Kalman-Filter-Based Online Parameter Identification Methods for VSI-Fed PMSM. IEEE Trans. Ind. Electron. 2021, 68, 2856–2864. [Google Scholar] [CrossRef]
- Wu, C.; Zhao, Y.; Sun, M. Enhancing Low-Speed Sensorless Control of PMSM Using Phase Voltage Measurements and Online Multiple Parameter Identification. IEEE Trans. Power Electron. 2020, 35, 10700–10710. [Google Scholar] [CrossRef]
- Wang, Q.; Zhao, X.; Yang, P.; Hua, W.; Buja, G. Effects of Triangular Wave Injection and Current Differential Terms on Multiparameter Identification for PMSM. IEEE Trans. Power Electron. 2024, 39, 2943–2947. [Google Scholar] [CrossRef]
- Son, J.-C.; Lim, D.-K. Novel Method of Deriving Torque and Speed Curve of the Permanent Magnet Synchronous Motor Using Initial State Finite Element Analysis. IEEE Trans. Magn. 2022, 58, 8203906. [Google Scholar] [CrossRef]
- Wang, Q.; Zhao, N.; Wang, G.; Zhao, S.; Chen, Z.; Zhang, G.; Xu, D. An Offline Parameter Self-Learning Method Considering Inverter Nonlinearity with Zero-Axis Voltage. IEEE Trans. Power Electron. 2021, 36, 14098–14109. [Google Scholar] [CrossRef]
- Liu, Z.-H.; Wei, H.-L.; Zhong, Q.-C.; Liu, K.; Xiao, X.-S.; Wu, L.-H. Parameter Estimation for VSI-Fed PMSM Based on a Dynamic PSO with Learning Strategies. IEEE Trans. Power Electron. 2017, 32, 3154–3165. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, G.; Zhao, N.; Zhang, G.; Cui, Q.; Xu, D.G. An Impedance Model-Based Multiparameter Identification Method of PMSM for Both Offline and Online Conditions. IEEE Trans. Power Electron. 2021, 36, 727–738. [Google Scholar] [CrossRef]
- Rajwar, K.; Deep, K.; Das, S. An Exhaustive Review of the Metaheuristic Algorithms for Search and Optimization: Taxonomy, Applications, and Open Challenges. Artif. Intell. Rev. 2023, 56, 13187–13257. [Google Scholar] [CrossRef]
- Trojovsky, P.; Dehghani, M. A New Bio-Inspired Metaheuristic Algorithm for Solving Optimization Problems Based on Walruses Behavior. Sci. Rep. 2023, 13, 8775. [Google Scholar] [CrossRef]
- Pham, T.H.; Raahemi, B. Bio-Inspired Feature Selection Algorithms with Their Applications: A Systematic Literature Review. IEEE Access 2023, 11, 43733–43758. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, M.; Zhang, C.; Shen, A.; Bing, L. Identification of PMSM Parameters with Time-Error Compensated Based on Contractile Factor Anti-Predator PSO. IEEE Trans. Transp. Electrif. 2023, 10, 4006–4017. [Google Scholar] [CrossRef]
- Liu, Z.-H.; Wei, H.-L.; Li, X.-H.; Liu, K.; Zhong, Q.-C. Global Identification of Electrical and Mechanical Parameters in PMSM Drive Based on Dynamic Self-Learning PSO. IEEE Trans. Power Electron. 2018, 33, 10858–10871. [Google Scholar] [CrossRef]
- Xie, C.; Zhang, S.; Li, X.; Zhou, Y.; Dong, Y. Parameter Identification for SPMSM with Deadbeat Predictive Current Control Using Online PSO. IEEE Trans. Transp. Electrif. 2023, 10, 4055–4064. [Google Scholar] [CrossRef]
- Cen, Y.; Shen, H.; Wang, X.; Wu, Y.; Du, J. Multi-Objective Optimization Analysis of Electromagnetic Performance of Permanent Magnet Synchronous Motors Based on the PSO Algorithm. Energies 2024, 17, 4637. [Google Scholar] [CrossRef]
- Li, H.; Jian, X. Parameter Identification of Permanent Magnet Synchronous Motor Based on CGCRAO Algorithm. IEEE Access 2023, 11, 124319–124330. [Google Scholar] [CrossRef]
- Gierczynski, M.; Jakubowski, R.; Kupiec, E.; Niewiara, L.J.; Tarczewski, T.; Grzesiak, L.M. Identification of the Parameters of the Highly Saturated Permanent Magnet Synchronous Motor (PMSM): Selected Problems of Accuracy. Energies 2024, 17, 6096. [Google Scholar] [CrossRef]
- Zangbari Koohi, S.; Abdul Hamid, N.A.W.; Othman, M.; Ibragimov, G. Raccoon Optimization Algorithm. IEEE Access 2019, 7, 5383–5399. [Google Scholar] [CrossRef]
- Koohi, S.Z.; Hamid, N.A.W.A.; Othman, M.; Ibragimov, G. HATS: HetTask Scheduling. IEEE Trans. Cloud Comput. 2023, 11, 2071–2083. [Google Scholar] [CrossRef]
- Balamurugan, A.; Priya, M.D.; Malar, A.C.J.; Janakiraman, S. Raccoon Optimization Algorithm-Based Accurate Positioning Scheme for Reliable Emergency Data Dissemination under NLOS Situations in VANETs. J. Ambient Intell. Humaniz. Comput. 2021, 12, 10405–10424. [Google Scholar] [CrossRef]
- Koohi, S.Z.; Abdul Hamid, N.A.W.; Othman, M.; Ibragimov, G. ROA-CONS: Raccoon Optimization for Job Scheduling. Symmetry-Basel 2021, 13, 2270. [Google Scholar] [CrossRef]
- Marini, F.; Walczak, B. Particle Swarm Optimization (PSO). A Tutorial. Chemom. Intell. Lab. Syst. 2015, 149, 153–165. [Google Scholar] [CrossRef]
- Nadimi-Shahraki, M.H.; Zamani, H.; Mirjalili, S. Enhanced Whale Optimization Algorithm for Medical Feature Selection: A COVID-19 Case Study. Comput. Biol. Med. 2022, 148, 105858. [Google Scholar] [CrossRef]
- Holland, J.H. Genetic Algorithms and the Optimal Allocation of Trials. SIAM J. Comput. 1973, 2, 88–105. [Google Scholar] [CrossRef]
- Deng, L.; Liu, S. Snow Ablation Optimizer: A Novel Metaheuristic Technique for Numerical Optimization and Engineering Design. Expert Syst. Appl. 2023, 225, 120069. [Google Scholar] [CrossRef]
Function | Dimensionality | Minimum Value |
---|---|---|
2 | 0.998 | |
4 | 0.0003075 | |
2 | −1.0316285 | |
2 | 0.398 | |
2 | 3 | |
3 | −3.86 | |
6 | −3.32 | |
4 | −10.153 | |
4 | −10.403 |
Function | EROA | ROA | PSO | E_WOA | GA |
---|---|---|---|---|---|
9.98 × 10−1 | 1.12 × 10+1 | 9.98 × 10−1 | 9.98 × 10−1 | 1.14 | |
4.91 × 10−4 | 5.29 × 10−3 | 6.33 × 10−4 | 5.01 × 10−4 | 1.06 × 10−2 | |
−1.03 | −9.62 × 10−1 | −1.03 | −1.03 | −1.01 | |
3.98 × 10−1 | 4.42 × 10−1 | 3.98 × 10−1 | 3.98 × 10−1 | 6.61 × 10+1 | |
3.00 | 1.20 × 10+1 | 3.00 | 3.00 | 3.00 | |
−3.86 | −3.33 | −3.86 | −3.86 | −3.46 | |
−3.29 | −1.77 | −3.27 | −3.30 | −2.03 | |
−9.65 | −5.25 | −8.13 | −8.62 | −1.67 | |
−9.87 | −7.07 | −9.87 | −7.75 | −1.65 |
Parameters | Value | Parameters | Value |
---|---|---|---|
(Ω) | 2.35 | Rated Current (A) | 2.7 |
(H) | 0.0265 | Rated Torque (N·m) | 1.27 |
(Wb) | 0.0101 | Rated Speed (rpm) | 3000 |
Pole Pairs | 4 | Rated Power (W) | 400 |
Algorithm | (Ω) | (H) | (Wb) |
---|---|---|---|
Real Value | 2.35 | 0.0265 | 0.0101 |
EROA | 2.3506 | 0.0264 | 0.0100 |
EROA error (%) | 0.0256 | 0.5472 | 0.9527 |
ROA | 2.3753 | 0.0176 | 0.0037 |
ROA error (%) | 1.0750 | 33.5062 | 63.0814 |
PSO | 2.3506 | 0.0263 | 0.0100 |
PSO error (%) | 0.0269 | 0.6137 | 1.0772 |
E_WOA | 2.3555 | 0.0248 | 0.0102 |
E_WOA error (%) | 0.2323 | 6.3166 | 0.6497 |
GA | 1.9989 | 0.2082 | 0.1258 |
GA error (%) | 14.9384 | 685.7044 | 1145.9741 |
WaOA | 2.3506 | 0.0264 | 0.0100 |
WaOA error (%) | 0.0256 | 0.5472 | 0.9526 |
SAO | 2.3506 | 0.0264 | 0.0100 |
SAO error (%) | 0.0256 | 0.5472 | 0.9526 |
EROA | (Ω) | (H) | (Wb) |
---|---|---|---|
Actual value | 2.35 | 0.0265 | 0.0101 |
Maximum | 2.4105 | 0.0270 | 0.0107 |
Minimum | 2.2752 | 0.0268 | 0.0094 |
Average | 2.3425 | 0.0269 | 0.0100 |
Average error/% | 0.3193 | 1.5064 | 0.6948 |
EROA | (Ω) | (H) | (Wb) |
---|---|---|---|
Actual value | 2.35 | 0.0265 | 0.0101 |
Maximum | 2.3986 | 0.0271 | 0.0114 |
Minimum | 2.1886 | 0.0268 | 0.0095 |
Average | 2.3136 | 0.0269 | 0.0103 |
Average error/% | 1.5480 | 1.6241 | 1.7775 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, Z.; Zhan, J.; Li, Z.; Hou, X.; Fu, Z.; Yang, X. Enhanced Raccoon Optimization Algorithm for PMSM Electrical Parameter Identification. Energies 2025, 18, 869. https://doi.org/10.3390/en18040869
Hu Z, Zhan J, Li Z, Hou X, Fu Z, Yang X. Enhanced Raccoon Optimization Algorithm for PMSM Electrical Parameter Identification. Energies. 2025; 18(4):869. https://doi.org/10.3390/en18040869
Chicago/Turabian StyleHu, Zhihong, Jihao Zhan, Zelan Li, Xiangqing Hou, Zhiang Fu, and Xiaoliang Yang. 2025. "Enhanced Raccoon Optimization Algorithm for PMSM Electrical Parameter Identification" Energies 18, no. 4: 869. https://doi.org/10.3390/en18040869
APA StyleHu, Z., Zhan, J., Li, Z., Hou, X., Fu, Z., & Yang, X. (2025). Enhanced Raccoon Optimization Algorithm for PMSM Electrical Parameter Identification. Energies, 18(4), 869. https://doi.org/10.3390/en18040869