An Investigation of Operational Challenges in MHz Power Converters †
Abstract
:1. Introduction
- 1.
- A linear equation was formulated to model the dynamic of the GaN device as a function of the losses and , with its performance analyzed under MHz operation across varying load conditions.
- 2.
- A 1-MHz, 1-kW PCB-based inductor was characterized using simulation and hardware measurements to evaluate the parasitic capacitance effects at higher frequency and kilowatt power levels.
- 3.
- The conducted EMI in a MHz buck converter was analyzed through simulations with radiated EMI measured in a hardware setup, providing insights for future MHz designs.
2. Methodology
2.1. GaN HEMT Dynamic On-Resistance ()
2.2. Core Material Selection and PCB-Based Inductor Design
2.3. Electromagnetic Interference (EMI)
3. Simulated Results
3.1. Case Study of GaN Device On-Resistance at Beyond-Nominal Operation
3.2. PCB-Based Inductor Parasitic Capacitance
3.3. Conducted EMI
4. Experimental Results
4.1. Setup for Case Study of GaN Device at Beyond-Nominal Operation
4.2. Parasitic Capacitance in PCB-Based Inductor
4.3. Radiated EMI
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kassakian, J.G.; Jahns, T.M. Evolving and Emerging Applications of Power Electronics in Systems. IEEE J. Emerg. Sel. Top. Power Electron. 2013, 1, 47–58. [Google Scholar] [CrossRef]
- Hussain, A.; Perez, D.; Cucak, D.; Booth, K. PCB-Based Inductor Design for 1-kW, 1-MHz Buck Converter. In Proceedings of the 2024 IEEE Applied Power Electronics Conference and Exposition (APEC), Long Beach, CA, USA, 25–29 February 2024; pp. 3199–3203. [Google Scholar] [CrossRef]
- Arévalo, P.; Ochoa-Correa, D.; Villa-Ávila, E. Towards Energy Efficiency: Innovations in High-Frequency Converters for Renewable Energy Systems and Electric Vehicles. Vehicles 2025, 7, 1. [Google Scholar] [CrossRef]
- Iannaccone, G.; Sbrana, C.; Morelli, I.; Strangio, S. Power Electronics Based on Wide-Bandgap Semiconductors: Opportunities and Challenges. IEEE Access 2021, 9, 139446–139456. [Google Scholar] [CrossRef]
- Kozak, J.P.; Zhang, R.; Porter, M.; Song, Q.; Liu, J.; Wang, B.; Wang, R.; Saito, W.; Zhang, Y. Stability, Reliability, and Robustness of GaN Power Devices: A Review. IEEE Trans. Power Electron. 2023, 38, 8442–8471. [Google Scholar] [CrossRef]
- Yuan, M.; Niroula, J.; Xie, Q.; Rajput, N.S.; Fu, K.; Luo, S.; Das, S.K.; Iqbal, A.J.B.; Sikder, B.; Isamotu, M.F.; et al. Enhancement-Mode GaN Transistor Technology for Harsh Environment Operation. IEEE Electron Device Lett. 2023, 44, 1068–1071. [Google Scholar] [CrossRef]
- Qin, H.; Peng, J.; Zhang, Z.; Zhang, F.; Zhao, X.; Xu, Z. Junction temperature prediction method of GaN HEMT power devices based on accurate on-voltage testing. Energy Rep. 2023, 9, 389–395. [Google Scholar] [CrossRef]
- Yan, D.; Ma, D.B. Online Condition Monitoring for GaN Power Devices With Integrated Dynamic On-Resistance Full Profile Scan and Offset Calibration. IEEE Trans. Power Electron. 2024, 39, 6215–6224. [Google Scholar] [CrossRef]
- Li, S.; Ma, Y.; Zhang, C.; Lu, W.; Liu, M.; Li, M.; Yang, L.; Liu, S.; Wei, J.; Zhang, L.; et al. Physics-Based SPICE Modeling of Dynamic on-State Resistance of p-GaN HEMTs. IEEE Trans. Power Electron. 2023, 38, 7988–7992. [Google Scholar] [CrossRef]
- Booth, K.; Subramanyan, H.; Liang, X.; Liu, J.; Srdic, S.; Lukic, S. Optimization of Medium Frequency Transformers with Practical Considerations. In Proceedings of the 2019 IEEE Applied Power Electronics Conference and Exposition (APEC), Anaheim, CA, USA, 17–21 March 2019; pp. 2906–2911. [Google Scholar] [CrossRef]
- Nabih, A.; Jin, F.; Gadelrab, R.; Lee, F.C.; Li, Q. Characterization and Mitigation of Dimensional Effects on Core Loss in High-Power High-Frequency Converters. IEEE Trans. Power Electron. 2023, 38, 14017–14036. [Google Scholar] [CrossRef]
- Saket, M.A.; Shafiei, N.; Ordonez, M. LLC Converters With Planar Transformers: Issues and Mitigation. IEEE Trans. Power Electron. 2017, 32, 4524–4542. [Google Scholar] [CrossRef]
- Wang, S.; Pham, P.H.; Li, Q.; Nabih, A.; Prakash, P.R. PCB Winding-Based Coupled Inductor for a High-Frequency DC/DC Converter with 99% Efficiency. In Proceedings of the 2023 IEEE Applied Power Electronics Conference and Exposition (APEC), Orlando, FL, USA, 19–23 March 2023; pp. 420–425. [Google Scholar] [CrossRef]
- Chafi, A.; Idir, N.; Videt, A.; Maher, H. Design Method of PCB Inductors for High-Frequency GaN Converters. IEEE Trans. Power Electron. 2021, 36, 805–814. [Google Scholar] [CrossRef]
- Yu, Z.; Yang, X.; Wei, G.; Zhou, Y.; Xiao, Y.; Qin, M.; Wu, J.; Wang, K.; Chen, W.; Wang, L. A Novel Pyramid Winding for PCB Planar Inductors With Fewer Copper Layers and Lower AC Copper Loss. IEEE Trans. Power Electron. 2022, 37, 11461–11468. [Google Scholar] [CrossRef]
- Ma, Z.; Wang, S.; Huang, Q.; Yang, Y. A Review of Radiated EMI Research in Power Electronics Systems. IEEE J. Emerg. Sel. Top. Power Electron. 2024, 12, 675–694. [Google Scholar] [CrossRef]
- Persson, E. Optimizing PCB Layout for HV GaN Power Transistors. IEEE Power Electron. Mag. 2023, 10, 65–78. [Google Scholar] [CrossRef]
- Xu, M.; Yang, X.; Li, J. C-RC Snubber Optimization Design for Improving Switching Characteristics of SiC MOSFET. IEEE Trans. Power Electron. 2022, 37, 12005–12016. [Google Scholar] [CrossRef]
- Sun, B.; Burgos, R.; Boroyevich, D. Common-Mode EMI Unterminated Behavioral Model of Wide-Bandgap-Based Power Converters Operating at High Switching Frequency. IEEE J. Emerg. Sel. Top. Power Electron. 2019, 7, 2561–2570. [Google Scholar] [CrossRef]
- Yao, J.; Lai, Y.; Ma, Z.; Wang, S. Investigation of Noise Spectrum and Radiated EMI in High Switching Frequency Flyback Converters. In Proceedings of the 2021 IEEE Applied Power Electronics Conference and Exposition (APEC), Phoenix, AZ, USA, 14–17 June 2021; pp. 2265–2270. [Google Scholar] [CrossRef]
- Buffolo, M.; Favero, D.; Marcuzzi, A.; De Santi, C.; Meneghesso, G.; Zanoni, E.; Meneghini, M. Review and Outlook on GaN and SiC Power Devices: Industrial State-of-the-Art, Applications, and Perspectives. IEEE Trans. Electron Devices 2024, 71, 1344–1355. [Google Scholar] [CrossRef]
- Barbato, A.; Barbato, M.; Meneghini, M.; Silvestri, M.; Detzel, T.; Haeberlen, O.; Spiazzi, G.; Meneghesso, G.; Zanoni, E. Fast System to Measure the Dynamic On-resistance of On-wafer 600 V Normally Off GaN HEMTs in Hard-switching Application Conditions. IET Power Electron. 2020, 13, 2097–2103. [Google Scholar] [CrossRef]
- Yang, X.; Xu, S.; Heng, K.; Wu, X. Distributed Thermal Modeling for Power Devices and Modules With Equivalent Heat Flow Path Extraction. IEEE J. Emerg. Sel. Top. Power Electron. 2023, 11, 5863–5876. [Google Scholar] [CrossRef]
- Marek, J.; Chvála, A.; Donoval, D.; Príbytný, P.; Molnár, M.; Mikolášek, M. Compact model of power MOSFET with temperature dependent Cauer RC network for more accurate thermal simulations. Solid-State Electron. 2014, 94, 44–50. [Google Scholar] [CrossRef]
- Hussain, A.; Sado, K.; Perez, D.; Booth, K. Beyond-Nominal Operation of GaN-Based Converters for High-Power Density Applications. In Proceedings of the 2024 IEEE Transportation Electrification Conference and Expo (ITEC), Chicago, IL, USA, 19–21 June 2024; pp. 1–5. [Google Scholar] [CrossRef]
- Ferroxcube. Ferroxcube Website. Available online: https://www.ferroxcube.com/en-global (accessed on 23 September 2024).
- Yao, J.; Lai, Y.; Ma, Z.; Wang, S. Advances in Modeling and Reduction of Conducted and Radiated EMI in Non-isolated Power Converters. In Proceedings of the 2021 IEEE Applied Power Electronics Conference and Exposition (APEC), Phoenix, AZ, USA, 14–17 June 2021; pp. 2305–2312. [Google Scholar] [CrossRef]
- Ma, Z.; Lai, Y.; Yang, Y.; Huang, Q.; Wang, S. Review of Radiated EMI Modeling and Mitigation Techniques in Power Electronics Systems. In Proceedings of the 2023 IEEE Applied Power Electronics Conference and Exposition (APEC), Orlando, FL, USA, 19–23 March 2023; pp. 1776–1783. [Google Scholar] [CrossRef]
- Hussain, A.; Sado, K.; Perez, D.; Booth, K. FEA-Driven Solutions to Minimize Driving Loop Inductance and EMI in MHz PCB Designs. In Proceedings of the 2024 IEEE Sixth International Conference on DC Microgrids (ICDCM), Columbia, SC, USA, 5–8 August 2024; pp. 1–4. [Google Scholar] [CrossRef]
- Lee, S.; Kim, S.; Shin, J.; Kim, W. Analyzing and mitigating parasitic capacitances in planar transformers for high-frequency operation. J. Power Electron. 2024, 24, 946–954. [Google Scholar] [CrossRef]
- Oh, H.; Lee, J.; Lee, S.; Park, C.; Lee, J.; Lee, J.; Lee, H. Parasitic Capacitance Analysis of PCB-type Induction Heating Coil and LCCC/S Matching Network Design for Railway Turnouts. J. Electr. Eng. Technol. 2023, 18, 3311–3320. [Google Scholar] [CrossRef]
- Kharanaq, F.A.; Emadi, A.; Bilgin, B. Modeling of Conducted Emissions for EMI Analysis of Power Converters: State-of-the-Art Review. IEEE Access 2020, 8, 189313–189325. [Google Scholar] [CrossRef]
- IEEE. American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz; ANSI C63.4-2014 (Revision of ANSI C63.4-2009); IEEE: Piscataway, NJ, USA, 2014; pp. 1–170. [Google Scholar] [CrossRef]
- IEC. IEC Webstore. Available online: https://webstore.iec.ch/en/publication/64645 (accessed on 23 September 2024).
- H-800-SkyMatch. VLF Antennas. Available online: https://www.lfengineering.com/products.cfm#LF/VLF%20Antennas (accessed on 23 September 2024).
- R&S® FSW43. Signal and Spectrum Analyzer. Available online: https://www.rohde-schwarz.com/us/products/test-and-measurement/benchtop-analyzers/fsw-signal-and-spectrum-analyzer_63493-11793.html (accessed on 23 September 2024).
Parameters | Values |
---|---|
Input Voltage, | 450 V |
Output Voltage, | 225 V |
Switching Frequency, | 1 MHz |
Output Power, | 1 kW |
Inductor, L | 15 µH |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hussain, A.; Boland, A.; Varner, R.; Matolak, D.; Booth, K. An Investigation of Operational Challenges in MHz Power Converters. Energies 2025, 18, 835. https://doi.org/10.3390/en18040835
Hussain A, Boland A, Varner R, Matolak D, Booth K. An Investigation of Operational Challenges in MHz Power Converters. Energies. 2025; 18(4):835. https://doi.org/10.3390/en18040835
Chicago/Turabian StyleHussain, Aqarib, Andrew Boland, Regan Varner, David Matolak, and Kristen Booth. 2025. "An Investigation of Operational Challenges in MHz Power Converters" Energies 18, no. 4: 835. https://doi.org/10.3390/en18040835
APA StyleHussain, A., Boland, A., Varner, R., Matolak, D., & Booth, K. (2025). An Investigation of Operational Challenges in MHz Power Converters. Energies, 18(4), 835. https://doi.org/10.3390/en18040835