A Review of Geothermal–Solar Hybrid Power-Generation Systems
Abstract
1. Introduction
2. Literature Review on Geothermal–Solar Hybridization
2.1. Configuration Structure of Geothermal–Solar Hybrid Power Generation System
2.2. A Comprehensive Review on Geothermal–Solar Hybrid Multigeneration Applications
3. Characteristics of Geothermal–Solar Hybrid Power Generation Systems
3.1. Advantages
3.2. Drawbacks and Technical Constraints
3.3. Key Technical Challenges
4. Evaluation of Geothermal–Solar Hybrid Power Generation Systems
4.1. Thermal Efficiency
4.2. Exergy Efficiency
4.3. Net Power Output
4.4. Economic Evaluation
4.5. Multi-Objective Composite Indicators (Multi-Objective Performance Evaluation)
5. Discussion and Suggestions
5.1. Promoting Optimization of Dynamic Matching Between the Heat Sources and Reducing the Dependence on High-Cost Energy-Storage Systems
5.2. Establishing a Multi-Heat-Source Precision-Matching Mechanism
5.3. Building a Unified Performance Evaluation System and Regional Adaptation Framework
5.4. AI/ML-Enabled Optimization and Operational Intelligence
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| CHP | Combined Heat and Power |
| CSP | Concentrating Solar Power |
| DCMD | Direct-contact Membrane Distillation |
| DHS | Double Heat Sources |
| DNI | Direct Normal Irradiance |
| DRL | Deep Reinforcement Learning |
| DSG | Direct Solar Steam Generation System |
| EGS | Enhanced Geothermal Systems |
| ETSC | Evacuated Tube Solar Collectors |
| FPSC | Flat-plate Solar Collectors |
| GA | Genetic Algorithm |
| GPP | Geothermal Power Plant |
| GPR | Gaussian Process Regression |
| LCOE | Levelized Cost of Electricity |
| LCOP | Levelized Cost of Product |
| LNG | Liquefied Natural Gas |
| ML | Machine Learning |
| MPC | Model Predictive Control |
| O&M | Operation and Maintenance |
| PCM | Phase-change Material |
| PTC | Parabolic-trough Collector |
| PTSC | parabolic-trough Solar Collector |
| SCPP | Solar Chimney Power Plant |
| SGHEPP | Solar–Geothermal Hybrid Power Plant |
| SMOA | Static Multi-objective Optimization Approach |
| TAC | Total Annual Cost |
| TSORC | Two-stage Organic Rankine Cycle |
| Nomenclature | |
| C | Capital Expenditure |
| E | Exergy, kW |
| e | Specific Exergy |
| gf | Geothermal Fluid |
| net | Net |
| Q | Heat, kJ |
| r | Discount Rate |
| sol | Solar |
| t | Year |
| W | Power, kW |
References
- Tranamil-Maripe, Y.; Cardemil, J.M.; Escobar, R.; Morata, D.; Sarmiento-Laurel, C. Assessing the Hybridization of an Existing Geothermal Plant by Coupling a CSP System for Increasing Power Generation. Energies 2022, 15, 1961. [Google Scholar] [CrossRef]
- Hou, J.; Cao, M.; Liu, P. Development and Utilization of Geothermal Energy in China: Current Practices and Future Strategies. Renew. Energy 2018, 125, 401–412. [Google Scholar] [CrossRef]
- Meng, D.; Liu, Q.; Ji, Z. Performance Analyses of Regenerative Organic Flash Cycles for Geothermal Power Generation. Energy Convers. Manag. 2020, 224, 113396. [Google Scholar] [CrossRef]
- Wang, G.; Wang, W.; Zhang, W.; Ma, F.; Liu, F. Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang 050000, China The Status Quo and Prospect of Geothermal Resources Exploration and Development in Beijing-Tianjin-Hebei Region in China. China Geol. 2020, 3, 173–181. [Google Scholar] [CrossRef]
- Zhou, C.; Doroodchi, E.; Moghtaderi, B. An In-Depth Assessment of Hybrid Solar–Geothermal Power Generation. Energy Convers. Manag. 2013, 74, 88–101. [Google Scholar] [CrossRef]
- Astolfi, M.; Xodo, L.; Romano, M.C.; Macchi, E. Technical and Economical Analysis of a Solar–Geothermal Hybrid Plant Based on an Organic Rankine Cycle. Geothermics 2011, 40, 58–68. [Google Scholar] [CrossRef]
- Ciampi, G.; Ciervo, A.; Rosato, A.; Sibilio, S.; Nardo, A.D. Parametric Simulation Analysis of a Centralized Solar Heating System with Long-Term Thermal Energy Storage Serving a District of Residential and School Buildings in Italy. Adv. Model. Anal. A 2018, 55, 165–172. [Google Scholar]
- Spadacini, C.; Xodo, L.G.; Quaia, M. Geothermal Energy Exploitation with Organic Rankine Cycle Technologies. In Organic Rankine Cycle (ORC) Power Systems; Elsevier: Amsterdam, The Netherlands, 2017; pp. 473–525. ISBN 978-0-08-100510-1. [Google Scholar]
- Li, J.; Wu, J.; Yang, Z. A review of geothermal power generation technology and its key influencing factors. Therm. Power Gener. 2022, 3, 51–60. [Google Scholar]
- Li, K.; Liu, C.; Chen, Y.; Liu, G.; Chen, J. Upgrading Both Geothermal and Solar Energy. Available online: https://publications.mygeoenergynow.org/grc/1032401.pdf (accessed on 1 June 2025).
- Zhang, J.; Tang, J.; Niu, C.; Chen, Z. Design and Characterisation of Geothermal and Solar Multi-Energy Complementary Heating System. J. Build. Eng. 2025, 103, 112052. [Google Scholar] [CrossRef]
- Erdogan, A.; Colpan, C.O.; Cakici, D.M. Thermal Design and Analysis of a Shell and Tube Heat Exchanger Integrating a Geothermal Based Organic Rankine Cycle and Parabolic Trough Solar Collectors. Renew. Energy 2017, 109, 372–391. [Google Scholar] [CrossRef]
- El Haj Assad, M.; Ahmadi, M.H.; Sadeghzadeh, M.; Yassin, A.; Issakhov, A. Renewable Hybrid Energy Systems Using Geothermal Energy: Hybrid Solar Thermal–Geothermal Power Plant. Int. J. Low-Carbon Technol. 2021, 16, 518–530. [Google Scholar] [CrossRef]
- Prajapati, M.; Shah, M. Geothermal-Solar Hybrid Systems for Hydrogen Production: A Systematic Review. Int. J. Hydrogen Energy 2024, 67, 842–851. [Google Scholar] [CrossRef]
- Lentz, Á.; Almanza, R. Solar–Geothermal Hybrid System. Appl. Therm. Eng. 2006, 26, 1537–1544. [Google Scholar] [CrossRef]
- Lentz, Á.; Almanza, R. Parabolic Troughs to Increase the Geothermal Wells Flow Enthalpy. Sol. Energy 2006, 80, 1290–1295. [Google Scholar] [CrossRef]
- Zhou, C. Hybridisation of Solar and Geothermal Energy in Both Subcritical and Supercritical Organic Rankine Cycles. Energy Convers. Manag. 2014, 81, 72–82. [Google Scholar] [CrossRef]
- Bozkurt, A.; Genç, M.S.; Seyitoğlu, S.S. 7E Analysis of a Low-Temperature Geothermal and Solar Energy Integrated Hybrid System for Sustainable Power and Hydrogen Generation. Therm. Sci. Eng. Prog. 2025, 66, 104073. [Google Scholar] [CrossRef]
- Li, K.; Liu, C.; Jiang, S.; Chen, Y. Review on Hybrid Geothermal and Solar Power Systems. J. Clean. Prod. 2020, 250, 119481. [Google Scholar] [CrossRef]
- Alvarenga, Y. Solar Steam Booster in the Ahuachapán Geothermal Field. Geotherm. Resour. Counc. Trans. 2008, 32, 395–400. [Google Scholar]
- Astolfi, M.; Romano, M.C.; Bombarda, P.; Macchi, E. Binary ORC (Organic Rankine Cycles) Power Plants for the Exploitation of Medium–Low Temperature Geothermal Sources—Part B: Techno-Economic Optimization. Energy 2014, 66, 435–446. [Google Scholar] [CrossRef]
- Wan, P.; Gong, L.; Bai, Z. Thermodynamic Analysis of a Geothermal-Solar Flash-Binary Hybrid Power Generation System. Energy Procedia 2019, 158, 3–8. [Google Scholar] [CrossRef]
- Cardemil, J.M.; Cortés, F.; Díaz, A.; Escobar, R. Thermodynamic Evaluation of Solar-Geothermal Hybrid Power Plants in Northern Chile. Energy Convers. Manag. 2016, 123, 348–361. [Google Scholar] [CrossRef]
- Ghasemi, H.; Sheu, E.; Tizzanini, A.; Paci, M.; Mitsos, A. Hybrid Solar–Geothermal Power Generation: Optimal Retrofitting. Appl. Energy 2014, 131, 158–170. [Google Scholar] [CrossRef]
- Ayub, M.; Mitsos, A.; Ghasemi, H. Thermo-Economic Analysis of a Hybrid Solar-Binary Geothermal Power Plant. Energy 2015, 87, 326–335. [Google Scholar] [CrossRef]
- Zhou, C.; Doroodchi, E.; Munro, I.; Moghtaderi, B. A feasibility study on hybrid solar–geothermal power generation. In New Zealand Geothermal Workshop 2011 Proceedings; University of Auckland’s Geothermal Institute: Auckland, New Zealand, 2011. [Google Scholar]
- Song, A.; Zhu, J.; Zhang, P.; Chang, N.; Cui, Z. Experimental Research on Solar and Geothermal Energy Coupling Power Generation System. Energy Procedia 2019, 158, 5982–5987. [Google Scholar] [CrossRef]
- Hu, S.; Yang, Z.; Li, J.; Duan, Y. Optimal Solar Thermal Retrofit for Geothermal Power Systems Considering the Lifetime Brine Degradation. Renew. Energy 2022, 186, 628–645. [Google Scholar] [CrossRef]
- Keshvarparast, A.; Ajarostaghi, S.S.M.; Delavar, M.A. Thermodynamic Analysis the Performance of Hybrid Solar-Geothermal Power Plant Equipped with Air-Cooled Condenser. Appl. Therm. Eng. 2020, 172, 115160. [Google Scholar] [CrossRef]
- Jiang, P.-X.; Zhang, F.-Z.; Xu, R.-N. Thermodynamic Analysis of a Solar–Enhanced Geothermal Hybrid Power Plant Using CO2 as Working Fluid. Appl. Therm. Eng. 2017, 116, 463–472. [Google Scholar] [CrossRef]
- Tempesti, D.; Manfrida, G.; Fiaschi, D. Thermodynamic Analysis of Two Micro CHP Systems Operating with Geothermal and Solar Energy. Appl. Energy 2012, 97, 609–617. [Google Scholar] [CrossRef]
- Boghossian, J.G. Dual-Temperature Kalina Cycle for Geothermal-Solar Hybrid Power Systems. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 2011. [Google Scholar]
- Samrat, B.; Asha, S.; Mishra, A.; Mageswari, U.; Gandhi, A.; Jagadev, N. Hybridizing a Geothermal Power Plant with Solar Thermal Collectors: A Techno-Economic Feasibility Analysis. In Proceedings of the 2025 International Conference on Automation and Computation (AUTOCOM), Dehradun, India, 4–6 March 2025; pp. 453–458. [Google Scholar]
- Zhang, L.; Qiu, Y.; Chen, Y.; Hoang, A.T. Multi-Objective Particle Swarm Optimization Applied to a Solar-Geothermal System for Electricity and Hydrogen Production; Utilization of Zeotropic Mixtures for Performance Improvement. Process Saf. Environ. Prot. 2023, 175, 814–833. [Google Scholar] [CrossRef]
- Cakici, D.M.; Erdogan, A.; Colpan, C.O. Thermodynamic Performance Assessment of an Integrated Geothermal Powered Supercritical Regenerative Organic Rankine Cycle and Parabolic Trough Solar Collectors. Energy 2017, 120, 306–319. [Google Scholar] [CrossRef]
- Bokelman, B.; Michaelides, E.E.; Michaelides, D.N. A Geothermal-Solar Hybrid Power Plant with Thermal Energy Storage. Energies 2020, 13, 1018. [Google Scholar] [CrossRef]
- Ciani Bassetti, M.; Consoli, D.; Manente, G.; Lazzaretto, A. Design and Off-Design Models of a Hybrid Geothermal-Solar Power Plant Enhanced by a Thermal Storage. Renew. Energy 2018, 128, 460–472. [Google Scholar] [CrossRef]
- Gong, L.; Zhang, Y.; Bai, Z. Geothermal-Solar Hybrid Power with the Double-Pressure Evaporation Arrangement and the System off-Design Evaluation. Energy Convers. Manag. 2021, 244, 114501. [Google Scholar] [CrossRef]
- Li, T.; Hu, X.; Wang, J.; Kong, X.; Liu, J.; Zhu, J. Performance Improvement of Two-Stage Serial Organic Rankine Cycle (TSORC) Driven by Dual-Level Heat Sources of Geothermal Energy Coupled with Solar Energy. Geothermics 2018, 76, 261–270. [Google Scholar] [CrossRef]
- Manente, G.; Field, R.; DiPippo, R.; Tester, J.W.; Paci, M.; Rossi, N. Hybrid Solar-Geothermal Power Generation to Increase the Energy Production from a Binary Geothermal Plant. In Proceedings of the ASME 2011 International Mechanical Engineering Congress and Exposition, Denver, Colorado, USA, 11–17 November 2011; pp. 109–119. [Google Scholar]
- Alibaba, M.; Pourdarbani, R.; Manesh, M.H.K.; Herrera-Miranda, I.; Gallardo-Bernal, I.; Hernández-Hernández, J.L. Conventional and Advanced Exergy-Based Analysis of Hybrid Geothermal–Solar Power Plant Based on ORC Cycle. Appl. Sci. 2020, 10, 5206. [Google Scholar] [CrossRef]
- Nahavandinezhad, M.; Zahedi, A. Conceptual Design of Solar/Geothermal Hybrid System Focusing on Technical, Economic and Environmental Parameters. Renew. Energy 2022, 181, 1110–1125. [Google Scholar] [CrossRef]
- Bonyadi, N.; Johnson, E.; Baker, D. Technoeconomic and Exergy Analysis of a Solar Geothermal Hybrid Electric Power Plant Using a Novel Combined Cycle. Energy Convers. Manag. 2018, 156, 542–554. [Google Scholar] [CrossRef]
- Boretti, A. The Perspective of Enhanced Geothermal Energy Integration with Concentrated Solar Power and Thermal Energy Storage. Energy Storage 2022, 4, e303. [Google Scholar] [CrossRef]
- McTigue, J.D.; Castro, J.; Mungas, G.; Kramer, N.; King, J.; Turchi, C.; Zhu, G. Hybridizing a Geothermal Power Plant with Concentrating Solar Power and Thermal Storage to Increase Power Generation and Dispatchability. Appl. Energy 2018, 228, 1837–1852. [Google Scholar] [CrossRef]
- Bist, N.; Sircar, A. Hybrid Solar Geothermal Setup by Optimal Retrofitting. Case Stud. Therm. Eng. 2021, 28, 101529. [Google Scholar] [CrossRef]
- Cuce, E.; Cuce, P.M.; Carlucci, S.; Sen, H.; Sudhakar, K.; Hasanuzzaman, M. Solar chimney power plants: A review of the concepts, designs and performances. Sustainability 2022, 14, 1450. [Google Scholar] [CrossRef]
- Shumiye, W.B.; Ancha, V.R.; Tadese, A.K.; Zeru, B.A. Exergy Analysis of Solar-Geothermal Based Power Plant Integrated with Boiling, and Reverse Osmosis Water Purification. Energy Convers. Manag. X 2022, 15, 100255. [Google Scholar] [CrossRef]
- Senturk Acar, M.; Arslan, O. Energy and Exergy Analysis of Solar Energy-Integrated, Geothermal Energy-Powered Organic Rankine Cycle. J. Therm. Anal. Calorim. 2019, 137, 659–666. [Google Scholar] [CrossRef]
- Boukelia, T.E.; Arslan, O.; Bouraoui, A. Thermodynamic Performance Assessment of a New Solar Tower-Geothermal Combined Power Plant Compared to the Conventional Solar Tower Power Plant. Energy 2021, 232, 121109. [Google Scholar] [CrossRef]
- Siddiqui, O.; Ishaq, H.; Dincer, I. A Novel Solar and Geothermal-Based Trigeneration System for Electricity Generation, Hydrogen Production and Cooling. Energy Convers. Manag. 2019, 198, 111812. [Google Scholar] [CrossRef]
- Asadi, R.; Assareh, E.; Moltames, R.; Olazar, M.; Nedaei, M.; Parvaz, F. Optimisation of Combined Cooling, Heating and Power (CCHP) Systems Incorporating the Solar and Geothermal Energy: A Review Study. Int. J. Ambient Energy 2022, 43, 42–60. [Google Scholar] [CrossRef]
- Azizi, N.; Esmaeilion, F.; Moosavian, S.F.; Yaghoubirad, M.; Ahmadi, A.; Aliehyaei, M.; Soltani, M. Critical Review of Multigeneration System Powered by Geothermal Energy Resource from the Energy, Exergy, and Economic Point of Views. Energy Sci. Eng. 2022, 10, 4859–4889. [Google Scholar] [CrossRef]
- Raji Asadabadi, M.J.; Rad, S.H.; Taraghi, M.; Moghimi, M.; Ahmadi, R. ANN-Boosted Optimization and Performance Evaluation of a Hybrid Solar-Geothermal High Temperature Cascaded ORC for Electricity, Liquid Hydrogen, Freshwater, and Cooling Purposes. Appl. Therm. Eng. 2025, 262, 125251. [Google Scholar] [CrossRef]
- Cao, Y.; Dhahad, H.A.; Sharma, K.; Anqi, A.E.; El-Shafay, A.S.; Najat Ahmed, A. Comprehensive Thermodynamic and Economic Analyses and Optimization of a Novel Poly-Generation Setup Utilizing Solar and Geothermal Sources. Appl. Therm. Eng. 2022, 207, 118133. [Google Scholar] [CrossRef]
- Siddiqui, O.; Dincer, I. A New Solar and Geothermal Based Integrated Ammonia Fuel Cell System for Multigeneration. Int. J. Hydrogen Energy 2020, 45, 34637–34653. [Google Scholar] [CrossRef]
- Farajollahi, A.; Baharvand, M.; Takleh, H.R. Modeling and Optimization of Hybrid Geothermal-Solar Energy Plant Using Coupled Artificial Neural Network and Genetic Algorithm. Process Saf. Environ. Prot. 2024, 186, 348–360. [Google Scholar] [CrossRef]
- Geng, Z.; Fu, Y.; Yao, Y. Analysis of the characteristics of solar energy and geothermal complementary clean utilization system. Therm. Power Gener. 2022, 51, 17–24. [Google Scholar]
- Liu, G.; Ji, D.; Qin, Y. Geothermal-Solar Energy System Integrated with Hydrogen Production and Utilization Modules for Power Supply-Demand Balancing. Energy 2023, 283, 128736. [Google Scholar] [CrossRef]
- Wang, W.; Sun, Y.; Majdi, H.S.; Deifalla, A.; Alsenani, T.R.; Zhao, Z.; Su, Z.; Zhang, W.; Abdelmohimen, M.A.H. Multi-Aspect Investigation and Multi-Criteria Optimization of a Novel Solar-Geothermal-Based Polygeneration System Using Flat Plate and Concentrated Photovoltaic Thermal Solar Collectors. Process Saf. Environ. Prot. 2023, 174, 485–509. [Google Scholar] [CrossRef]
- Qi, S.; Wang, W.; Shen, S.; Albaker, A.; Alomar, M.A.; Rizwan, A.; Pugazhendhi, A. Geothermal and Solar Energy Utilization for the Development of a Sustainable Power and Cooling Production. Process Saf. Environ. Prot. 2023, 172, 473–485. [Google Scholar] [CrossRef]
- Almehmadi, F.A.; Najib, A.; Ali, E.; Alqaed, S.; Mustafa, J.; Al-Ansary, H. Thermodynamic Optimization of Hybrid Solar-Geothermal Power Plant Coupled with DCMD for Water and Electricity Production: A Case Study at Ain Khulab, Saudi Arabia. Energy Rep. 2023, 10, 3240–3251. [Google Scholar] [CrossRef]
- Ismail, M.A.; Abdul Sada, G.K.; Amari, A.; Umarov, A.; Kadhum, A.A.H.; Atamuratova, Z.; Elboughdiri, N. Machine Learning-Based Optimization and Dynamic Performance Analysis of a Hybrid Geothermal-Solar Multi-Output System for Electricity, Cooling, Desalinated Water, and Hydrogen Production: A Case Study. Appl. Therm. Eng. 2025, 267, 125834. [Google Scholar] [CrossRef]
- Yilmaz, C.; Sen, O. Feasibility of Optimum Energy Use and Cost Analyses by Applying Artificial Intelligence and Genetic Optimization Methods in Geothermal and Solar Energy-Assisted Multigeneration Systems. Renew. Energy 2024, 237, 121548. [Google Scholar] [CrossRef]
- Sen, O.; Faruk Guler, O.; Yilmaz, C.; Kanoglu, M. Thermodynamic Modeling and Analysis of a Solar and Geothermal Assisted Multi-Generation Energy System. Energy Convers. Manag. 2021, 239, 114186. [Google Scholar] [CrossRef]
- Calise, F.; Cappiello, F.L.; d’Accadia, M.D.; Vicidomini, M. Thermo-Economic Analysis of Hybrid Solar-Geothermal Polygeneration Plants in Different Configurations. Energies 2020, 13, 2391. [Google Scholar] [CrossRef]
- Atiz, A. Comparison of Three Different Solar Collectors Integrated with Geothermal Source for Electricity and Hydrogen Production. Int. J. Hydrogen Energy 2020, 45, 31651–31666. [Google Scholar] [CrossRef]
- Ezzat, M.F.; Dincer, I. Energy and Exergy Analyses of a New Geothermal–Solar Energy Based System. Sol. Energy 2016, 134, 95–106. [Google Scholar] [CrossRef]
- Khalid, F.; Dincer, I.; Rosen, M.A. Techno-Economic Assessment of a Solar-Geothermal Multigeneration System for Buildings. Int. J. Hydrogen Energy 2017, 42, 21454–21462. [Google Scholar] [CrossRef]
- Guler, O.F.; Sen, O.; Yilmaz, C.; Kanoglu, M. Performance Evaluation of a Geothermal and Solar-Based Multigeneration System and Comparison with Alternative Case Studies: Energy, Exergy, and Exergoeconomic Aspects. Renew. Energy 2022, 200, 1517–1532. [Google Scholar] [CrossRef]
- Bicer, Y.; Dincer, I. Development of a New Solar and Geothermal Based Combined System for Hydrogen Production. Sol. Energy 2016, 127, 269–284. [Google Scholar] [CrossRef]
- Javadi, M.A.; Khalili Abhari, M.; Ghasemiasl, R.; Ghomashi, H. Energy, Exergy and Exergy-Economic Analysis of a New Multigeneration System Based on Double-Flash Geothermal Power Plant and Solar Power Tower. Sustain. Energy Technol. Assess. 2021, 47, 101536. [Google Scholar] [CrossRef]
- Takleh, H.R.; Zare, V.; Mohammadkhani, F.; Sadeghiazad, M.M. Proposal and Thermoeconomic Assessment of an Efficient Booster-Assisted CCHP System Based on Solar-Geothermal Energy. Energy 2022, 246, 123360. [Google Scholar] [CrossRef]
- Musharavati, F.; Khanmohammadi, S.; Pakseresht, A. A Novel Multi-Generation Energy System Based on Geothermal Energy Source: Thermo-Economic Evaluation and Optimization. Energy Convers. Manag. 2021, 230, 113829. [Google Scholar] [CrossRef]
- Ma, T.; Lan, L.; Marefati, M. Assessment of a New Multigeneration System Based on Geothermal Plant and a Linear Fresnel Reflector-Based Solar Unit: An Effort to Improve Performance. Process Saf. Environ. Prot. 2023, 171, 896–913. [Google Scholar] [CrossRef]
- Bamisile, O.; Cai, D.; Adedeji, M.; Dagbasi, M.; Li, J.; Hu, Y.; Huang, Q. Thermo-Enviro-Exergoeconomic Analysis and Multi-Objective Optimization of a Novel Geothermal-Solar-Wind Micro-Multi-Energy System for Cleaner Energy Production. Process Saf. Environ. Prot. 2023, 170, 157–175. [Google Scholar] [CrossRef]
- Forghani, A.H.; Solghar, A.A.; Hajabdollahi, H. Optimal Design of a Multi-Generation System Based on Solar and Geothermal Energy Integrated with Multi-Effect Distillatory. Appl. Therm. Eng. 2024, 236, 121381. [Google Scholar] [CrossRef]
- Baniasadi, E.; Ziaei-Rad, M.; Behvand, M.A.; Javani, N. Exergy-Economic Analysis of a Solar-Geothermal Combined Cooling, Heating, Power and Water Generation System for a Zero-Energy Building. Int. J. Hydrogen Energy 2023, 48, 39064–39083. [Google Scholar] [CrossRef]
- Sohani, A.; Delfani, F.; Hosseini, M.; Sayyaadi, H.; Karimi, N.; Li, L.K.B.; Doranehgard, M.H. Dynamic Multi-Objective Optimization Applied to a Solar-Geothermal Multi-Generation System for Hydrogen Production, Desalination, and Energy Storage. Int. J. Hydrogen Energy 2022, 47, 31730–31741. [Google Scholar] [CrossRef]
- Mohammadi, M.; Mahmoudan, A.; Nojedehi, P.; Hoseinzadeh, S.; Fathali, M.; Garcia, D.A. Thermo-Economic Assessment and Optimization of a Multigeneration System Powered by Geothermal and Solar Energy. Appl. Therm. Eng. 2023, 230, 120656. [Google Scholar] [CrossRef]
- Assareh, E.; Hoseinzadeh, S.; Agarwal, N.; Delpisheh, M.; Dezhdar, A.; Feyzi, M.; Wang, Q.; Garcia, D.A.; Gholamian, E.; Hosseinzadeh, M.; et al. A Transient Simulation for a Novel Solar-Geothermal Cogeneration System with a Selection of Heat Transfer Fluids Using Thermodynamics Analysis and ANN Intelligent (AI) Modeling. Appl. Therm. Eng. 2023, 231, 120698. [Google Scholar] [CrossRef]
- Fan, G.; Nedaei, N.; Farkoush, S.G.; Guo, P.; Lin, S.; Xu, J. Multi-Aspect Analysis and Multi-Objective Optimization of a Solar/Geothermal-Assisted Power and Freshwater Cogeneration Plant. J. Clean. Prod. 2021, 329, 129593. [Google Scholar] [CrossRef]
- Zhu, X.; Han, J.; Ge, Y.; Zhu, W.; Yang, J. Multi-Objective Optimization of a Small-Scale Solar-Hot-Spring-Geothermal Brackish Water Direct Contact Membrane Distillation System. Energy Convers. Manag. 2022, 270, 116282. [Google Scholar] [CrossRef]
- Yilmaz, C.; Arslan, M.; Ozdemir, S.N.; Tokgoz, N. Thermal Design and Genetic Algorithm Optimization of Geothermal and Solar-Assisted Multi-Energy and Hydrogen Production Using Artificial Neural Networks. Energy 2025, 324, 135941. [Google Scholar] [CrossRef]
- Kalan, A.S.; Khuyinrud, M.B.; Jahangiri, F.; Ahmadi, R.; Mahboubi, A.; Lü, X.; Rosen, M.A. Thermodynamic Analysis and Performance Enhancement of an Integrated Solar–Geothermal Polygeneration System Using Grey Wolf Optimization and LSTM-Based Forecasting with Monte Carlo Uncertainty Analysis: A Case Study on Tenerife Island. Appl. Energy 2025, 401, 126640. [Google Scholar] [CrossRef]
- Ben Slimene, M.; Khlifi, M.A.; Soliman, N.F.; Osman, H.; Amari, A.; Sabirov, S.; Mavlonov, A.; Safarova, L. Transient Modeling and Data-Driven Optimization of a Hybrid Geothermal–Solar Energy System for Eco-Friendly Multigeneration: A Case Study Approach to Sustainable Urban Development. Process Saf. Environ. Prot. 2025, 202, 107717. [Google Scholar] [CrossRef]
- Bozkurt, A.; Genç, M.S. Optimization of Energy and Hydrogen Storage Systems in Geothermal Energy Sourced Hybrid Renewable Energy System. Process Saf. Environ. Prot. 2024, 189, 1052–1060. [Google Scholar] [CrossRef]
- Zahedi, A.R.; Labbafi, S.; Ghaffarinezhad, A.; Habibi, K. Design, Construction and Performance of a Quintuple Renewable Hybrid System of Wind/Geothermal/Biomass/Solar/Hydro plus Fuel Cell. Int. J. Hydrogen Energy 2021, 46, 6206–6224. [Google Scholar] [CrossRef]
- Bozgeyik, A.; Altay, L.; Hepbasli, A. Energetic, Exergetic, Exergoeconomic, Environmental and Sustainability Analyses of a Solar, Geothermal and Biomass Based Novel Multi-Generation System for Production of Power, Hydrogen, Heating, Cooling and Fresh Water. Process Saf. Environ. Prot. 2023, 177, 400–415. [Google Scholar] [CrossRef]
- Ding, G.-C.; Ji, P.; Geng, M.-Y. Technical Assessment of Multi-Generation Energy System Driven by Integrated Renewable Energy Sources: Energetic, Exergetic and Optimization Approaches. Fuel 2023, 331, 125689. [Google Scholar] [CrossRef]
- Ozgener, O.; Ozgener, L. Energetic Performance Evaluation of an Earth to Air Heat Exchanger System for Agricultural Building Heating. In Proceedings of the World Renewable Energy Congress, Linköping, Sweden, 8–13 May 2011. [Google Scholar]
- Kariuki, B.W.; Hassan, H.; Ahmed, M.; Emam, M. A Review on Geothermal-Solar Hybrid Systems for Power Production and Multigeneration Systems. Appl. Therm. Eng. 2025, 259, 124796. [Google Scholar] [CrossRef]
- Shamoushaki, M.; Koh, S.C.L. Comparative Life Cycle Assessment of Integrated Renewable Energy-Based Power Systems. Sci. Total Environ. 2024, 946, 174239. [Google Scholar] [CrossRef]
- Greenhut, A.D.; Tester, J.W.; DiPippo, R.; Field, R.; Love, C.; Nichols, K.; Augustine, C.; Batini, F.; Price, B.; Gigliucci, G.; et al. Solar-Geothermal Hybrid Cycle Analysis for Low Enthalpy Solar and Geothermal Resources. In Proceedings of the World Geothermal Congress, Bali, Indonesia, 25–30 April 2010. [Google Scholar]
- Venomhata, H.D.V.; Oketch, P.O.; Gathitu, B.B.; Chisale, P. Working Fluid Selection for the Geothermal-Solar Hybrid Cycle at Olkaria II Power Plant in Kenya. Heliyon 2023, 9, e12762. [Google Scholar] [CrossRef]
- Song, J.; Wang, Y.; Wang, K.; Wang, J.; Markides, C.N. Combined Supercritical CO2 (SCO2) Cycle and Organic Rankine Cycle (ORC) System for Hybrid Solar and Geothermal Power Generation: Thermoeconomic Assessment of Various Configurations. Renew. Energy 2021, 174, 1020–1035. [Google Scholar] [CrossRef]
- Oyewo, A.S.; Aghahosseini, A.; Movsessian, M.M.; Breyer, C. A Novel Geothermal-PV Led Energy System Analysis on the Case of the Central American Countries Guatemala, Honduras, and Costa Rica. Renew. Energy 2024, 221, 119859. [Google Scholar] [CrossRef]
- Li, K.; Bian, H.; Liu, C.; Zhang, D.; Yang, Y. Comparison of Geothermal with Solar and Wind Power Generation Systems. Renew. Sustain. Energy Rev. 2015, 42, 1464–1474. [Google Scholar] [CrossRef]
- Shaghaghi, A.; Honarvar, F.; Jafari, M.; Solati, A.; Zahedi, R.; Taghitahoone, M. Thermodynamic and Thermoeconomic Evaluation of Integrated Hybrid Solar and Geothermal Power Generation Cycle. Energy Convers. Manag. X 2024, 23, 100685. [Google Scholar] [CrossRef]
- Yi, Z.; Luo, X.; Yang, Z.; Wang, C.; Chen, J.; Chen, Y.; Ponce-Ortega, J.M. Thermo-Economic-Environmental Optimization of a Liquid Separation Condensation-Based Organic Rankine Cycle Driven by Waste Heat. J. Clean. Prod. 2018, 184, 198–210. [Google Scholar] [CrossRef]
- Eslami, S.; Gholami, A.; Akhbari, H.; Zandi, M.; Noorollahi, Y. Solar-Based Multi-Generation Hybrid Energy System; Simulation and Experimental Study. Int. J. Ambient Energy 2022, 43, 2963–2975. [Google Scholar] [CrossRef]




| Technology Type | Resource | Cycle/Working Fluid | Preferred Solar-Integration Points | Primary Hybridization Goals | Complexity and O&M Notes | Storage Dependence |
|---|---|---|---|---|---|---|
| Dry steam | High temperature, steam-dominant reservoirs (≈≥220–250 °C), dry/saturated steam at wellhead | Direct steam turbine | Superheating of steam upstream of turbine | Raise specific work; reduce turbine moisture; improve peak output | Base-cycle simple | Moderate–High (buffer DNI swings for stable turbine-inlet temperature) |
| single-/Double-flash | High-enthalpy liquid-dominant (≈≥180–230 °C), flashing at separators | Flash separation-steam turbine; brine reinjection | Preheating brine; direct solar steam generation to raise dryness; superheating separated steam | Increase steam mass flow/dryness; improve annual net output | Medium complexity (separators/valves/two-phase control); silica-scaling management crucial | Moderate (short-term TES smooths solar-driven variations in flash conditions) |
| Binary ORC | Medium/low-temperature brine (≈80–200 °C) | Sub-/supercritical ORC (isobutane, pentane, R1233zd(E), R1234ze(Z), R245fa) | Preheater/evaporator/superheater of the ORC loop | Broaden operating envelope; raise net power; enable multigeneration couplings | Medium complexity (multiple component; working-fluid management); good controllability | Low–Moderate (flexible part-load; small TES or operational strategies often sufficient) |
| Other combined cycle | Broad, stratified resources with wide temperature difference | Mixed cascaded cycles (e.g., flash + ORC; dual-/supercritical ORC; Kalina + ORC) | Preheat brine, steam superheat, ORC superheat; TES coordinated across stages | Maximize use of full temperature span; higher annual capacity factor; potential LCOE reduction | High complexity; tighter integration and advanced control/MPC recommended | Moderate–High (coordinated TES often needed for cross-stage stability) |
| Challenge Categories | Description | Literature Reference |
|---|---|---|
| Heat source coupling mismatch | Geothermal energy is stable, but the temperature is low, and solar energy is high, but the temperature fluctuates greatly. The thermal-mass matching between the two is difficult in the heat exchanger, which affects the overall thermal efficiency and system coupling stability. | Cakici [35] Erdogan [12] |
| Control policies are complex | The system usually involves three types of energy: geothermal, photothermal, and energy storage. It is difficult for traditional PID and other control methods to meet the requirements of rapid switching and dynamic response. | Tranamil-Maripe et al. [1] Yi [100] |
| Cost estimates are uncertain | The system’s LCOE is strongly contingent on the quality of the geothermal resource, solar-energy utilization rate, energy-storage configuration scheme and grid connection conditions. Currently, a standardized economic evaluation framework is still lacking. | Tranamil-Maripe et al. [1] |
| The standard of systematic evaluation is missing | At present, most assessments rely on single metrics—such as thermal efficiency, exergy efficiency, or net power output, and a multidimensional and scenario-based comprehensive evaluation framework for system performance has not been established. | Li et al. [19] |
| Author, Reference No, /Year | Power Generation/Multigeneration Systems | Metric-Scope/Value | Payback Years | Environmental Analysis |
|---|---|---|---|---|
| Cao et al. [55] (2022) | polygeneration system | LCOP 0.05 USD/kWh | 3.96 | - |
| Ding et al. [90] (2022) | polygeneration system | LCOE 0.098 USD/kWh | - | - |
| Javadi et al. [72] (2021) | multigeneration system | the cost of hydrogen and electricity production 0.15 USD/kWh | - | - |
| Sohani et al. [79] (2022) | multigeneration system | - | 4.4–5.6 | - |
| Farajollahi et al. [57] (2024) | multigeneration system | LCOP 0.04 USD/kWh | - | - |
| Mohammadi et al. [80] (2023) | multigeneration system | the total unit cost of products 0.12 USD/kWh | - | - |
| Zhou [5] (2013) | power generation system | LCOE 0.225 USD/kWh | - | - |
| Tranamil-Maripe Y [1] (2022) | power generation system | LCOE 0.081 USD/kWh | - | - |
| Farayi Musharavati [74] (2021) | multigeneration system | the electricity cost rate 108.4 USD/h | - | - |
| Raji Asadabadi [54] (2025) | multigeneration system | total cost rate for the entire system 541.53 USD/h | - | Lowers CO2 emissions 0.181 kg/kWh |
| Bozgeyik, A et al. [89] (2023) | multigeneration system | The overall unit product cost 0.078 USD/kWh | - | Social ecologic factor 1.37 |
| Yilmaz, C et al. [64] (2024) | multigeneration system | the cost of electricity 0.0145 USD/kWh | - | - |
| Gong, L et al. [38] (2021) | power generation system | LOCE 0.063 USD/kWh | - | - |
| Ismail, M.A et al. [63] (2025) | multigeneration system | - | 5.73–5.07 | - |
| Zhang, L. et al. [34] (2023) | power/hydrogen generation system | - | 4.82 | - |
| Astolfi, M et al. [6] (2011) | power generation system | LOCE 0.157–0.302 USD/kWh | - | - |
| Wang, W. et al. [60] (2023) | polygeneration system | total investment cost rate 1.01 USD/h | - | - |
| Hu, S. et al. [28] (2022) | power generation system | LCOE 0.188 USD/kWh | - | - |
| Khalid, F et al. [69] (2017) | multigeneration system | LCOE 0.089 USD/kWh | - | - |
| Bonyadi, N et al. [43] (2018) | power generation system | LCOE 0.163–0.172 USD/kWh | - | - |
| Bamisile, O et al. [76] (2023) | multigeneration system | LCOE 0.04529 USD/kWh | - | - |
| Configuration | Resource | Evaluation Indicators | Complexity | Reliability | Storage Dependence | Judgment |
|---|---|---|---|---|---|---|
| Solar-preheating configurations | Medium DNI, low-medium temperature geothermal | ηth: 6.3% [37], 16.6 [26], over 30% [36] ηex: 42.8% [34], 22.7% [26] Net power: 1–11% boost [24], 6.3% boost [25], 7% more [33], 4% improvement [4] | 2–3 (few stages/circuits) | Simple structure and relatively friendly operation and maintenance | Low-medium (may weaken energy storage) | Highly cost-effective in scenarios with limited DNI and limited O&M resources; good cost–efficiency balance |
| Solar-superheating configurations + complex emerging concepts | High DNI, medium-high temperature geothermal | ηth: 12.19% [38], 50% [44] ηex: 51.64% [48], 15.2% improvement [39] Net power: 27% improvement [39], 60% more electricity [43], 9% improvement [45] | 4–5 (significant increase in components and control loops) | Scaling/deposition and heat-loss control become difficult | Medium-high (strong reliance on energy storage) | High DNI/ sufficient funding and O&M can lead to higher efficiency; however, the risk of increased cost and complexity |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, S.; Liu, J.; Lu, X.; Zhang, W. A Review of Geothermal–Solar Hybrid Power-Generation Systems. Energies 2025, 18, 5852. https://doi.org/10.3390/en18215852
Hu S, Liu J, Lu X, Zhang W. A Review of Geothermal–Solar Hybrid Power-Generation Systems. Energies. 2025; 18(21):5852. https://doi.org/10.3390/en18215852
Chicago/Turabian StyleHu, Shuntao, Jiali Liu, Xinli Lu, and Wei Zhang. 2025. "A Review of Geothermal–Solar Hybrid Power-Generation Systems" Energies 18, no. 21: 5852. https://doi.org/10.3390/en18215852
APA StyleHu, S., Liu, J., Lu, X., & Zhang, W. (2025). A Review of Geothermal–Solar Hybrid Power-Generation Systems. Energies, 18(21), 5852. https://doi.org/10.3390/en18215852

