Transmission-Targeted Demand-Side Response for Congestion Relief: A Systematic Review
Abstract
1. Introduction
2. Materials and Methods
2.1. Review Design and Reporting
2.2. Information Sources and Eligibility Criteria
2.3. Search Strategies and Limits
- Web of Science (Advanced Search): queries restricted to the categories ENGINEERING, ELECTRICAL & ELECTRONIC; ENERGY & FUELS; and COMPUTER SCIENCE, INFORMATION SYSTEMS, with PY = 2010–2025, LA = English, and DT = (Article OR Review).
- Scopus (Advanced Search): embedded limits PUBYEAR 2010–2025, LANGUAGE = English, DOCTYPE = ar/re, and Subject Areas SUBJAREA ∈ {ENER, ENGI, COMP} (OR-combined).
- IEEE Xplore (Keyword/Command): text queries executed as written; facets on the results page constrained by Publication Year (2010–2025), Content Type (Journals + Early Access), and Language (English).
2.4. Record Identification, Management, and Deduplication
- Step 1 (within-database): Duplicates removed within each source using a deterministic key (DOI, else normalized Title + Year) amounted to 5292 (24.0%) overall, as follows: WoS: 821 (11.1%); Scopus: 3880 (34.5%); and IEEE: 591 (17.4%). After this step, 16,786 unique records remained (WoS: 6603; Scopus: 7374; and IEEE: 2809);
- Step 2 (cross-database): merging the three deduplicated sets, we removed a further 3682 (16.7%) cross-source duplicates (same key), yielding 13,104 unique records for screening.
2.5. Selection Process (Screening)
2.6. Topic Tagging and Descriptive Trends
3. Transmission Overloads—Definitions and Impacts
3.1. Mechanisms of Overloads in Meshed Transmission Networks
3.2. The N-1 Security Criterion and Operational Standards
3.3. Technical, Economic, and Market Impacts of Overloads
4. Methods for Transmission Congestion Elimination—Comprehensive Review
4.1. Redispatch and Countertrading (Supply-Side)
4.2. Phase-Shifting Transformers (PST)
4.3. FACTS Controllers (Series, Shunt, and Unified)
4.4. HVDC and Multi-Terminal DC Coordination
4.5. Programmatic Topology Changes (Optimal Transmission Switching)
4.6. Dynamic Line Rating (DLR)
4.7. Remedial Action Schemes (RAS/SPS/SIPS)
4.8. Risk-Aware Operation and Probabilistic Security
4.9. Predictive Operations with Machine Learning and Graph Neural Networks
4.10. Storage as Fast Corrective Energy
4.11. Transmission-Targeted DSR
| Method | Mechanism | Time to Effect | Spatial Targeting | Typical Scale | Duration/Reversibility | Activation Lead Time | Key Operational Caveats | Key References |
|---|---|---|---|---|---|---|---|---|
| Redispatch/countertrading | Change injections | min–h | High with good locations | 100–1000+ MW | Sustained within commitments | Market cycle → real-time | Cost concentration, cross-border settlement | [2,3,4,5,20,22,23,28,29,36,37,38,39,93,94,95,96,97] |
| PST | Phase shift on corridor | s–min | Very high on targeted ties | 50–1000+ MW | Continuous within tap/thermal limits | Scheduling → real-time | OLTC duty, protection specifics, cross-border coordination | [40,41,42,43,44,45,46,47,98,99,100,101,102,103] |
| FACTS—TCSC | Series reactance control | <1 s–s | High on equipped branch | 10–300+ MW shift | Fully reversible | Real-time | SSR risk, protection tuning | [48,49,50] |
| FACTS—SVC/STATCOM | Shunt reactive control | cycles–100 ms | Indirect via V/Q margin | frees thermal headroom | Reversible, continuous | Real-time | Interaction with AVR/OLTC | [26,51,52,53,104] |
| FACTS—UPFC | Unified series + shunt | cycles–s | High on target branch | direct branch-power control | Reversible | Real-time | Control complexity, protection coordination | [53,54,55,56,57,58] |
| HVDC/MTDC | Controllable DC transfer | s–min | High at terminals | 100–1000+ MW | Reversible, sustained | Real-time | Converter contingencies, voltage interactions | [59,60,61,62,105,106,107,108,109] |
| Topology programs (OTS) | Reconfiguration program | min–real-time | High if AC-informed | corridor-dependent | Reversible by switching back | Dispatch → real-time | Frequency limits, AC feasibility | [24,64,65,66,67,68,69,70,110,111,112,113] |
| DLR | Weather-based rating | min–h | Corridor-specific | margin increase | Reversible via fallback | Scheduling | Data assurance, uncertainty | [12,14,71,72,73,114,115,116,117] |
| Storage | Fast corrective energy | s–min | Locational, PTDF-dependent | 10–200+ MW (short) | Limited by energy | Real-time | SoC management, grid code | [86,87,104,118,119,120,121,122] |
| DSR (transmission-targeted) | Load reduction/shift | min–tens of min | High only for well-located portfolios | 5–50+ MW per program | Event-limited | Intraday → real-time | Baselines, telemetry, persistence | [88,89,90,91,92,123,124,125,126] |
| RAS/SPS | Automatic corrective schemes | cycles–s | By design of arming | portfolio-dependent | Deterministic when armed | Real-time | Governance, failure modes | [48,74,75,76,109] |
| Risk-aware ops | Probabilistic security/chance constraints | planning → real-time | System-wide | — | — | — | Uncertainty modeling | [4,28,30,77,78,79,80,127] |
| Predictive ops | ML/GNN early warning | h–day-ahead | Corridor-/topology-aware | — | — | — | Data drift, explainability | [23,81,82,83,84,85,128] |
5. Demand-Side Response in the Transmission Context
5.1. Definitions and Approaches
5.2. TSO vs. DSO—Objectives, Coordination, and Deliverability
5.3. Requirements for Transmission-Level Participation
5.4. Programs Operated by TSOs/ISOs/RTOs
5.5. Comparative Analysis: Dominant Objectives and the Narrow Role in Congestion Relief
6. Discussion
6.1. Comparative Perspective Across Supply, Network, and Demand Measures
6.2. Evidence Quality and Bias Considerations
6.3. Implications for Practice and Policy
6.4. Future Research Directions
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| AGC | Automatic Generation Control |
| AHC | Advanced Hybrid Coupling (SDAC) |
| aFRR | Automatic Frequency Restoration Reserve |
| AVR | Automatic Voltage Regulator |
| CACM | Capacity Allocation and Congestion Management |
| DLR | Dynamic Line Rating |
| DSO | Distribution System Operator |
| DSR | Demand-Side Response |
| EA | Emergency/Corrective Action (contextual) |
| ENTSO-E | European Network of Transmission System Operators for Electricity |
| Euphemia | SDAC Market-Coupling Algorithm |
| FBMC | Flow-Based Market Coupling |
| FCR | Frequency Containment Reserve |
| FFR | Fast Frequency Response |
| GNN | Graph Neural Network |
| GOPACS | Grid Operators Platform for Congestion Solutions |
| HVDC | High-Voltage Direct Current |
| ISO/RTO | Independent System Operator/Regional Transmission Organization |
| LMP | Locational Marginal Pricing |
| LODF | Line Outage Distribution Factor |
| MTDC | Multi-Terminal Direct Current |
| mFRR | Manual Frequency Restoration Reserve |
| NEBEF | Notification d’Échanges de Blocs d’Énergie (FR demand response) |
| N-1 | Security Criterion: Withstand Loss of One Element |
| OLTC | On-Load Tap Changer |
| OPF/SCOPF | (Security-Constrained) Optimal Power Flow |
| OTS | Optimal Transmission Switching |
| PMU | Phasor Measurement Unit |
| PST | Phase-Shifting Transformer |
| PTDF | Power Transfer Distribution Factor |
| RA | Resource Adequacy |
| RAS/SPS/SIPS | Remedial Action/Special Protection/System Integrity Protection Scheme |
| RERT | Reliability and Emergency Reserve Trader (AEMO) |
| RTP/ToU/CPP/PTR | Real-Time Pricing/Time-of-Use/Critical-Peak Pricing/ Peak-Time Rebate |
| SDAC | Single Day-Ahead Coupling |
| SOGL | System Operation Guideline (EU 2017/1485) |
| STATCOM | Static Synchronous Compensator |
| SVC | Static Var Compensator |
| TSO | Transmission System Operator |
| TCSC | Thyristor-Controlled Series Capacitor |
| UPFC | Unified Power Flow Controller |
| VPP | Virtual Power Plant |
| VSC | Voltage-Source Converter |
References
- Commission Regulation (EU) 2017/1485 of 2 August 2017 Establishing a Guideline on Electricity Transmission System Operation. Available online: https://eur-lex.europa.eu/eli/reg/2017/1485/oj/eng (accessed on 27 October 2025).
- System Operations. Available online: https://www.entsoe.eu/network_codes/sys-ops/ (accessed on 31 August 2025).
- Explanatory Document to the Coordinated Redispatching and Countertrading Methodology for Capacity Calculation Region Hansa in Accordance with Establishing a Guideline on Capacity Allocation and Congestion Management. 2020. Available online: https://consultations.entsoe.eu/markets/coordinated-rdct-hansa/supporting_documents/20201203_CCR%20Hansa_RD%20CT_explanatory%20note.pdf (accessed on 27 October 2025).
- ACER Decision on CSAM: Annex I. Available online: https://eepublicdownloads.entsoe.eu/clean-documents/nc-tasks/EBGL/SOGL_A75.1_190621__ACER%20Decision%20on%20CSAM_Annex%20I_II.pdf (accessed on 27 October 2025).
- Capacity Allocation and Congestion Management. Available online: https://acer.europa.eu/electricity/market-rules/capacity-allocation-and-congestion-management (accessed on 31 August 2025).
- EUPHEMIA Public Description Single Price Coupling Algorithm. Available online: https://www.nordpoolgroup.com/globalassets/download-center/single-day-ahead-coupling/euphemia-public-description.pdf (accessed on 27 October 2025).
- Liu, C.; Li, B.; Zhang, Y.; Jiang, Q.; Liu, T. The LCC Type DC Grids Forming Method and Fault Ride-Through Strategy Based on Fault Current Limiters. Int. J. Electr. Power Energy Syst. 2025, 170, 110843. [Google Scholar] [CrossRef]
- Adam, G.P.; Vrana, T.K.; Li, R.; Li, P.; Burt, G.; Finney, S. Review of Technologies for DC Grids—Power Conversion, Flow Control and Protection. IET Power Electron. 2019, 12, 1851–1867. [Google Scholar] [CrossRef]
- Page, M.J.; Moher, D.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. PRISMA 2020 Explanation and Elaboration: Updated Guidance and Exemplars for Reporting Systematic Reviews. BMJ 2021, 372, 160. [Google Scholar] [CrossRef]
- Kundur, P. Power System Stability and Control; McGraw-Hill: New York, NY, USA, 1994; ISBN 007035958X. [Google Scholar]
- IEEE 738-2012; IEEE Standard for Calculating the Current-Temperature Relationship of Bare Overhead Conductors. IEEE: New York, NY, USA, 2013.
- Bhattarai, B.P.; Gentle, J.P.; McJunkin, T.; Hill, P.J.; Myers, K.S.; Abboud, A.W.; Renwick, R.; Hengst, D. Improvement of Transmission Line Ampacity Utilization by Weather-Based Dynamic Line Rating. IEEE Trans. Power Deliv. 2018, 33, 1853–1863. [Google Scholar] [CrossRef]
- Verma, A.; Swarup, K.S. Dynamic Line Rating Considering Short Term Reliability and Convergence Time. Energy Syst. Optim. Model. Simul. Econ. Asp. 2025, 16, 603–635. [Google Scholar] [CrossRef]
- U.S. Department of Energy Dynamic Line Rating Report to Congress 2019. 2019. Available online: https://www.cleanenergygrid.org/u-s-department-energy-dynamic-line-rating-report-congress/ (accessed on 27 October 2025).
- Forecasting Dynamic Thermal Line Ratings—Technical Brochures | ECIGRE. Available online: https://www.e-cigre.org/publications/detail/969-forecasting-dynamic-thermal-line-ratings.html (accessed on 31 August 2025).
- Liu, H.; Guo, Y.; Liu, H.; Sun, H. Joint Covering Congestion Rents in Multi-Area Power Systems Considering Loop Flow Effects. IEEE Trans. Power Syst. 2023, 38, 3854–3868. [Google Scholar] [CrossRef]
- Bidding Zone Review of the 2025 Target Year. European Network of Transmission System Operators for Electricity. 2025. Available online: https://eepublicdownloads.blob.core.windows.net/public-cdn-container/clean-documents/Network%20codes%20documents/NC%20CACM/BZR/2025/Annex_4_Study_on_the_impact_of_bidding_zone_changes_on_liquidity_and_transaction_costs.pdf (accessed on 27 October 2025).
- Kunz, F. Quo Vadis? (Un)Scheduled Electricity Flows under Market Splitting and Network Extension in Central Europe. Energy Policy 2018, 116, 198–209. [Google Scholar] [CrossRef]
- Monitoring Report 2016; Bundesnetzagentur (Federal Network Agency) and Bundeskartellamt (Federal Cartel Office): Bonn, Germany, 2016. Available online: https://data.bundesnetzagentur.de/Bundesnetzagentur/SharedDocs/Downloads/EN/BNetzA/PressSection/ReportsPublications/2016/monitoringreport_2016.pdf (accessed on 27 October 2025).
- Ronellenfitsch, H.; Timme, M.; Witthaut, D. A Dual Method for Computing Power Transfer Distribution Factors. IEEE Trans. Power Syst. 2017, 32, 1007–1015. [Google Scholar] [CrossRef]
- Marín-Cano, C.C.; Sierra-Aguilar, J.E.; López-Lezama, J.M.; Jaramillo-Duque, Á.; Villa-Acevedo, W.M. Implementation of User Cuts and Linear Sensitivity Factors to Improve the Computational Performance of the Security-Constrained Unit Commitment Problem. Energies 2019, 12, 1399. [Google Scholar] [CrossRef]
- Diop, T. Impact Assessment of Costly Remedial Actions: Redispatching vs Countertrading. In Proceedings of the 2020 17th International Conference on the European Energy Market (EEM), Stockholm, Sweden, 16–18 September 2020; pp. 1–5. [Google Scholar]
- Titz, M.; Puetz, S.; Witthaut, D. Identifying Drivers and Mitigators for Congestion and Redispatch in the German Electric Power System with Explainable AI. Appl. Energy 2024, 356, 122351. [Google Scholar] [CrossRef]
- Pijarski, P.; Saigustia, C.; Kacejko, P.; Belowski, A.; Miller, P. Optimal Network Reconfiguration and Power Curtailment of Renewable Energy Sources to Eliminate Overloads of Power Lines. Energies 2024, 17, 2965. [Google Scholar] [CrossRef]
- Churkin, A.; Sanchez-Lopez, M.; Alizadeh, M.I.; Capitanescu, F.; Martínez Ceseña, E.A.; Mancarella, P. Impacts of Distribution Network Reconfiguration on Aggregated DER Flexibility. In Proceedings of the 2023 IEEE Belgrade PowerTech, Belgrade, Serbia, 25–29 June 2023; pp. 1–7. [Google Scholar]
- Lei, Y.; Li, T.; Tang, Q.; Wang, Y.; Yuan, C.; Yang, X.; Liu, Y. Comparison of UPFC, SVC and STATCOM in Improving Commutation Failure Immunity of LCC-HVDC Systems. IEEE Access 2020, 8, 135298–135307. [Google Scholar] [CrossRef]
- Avudayappan, N.; Deepa, S.N. Congestion Management in Deregulated Power System Using Hybrid Cat-Firefly Algorithm with TCSC and SVC FACTS Devices. Compel. Int. J. Comput. Math. Electr. Electron. Eng. 2016, 35, 1524–1537. [Google Scholar] [CrossRef]
- Valencia-Zuluaga, T.; Agudelo-Martinez, D.; Arango-Angarita, D.; Acosta-Urrego, C.; Rivera, S.; Rodríguez-Medina, D.; Gers, J. A Fast Decomposition Method to Solve a Security-Constrained Optimal Power Flow (SCOPF) Problem Through Constraint Handling. IEEE Access 2021, 9, 52812–52824. [Google Scholar] [CrossRef]
- Nan, L.; Liu, Y.; Wu, L.; Liu, T.; He, C. Graph Theory Based N1 Transmission Contingency Selection and Its Application in Security-Constrained Unit Commitment. J. Mod. Power Syst. Clean Energy 2021, 9, 1458–1467. [Google Scholar] [CrossRef]
- Weinhold, R.; Mieth, R. Uncertainty-Aware Capacity Allocation in Flow-Based Market Coupling. IEEE Trans. Power Syst. 2024, 39, 147–159. [Google Scholar] [CrossRef]
- Kenis, M.; Delarue, E.; Bruninx, K.; Dominguez, F. Off-Shore Bidding Zones Under Flow-Based Market Coupling. In Proceedings of the 2023 IEEE Belgrade PowerTech, Belgrade, Serbia, 25–29 June 2023; pp. 1–6. [Google Scholar]
- Updated Explanatory Document to the Second Amendment of the Day-Ahead Capacity Calculation Methodology of the Core Capacity Calculation Region Regarding the Advanced Hybrid Coupling. Available online: https://eepublicdownloads.entsoe.eu/clean-documents/nc-tasks/DA%20CCM%202nd%20amendment%20-%20Explanatory%20document%20%E2%80%93%20Update%20regarding%20AHC%20-%20Clean.pdf (accessed on 27 October 2025).
- Hotz, M.; Utschick, W. The Hybrid Transmission Grid Architecture: Benefits in Nodal Pricing. IEEE Trans. Power Syst. 2018, 33, 1431–1442. [Google Scholar] [CrossRef]
- PJM Manual 11. 2023. Available online: https://www.pjm.com/-/media/DotCom/documents/manuals/archive/m11/m11v127-energy-and-ancillary-services-market-operations-11-15-2023.pdf (accessed on 27 October 2025).
- Federal Energy Regulatory Commission, Office of Energy Policy and Innovation. A Handbook for Energy Market Basics, Energy Primer. Available online: https://www.govinfo.gov/content/pkg/GOVPUB-E2-PURL-gpo31677/pdf/GOVPUB-E2-PURL-gpo31677.pdf (accessed on 27 October 2025).
- Fu, Y.; Li, Z. A Direct Calculation of Shift Factors Under Network Islanding. IEEE Trans. Power Syst. 2015, 30, 1550–1551. [Google Scholar] [CrossRef]
- Pijarski, P.; Belowski, A.; Bena, L.; Binkowski, T.; Mroczek, B. Optimal Management of High-Voltage Line Congestions Using Power Source Redispatching. Appl. Sci. 2025, 15, 6594. [Google Scholar] [CrossRef]
- Yang, J.; Yang, M.; Ma, K.; Dou, C.; Ma, T. Distributed Optimization of Integrated Energy System Considering Demand Response and Congestion Cost Allocation Mechanism. Int. J. Electr. Power Energy Syst. 2024, 157, 109865. [Google Scholar] [CrossRef]
- Single Day-Ahead Coupling (SDAC). Available online: https://www.entsoe.eu/network_codes/cacm/implementation/sdac/ (accessed on 31 August 2025).
- Li, H.; Zhang, N.; Jia, Y.; Zhu, X. A Coordinated Operation Control Strategy of Multiple Phase Shifting Transformers Based on the Interaction Sensitivity. IEEE Access 2025, 13, 120506–120516. [Google Scholar] [CrossRef]
- Jinjiao, L.; Jingyan, D.; Shi, C.; Xinying, W.; Haodong, L.; Chuyang, W. Performance Boundaries and Related Improvement Method of Sub-Oscillation-Suppression Capabilities in Continuously Adjustable Phase-Shifting Transformer. IEEE Access 2025, 13, 134683–134698. [Google Scholar] [CrossRef]
- Summary of C37.245 2018 “Guide for the Application of Protective Relaying for Phase-Shifting Transformers”. Available online: https://www.pes-psrc.org/kb/report/122.pdf (accessed on 27 October 2025).
- Power Flow Control of Carbon-Neutral Energy to Industrialized Urban Areas. Available online: https://www.cigre.ca/papers/2021/paper%20437.pdf (accessed on 27 October 2025).
- 2022 Grid of the Future Symposium. Available online: https://arxiv.org/pdf/2212.03388 (accessed on 27 October 2025).
- P3-Policy 3: Operational Security Chapters. Available online: https://eepublicdownloads.entsoe.eu/clean-documents/pre2015/publications/entsoe/Operation_Handbook/Policy_3_final.pdf (accessed on 27 October 2025).
- Phase Shifting Transformer (PST). Available online: https://www.entsoe.eu/technopedia/techsheets/phase-shifting-transformers (accessed on 31 August 2025).
- Verma, D.; Agarwal, P.K.; Jain, P. Congestion Management in Transmission System Using PST. In Proceedings of the 2021 IEEE PES/IAS PowerAfrica, Nairobi, Kenya, 23–27 August 2021; pp. 1–5. [Google Scholar]
- Naderi, E.; Pazouki, S.; Asrari, A. A Remedial Action Scheme Against False Data Injection Cyberattacks in Smart Transmission Systems: Application of Thyristor-Controlled Series Capacitor (TCSC). IEEE Trans. Ind. Inform. 2022, 18, 2297–2309. [Google Scholar] [CrossRef]
- Bruno, S.; De Carne, G.; La Scala, M. Transmission Grid Control Through TCSC Dynamic Series Compensation. IEEE Trans. Power Syst. 2016, 31, 3202–3211. [Google Scholar] [CrossRef]
- Performance Evaluation and Applications Review of Existing Thyristor Control Series Capacitor Devices—TCSC—Technical Brochures | ECIGRE. Available online: https://www.e-cigre.org/publications/detail/554-performance-evaluation-and-applications-review-of-existing-thyristor-control-series-capacitor-devices-tcsc.html (accessed on 31 August 2025).
- Dahat, S.A.; Dhabale, A. Coordinated Robust Damping Control for Hybrid SVC/SSSC to Enhance Power System Stability in Large-Scale Systems. IEEE Trans. Ind. Appl. 2024, 60, 1589–1598. [Google Scholar] [CrossRef]
- Asad, M.; Faizan, M.; Zanchetta, P.; Sanchez-Fernandez, J.A. FACTS Controllers’ Contribution for Load Frequency Control, Voltage Stability and Congestion Management in Deregulated Power Systems over Time: A Comprehensive Review. Appl. Sci. 2025, 15, 8039. [Google Scholar] [CrossRef]
- Hingorani, N.G.; Gyugyi, L. Understanding FACTS: Concepts and Technology of Flexible AC Transmission Systems; Order A Journal on the Theory of Ordered Sets and Its Applications; IEEE Power & Energy Society: New York, NY, USA, 2000; Volume 432. [Google Scholar]
- Abasi, M.; Saffarian, A.; Joorabian, M.; Seifossadat, S.G. Fault Location in Double-Circuit Transmission Lines Compensated by Generalized Unified Power Flow Controller (GUPFC) Based on Synchronous Current and Voltage Phasors. IEEE Syst. J. 2021, 15, 2190–2200. [Google Scholar] [CrossRef]
- Ara, A.L.; Aghaei, J.; Alaleh, M.; Barati, H. Contingency-Based Optimal Placement of Optimal Unified Power Flow Controller (OUPFC) in Electrical Energy Transmission Systems. Sci. Iran. 2013, 20, 778–785. Available online: https://www.sciencedirect.com/science/article/pii/S1026309813000783 (accessed on 27 October 2025).
- Alajrash, B.H.; Salem, M.; Swadi, M.; Senjyu, T.; Kamarol, M.; Motahhir, S. A Comprehensive Review of FACTS Devices in Modern Power Systems: Addressing Power Quality, Optimal Placement, and Stability with Renewable Energy Penetration. Energy Rep. 2024, 11, 5350–5371. [Google Scholar] [CrossRef]
- Ghadimi, A.A.; Gholami, M.; Miveh, M.R. Review of FACTS Technologies and Applications for Accelerating Penetration of Wind Energies in the Power System. Energy Sci. Eng. 2023, 11, 2218–2234. [Google Scholar] [CrossRef]
- Singh, A.; Bohre, A.K. Congestion Management Using FACTS Devices: A Review with Case Study. In Recent Advances in Power Systems; Lecture Notes in Electrical Engineering; Springer: Berlin/Heidelberg, Germany, 2022; Volume 812, pp. 149–168. [Google Scholar] [CrossRef]
- Cao, J.; Du, W.; Wang, H.F. An Improved Corrective Security Constrained OPF for Meshed AC/DC Grids with Multi-Terminal VSC-HVDC. IEEE Trans. Power Syst. 2016, 31, 485–495. [Google Scholar] [CrossRef]
- Kangwa, N.M.; Venugopal, C.; Davidson, I.E. A Review of the Performance of VSC-HVDC and MTDC Systems. In Proceedings of the 2017 IEEE PES PowerAfrica, Accra, Ghana, 27–30 June 2017; pp. 267–273. [Google Scholar]
- Zhang, C.; Coelho, E.A.A.; Guerrero, J.M.; Vasquez, J.C. Modular Online Uninterruptible Power System Plug’n’Play Control and Stability Analysis. IEEE Trans. Ind. Electron. 2016, 63, 3765–3776. [Google Scholar] [CrossRef]
- High Voltage Direct Current Connections. Available online: https://www.entsoe.eu/network_codes/hvdc (accessed on 31 August 2025).
- Liang, Z.; Chung, C.Y.; Wang, Q.; Chen, H.; Yang, H.; Wu, C. Fortifying Renewable-Dominant Hybrid Microgrids: A Bi-Directional Converter Based Interconnection Planning Approach. Engineering 2025, 51, 130–143. [Google Scholar] [CrossRef]
- Babaeinejadsarookolaee, S.; Park, B.; Lesieutre, B.; DeMarco, C.L. Grid Operation Enhancement via Network Topology Optimization with Sparse Tableau Formulation. IEEE Access 2025, 13, 69413–69424. [Google Scholar] [CrossRef]
- IEEE Staff. 2011 IEEE Power and Energy Society General Meeting; IEEE: New York, NY, USA, 2011; ISBN 9781457710025. [Google Scholar]
- Barrows, C.; Blumsack, S.; Hines, P. Correcting Optimal Transmission Switching for AC Power Flows. In Proceedings of the 2014 IEEE Power and Energy Society General Meeting, National Harbor, MD, USA, 27–31 July 2014; p. 6939876. [Google Scholar] [CrossRef]
- Taheri, B.; Molzahn, D.K. AC-Informed DC Optimal Transmission Switching Problems via Parameter Optimization. IEEE Trans. Power Syst. 2025, 40, 5422–5433. [Google Scholar] [CrossRef]
- EL-Azab, M.; Omran, W.A.; Mekhamer, S.F.; Talaat, H.E.A. Congestion Management of Power Systems by Optimizing Grid Topology and Using Dynamic Thermal Rating. Electr. Power Syst. Res. 2021, 199, 107433. [Google Scholar] [CrossRef]
- Masache, P.; Carrión, D.; Cárdenas, J. Optimal Transmission Line Switching to Improve the Reliability of the Power System Considering AC Power Flows. Energies 2021, 14, 3281. [Google Scholar] [CrossRef]
- Ramesh, A.V.; Li, X. Reducing Congestion-Induced Renewable Curtailment with Corrective Network Reconfiguration in Day-Ahead Scheduling. In Proceedings of the 2020 IEEE Power & Energy Society General Meeting (PESGM), Montreal, QC, Canada, 2–6 August 2020. [Google Scholar]
- Karimi, S.; Musilek, P.; Knight, A.M. Dynamic Thermal Rating of Transmission Lines: A Review. Renew. Sustain. Energy Rev. 2018, 91, 600–612. [Google Scholar] [CrossRef]
- González-Cagigal, M.A.; Rosendo-Macías, J.A.; Bachiller-Soler, A.; del-Pino-López, J.C. Reliability Assessment of Dynamic Line Rating Methods Based on Conductor Temperature Estimation. Electr. Power Syst. Res. 2024, 233, 110449. [Google Scholar] [CrossRef]
- Alvarez, D.L.; da Silva, F.F.; Mombello, E.E.; Bak, C.L.; Rosero, J.A. Conductor Temperature Estimation and Prediction at Thermal Transient State in Dynamic Line Rating Application. IEEE Trans. Power Deliv. 2018, 33, 2236–2245. [Google Scholar] [CrossRef]
- Proposal for the Creation of a New Working Group JWG C2/B5.46: System Integrity Protection Schemes and the (N-1) Criteria—Terms of Reference (rev. 1); CIGRE Study Committee C2 and Study Committee B5: Paris, France, 2024; Available online: https://www.cigre.org/userfiles/files/News/2024/TOR-JWG%20C2_B5_46_System%20Integrity%20Protection%20Schemes%20and%20the%20(N-1)%20criteria_rev1.pdf (accessed on 27 October 2025).
- European Network of Transmission System Operators for Electricity. Special Protection Schemes Entso-E Subgroup “System Protection and Dynamics”; European Network of Transmission System Operators for Electricity: Brussels, Belgium, 2012. [Google Scholar]
- PRC-012-2-Remedial Action Schemes. Available online: https://www.nerc.com/pa/Stand/Reliability%20Standards/PRC-012-2.pdf (accessed on 27 October 2025).
- European Network of Transmission System Operators for Electricity. Operational Probabilistic Coordinated Security Assessment and Risk Management; ENTSO-E Mission Statement: Brussels, Belgium, 2023. [Google Scholar]
- ENTSO-E Publishes a Second Progress Report on Probabilistic Risk Assessment in Europe. Available online: https://www.entsoe.eu/news/2023/12/13/entso-e-publishes-a-second-progress-report-on-probabilistic-risk-assessment-in-europe (accessed on 31 August 2025).
- Viafora, N.; Delikaraoglou, S.; Pinson, P.; Holbøll, J. Chance-Constrained Optimal Power Flow with Non-Parametric Probability Distributions of Dynamic Line Ratings. Int. J. Electr. Power Energy Syst. 2020, 114, 105389. [Google Scholar] [CrossRef]
- Bienstock, D.; Chertkov, M.; Harnett, S. Chance-Constrained Optimal Power Flow: Risk-Aware Network Control Under Uncertainty. Siam Rev. 2014, 56, 461–495. [Google Scholar] [CrossRef]
- Pervez, I.; Lima, R.P.; Knio, O. Integrated Learning and Optimization for Congestion Management and Profit Maximization in Real-Time Electricity Market. arXiv 2025, arXiv:2412.18003. [Google Scholar]
- Hernandez-Matheus, A.; Berg, K.; Gadelha, V.; Aragüés-Peñalba, M.; Bullich-Massagué, E.; Galceran-Arellano, S. Congestion Forecast Framework Based on Probabilistic Power Flow and Machine Learning for Smart Distribution Grids. Int. J. Electr. Power Energy Syst. 2024, 156, 109695. [Google Scholar] [CrossRef]
- Lin, N.; Orfanoudakis, S.; Cardenas, N.O.; Giraldo, J.S.; Vergara, P.P. PowerFlowNet: Power Flow Approximation Using Message Passing Graph Neural Networks. Int. J. Electr. Power Energy Syst. 2024, 160, 110112. [Google Scholar] [CrossRef]
- Beinert, D.; Holzhüter, C.; Thomas, J.M.; Vogt, S. Power Flow Forecasts at Transmission Grid Nodes Using Graph Neural Networks. Energy AI 2023, 14, 100262. [Google Scholar] [CrossRef]
- Chadaga, S.; Wu, X.; Modiano, E. Power Failure Cascade Prediction Using Graph Neural Networks. In Proceedings of the 2023 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids, SmartGridComm 2023, Glasgow, UK, 31 October 2023–3 November 2023; Institute of Electrical and Electronics Engineers Inc.: New York, NY, USA, 2023. [Google Scholar]
- Lindner, M.; Peper, J.; Offermann, N.; Biele, C.; Teodosic, M.; Pohl, O.; Menne, J.; Häger, U. Operation Strategies of Battery Energy Storage Systems for Preventive and Curative Congestion Management in Transmission Grids. IET Gener. Transm. Distrib. 2023, 17, 589–603. [Google Scholar] [CrossRef]
- Shafiekhani, M.; Qadrdan, M. Addressing Electricity Transmission Network Congestions Using Battery Energy Storage Systems —A Case Study of Great Britain. Appl. Energy 2025, 384, 125418. [Google Scholar] [CrossRef]
- Lee, K.-H. Demand Response Effect on Market Power with Transmission Congestion in Electricity Market. Trans. Korean Inst. Electr. Eng. 2017, 66, 1705–1711. [Google Scholar] [CrossRef]
- Dehnavi, E.; Akmal, A.A.S.; Moeini-Aghtaie, M. A Novel Day-Ahead and Real-Time Model of Transmission Congestion Management Using Uncertainties Prioritizing. Electr. Eng. 2024, 106, 4031–4044. [Google Scholar] [CrossRef]
- Amarnath, A.; Vaddiraj, A. Residential Battery Energy Storage: Demand Response Opportunities with OpenADR 2.0b; Electric Power Research Institute: Palo Alto, CA, USA, 2020. [Google Scholar]
- OpenADR. OpenADR 2.0b Protocol Implementation Conformance Statement (PICS); OpenADR: San Ramon, CA, USA, 2019. [Google Scholar]
- OpenADR. OpenADR 2.0 Demand Response Program Implementation Guide; OpenADR: San Ramon, CA, USA, 2014. [Google Scholar]
- Regulation (EU) 2019/943 of the European Parliament and of the Council of 5 June 2019 on the Internal Market for Electricity (Recast) (Text with EEA Relevance). Available online: https://webarchive.nationalarchives.gov.uk/eu-exit/https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32019R0943 (accessed on 27 October 2025).
- Weber, L.; Gilles, L.; Moser, A. Influence of an Inter-TSO Cooperation on the Redispatch Demand in Europe. In Proceedings of the 2022 18th International Conference on the European Energy Market (EEM), Ljubljana, Slovenia, 13–15 September 2022; pp. 1–6. [Google Scholar]
- Vukasovic, M.; Moldovanu, L.; Vlaisavljevic, I.M.; Vujasinovic, Z.; Vlaisavljevic, D.; Marcu, V. Impact of Regional Redispatching Cooperation and Involvement of Distributed Electricity Prosumers. In Proceedings of the 2020 2nd IEEE International Conference on Industrial Electronics for Sustainable Energy Systems (IESES), Cagliari, Italy, 1–3 September 2020. [Google Scholar]
- Galatoire, E.A.D.; Arcos-Vargas, Á.; Ramos, J.L.M. Additional Revenues Estimation in a Market-Based Redispatch: An Opportunity for Flexibility. Energy Convers. Manag. X 2024, 24, 100745. [Google Scholar] [CrossRef]
- Golab, A.; Loschan, C.; Zwickl-Bernhard, S.; Auer, H. The Value of Flexibility of Commercial Electric Vehicle Fleets in the Redispatch of Congested Transmission Grids. Energy 2025, 316, 134385. [Google Scholar] [CrossRef]
- Tziouvaras, D.A.; Jimenez, R. Protecting A 138 KV Phase Shifting Transformer: Emtp Modeling And Model Power System Testing. In Proceedings of the 2004 Eighth IEE International Conference on Developments in Power System Protection, Amsterdam, The Netherlands, 5–8 April 2004. [Google Scholar]
- Phase Shifting Transformers. Discussion of Specific Characteristics—Session Materials | ECIGRE. Available online: https://www.e-cigre.org/publications/detail/12-306-1998-phase-shifting-transformers-discussion-of-specific-characteristics.html (accessed on 1 September 2025).
- Hrgovic, I.; Pavic, I. Sizing and Implementation of Phase-Shifting Transformer for Congestion Management in Renewable-Rich Regions: A Case Study of the Croatian Power Grid. IEEE Trans. Power Syst. 2025, 40, 3465–3473. [Google Scholar] [CrossRef]
- Aydin, F.; Yigit, K.; Acarkan, B. The Effect of Phase-Shifting Transformer Angle Value on System Congestion and Determination of Ideal Phase Angle. Electr. Eng. 2025, 107, 1845–1862. [Google Scholar] [CrossRef]
- Choudhury, S.; Saciak, A.; Hanson, J. Communication-Free Decentralized Power Flow Control of Unified Power Flow Controllers and Phase-Shifting Transformers in High Voltage Transmission Systems. IET Gener. Transm. Distrib. 2023, 17, 2938–2952. [Google Scholar] [CrossRef]
- Yu, M.; Yuan, J.; Li, Z.; Li, F.; Yang, X.; Zhang, W.; Xu, S.; Mei, J. Power Flow Optimization and Economic Analysis Based on High Voltage Phase Shifting Transformer. Energies 2022, 15, 2363. [Google Scholar] [CrossRef]
- Varma, R.K.; Ahmadi, M.; Arpino, C. Novel Control of Battery Energy Storage System (BESS) as STATCOM (BESS-STATCOM) for Stabilization of a Critical Motor. In Proceedings of the 2023 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE), Regina, SK, Canada, 24–27 September 2023; pp. 261–267. [Google Scholar]
- Li, B.; Liang, Y.; Wang, G.; Li, H.; Chen, X. A Control Parameter Design Method for Hybrid Multi-Terminal HVDC System. IEEE Access 2020, 8, 18669–18680. [Google Scholar] [CrossRef]
- Sayed, S.S.; Massoud, A.M. General Classification and Comprehensive Performance Assessment of Multi-Objective DC Voltage Control in Multi-Terminal HVDC Networks. IEEE Access 2021, 9, 34454–34474. [Google Scholar] [CrossRef]
- Zhang, F.; Bieber, L.; Zhang, Y.; Li, W.; Wang, L. A Multi-Port DC Power Flow Controller Integrated with MMC Stations for Offshore Meshed Multi-Terminal HVDC Grids. IEEE Trans. Sustain. Energy 2023, 14, 1676–1691. [Google Scholar] [CrossRef]
- Baptiste, I.; Barnes, M.; Marjanovic, O. Effects of Windfarm Curtailment on a 5-Terminal VSC-HVDC Network. In Proceedings of the 15th IET International Conference on AC and DC Power Transmission (ACDC 2019), Coventry, UK, 5–7 February 2019; pp. 1–6. [Google Scholar]
- Nakamura, A.; Iwata, M.; Yokomizu, Y.; Kodama, N. Proposal of Emergency Operation and Active Power Dispatch Control Scheme for Bipolar VSC-MTDC System. IEEE Access 2025, 13, 31590–31602. [Google Scholar] [CrossRef]
- Shen, Z.; Chiang, H.-D.; Tang, Y.; Zhou, N. An Online Line Switching Methodology with Look-Ahead Capability to Alleviate Power System Overloads Based on a Three-Stage Strategy. Int. J. Electr. Power Energy Syst. 2020, 115, 105500. [Google Scholar] [CrossRef]
- Wang, L.; Chiang, H.-D. Group-Based Line Switching for Enhancing Contingency-Constrained Static Voltage Stability. IEEE Trans. Power Syst. 2020, 35, 1489–1498. [Google Scholar] [CrossRef]
- Ramesh, A.V.; Li, X. Network Reconfiguration Impact on Renewable Energy System and Energy Storage System in Day-Ahead Scheduling. In Proceedings of the 2021 IEEE Power & Energy Society General Meeting (PESGM), Washington, DC, USA, 26–29 July 2021; pp. 1–5. [Google Scholar]
- Ewerszumrode, A.; Erle, N.; Krahl, S.; Moser, A. An Iterative Approach to Grid Topology and Redispatch Optimization in Congestion Management. Electr. Power Syst. Res. 2024, 234, 110700. [Google Scholar] [CrossRef]
- Rosendo-Macias, J.A.; Gomez-Exposito, A.; Bachiller-Soler, A.; Gonzalez-Cagigal, M.A.; Alvarez-Cordero, G.; Mateo-Sanchez, L.; Useros-Garcia, A. The Spanish Experience: Squeezing Line Ampacities Through Dynamic Line Rating. IEEE Power Energy Mag. 2023, 21, 73–82. [Google Scholar] [CrossRef]
- Abas, N.H.; Ab Kadir, M.Z.A.; Azis, N.; Jasni, J.; Ab Aziz, N.F.; Khurshid, Z.M. Optimizing Grid with Dynamic Line Rating of Conductors: A Comprehensive Review. IEEE Access 2024, 12, 9738–9756. [Google Scholar] [CrossRef]
- Vejo, L.; Castro, P.; Manana, M.; Laso, A.; Lecuna, R.; Bustamante, S.; Sainz, E. Experimental Study of Dynamic Line Rating Applied to High-Temperature Low-Sag Conductors. Energies 2025, 18, 929. [Google Scholar] [CrossRef]
- Martinez, R.F.; Alberdi, R.; Fernandez, E.; Albizu, I.; Bedialauneta, M.T. Improvement of Transmission Line Ampacity Utilization via Machine Learning-Based Dynamic Line Rating Prediction. Electr. Power Syst. Res. 2024, 236, 110700. [Google Scholar] [CrossRef]
- Falcão, D.M.; Tao, S.; Taranto, G.N.; Parreiras, T.J.M.A.; Bento, M.E.C.; Huanca, D.H.; Muzitano, H.; Esmeraldo, P.; Lima, P.; Monteath, L.; et al. Case Studies of Battery Energy Storage System Applications in the Brazilian Transmission System. Energies 2024, 17, 5678. [Google Scholar] [CrossRef]
- Ramos, A.; Tuovinen, M.; Ala-Juusela, M. Battery Energy Storage System (BESS) as a Service in Finland: Business Model and Regulatory Challenges. J. Energy Storage 2021, 40, 102720. [Google Scholar] [CrossRef]
- Gupta, P.P.; Kalkhambkar, V.; Jain, P.; Sharma, K.C.; Bhakar, R. Battery Energy Storage Train Routing and Security Constrained Unit Commitment Under Solar Uncertainty. J. Energy Storage 2022, 55, 105811. [Google Scholar] [CrossRef]
- Liere-Netheler, I.; Schuldt, F.; von Maydell, K.; Agert, C. Technical and Economic Analysis of Curative Actions in Distribution Networks Utilizing Battery Energy Storage Systems. IET Gener. Transm. Distrib. 2022, 16, 724–736. [Google Scholar] [CrossRef]
- Goyal, A.; Bhattacharya, K. Design of Multi-Settlement Electricity Markets Considering Demand Response and Battery Energy Storage Systems Participation. IEEE Trans. Energy Mark. Policy Regul. 2024, 2, 226–239. [Google Scholar] [CrossRef]
- Hosseini, S.E.; Khajehzadeh, A.; Eslami, M. Simultaneous Employment of Generation Rescheduling and Incentive-Based Demand Response Programs for Congestion Management in Case of Contingency. J. Mod. Power Syst. Clean Energy 2022, 10, 902–912. [Google Scholar] [CrossRef]
- Mohsenzadeh, A.; Pang, C.; Yang, L. Transmission Congestion Management Considering EV Parking Lots and Demand Response Programmes. Int. J. Ambient. Energy 2021, 42, 1727–1731. [Google Scholar] [CrossRef]
- Zaeim-Kohan, F.; Razmi, H.; Doagou-Mojarrad, H. Multi-Objective Transmission Congestion Management Considering Demand Response Programs and Generation Rescheduling. Appl. Soft Comput. 2018, 70, 169–181. [Google Scholar] [CrossRef]
- Tabandeh, A.; Abdollahi, A.; Rashidinejad, M. Reliability Constrained Congestion Management with Uncertain Negawatt Demand Response Firms Considering Repairable Advanced Metering Infrastructures. Energy 2016, 104, 213–228. [Google Scholar] [CrossRef]
- Doagou-Mojarrad, H.; Rezaie, H.; Razmi, H. Probabilistic Integrated Framework for AC/DC Transmission Congestion Management Considering System Expansion, Demand Response, and Renewable Energy Sources and Load Uncertainties. Int. Trans. Electr. Energy Syst. 2021, 31, e13168. [Google Scholar] [CrossRef]
- Babayomi, O.; Zhang, Z.; Dragicevic, T.; Hu, J.; Rodriguez, J. Smart Grid Evolution: Predictive Control of Distributed Energy Resources—A Review. Int. J. Electr. Power Energy Syst. 2023, 147, 108812. [Google Scholar] [CrossRef]
- Arafat, I.; Guerra, E.C.; Meng, J. Uncertainty Impact on Aggregator Performance for Peak Shaving. IEEE Access 2025, 13, 103733–103747. [Google Scholar] [CrossRef]
- Anjos, M.F.; Brotcorne, L.; Gomez-Herrera, J.A. Optimal Setting of Time-and-Level-of-Use Prices for an Electricity Supplier. Energy 2021, 225, 120517. [Google Scholar] [CrossRef]
- Shaukat, N.; Ali, S.M.; Mehmood, C.A.; Khan, B.; Jawad, M.; Farid, U.; Ullah, Z.; Anwar, S.M.; Majid, M. A Survey on Consumers Empowerment, Communication Technologies, and Renewable Generation Penetration within Smart Grid. Renew. Sustain. Energy Rev. 2018, 81, 1453–1475. [Google Scholar] [CrossRef]
- Zhou, L.; Wang, Q.; Tao, Q.; Hu, Q. The Mechanisms of Electric Vehicle Integration into Electricity Market: A Comprehensive Review. Curr. Sustain. Renew. Energy Rep. 2025, 12, 14. [Google Scholar] [CrossRef]
- Kenari, M.B.; Barforoushi, T. Optimal Scheduling of Demand Response Contracts for a Strategic Aggregator in Wholesale Electricity Market. Int. J. Electr. Power Energy Syst. 2025, 169, 110784. [Google Scholar] [CrossRef]
- Jordehi, A.R. Optimisation of Demand Response in Electric Power Systems, a Review. Renew. Sustain. Energy Rev. 2019, 103, 308–319. [Google Scholar] [CrossRef]
- Frequency Containment Reserves. Available online: https://www.entsoe.eu/network_codes/eb/fcr (accessed on 3 September 2025).
- PICASSO. Available online: https://www.entsoe.eu/network_codes/eb/picasso (accessed on 3 September 2025).
- Manually Activated Reserves Initiative. Available online: https://www.entsoe.eu/network_codes/eb/mari (accessed on 3 September 2025).
- Commission Regulation (EU) 2017/ 2195 of 23 November 2017 Establishing a Guideline on Electricity Balancing. Available online: https://eur-lex.europa.eu/eli/reg/2017/2195/oj/eng (accessed on 27 October 2025).
- Ikuta, K.; Aki, H. Multi-Timescale Management Models for Distributed Energy Resources and a Two-Stage Incentive Design for Demand-Side Grid Flexibility Provision. Sustain. Energy Grids Netw. 2025, 41, 101618. [Google Scholar] [CrossRef]
- Suryakiran, B.V.; Nizami, S.; Verma, A.; Saha, T.K.; Mishra, S. A Three-Stage Feedback-Based Electric Vehicle Scheduling Framework for Peak Load Reduction of Distribution System Feeder Demand. J. Clean. Prod. 2024, 468, 142996. [Google Scholar] [CrossRef]
- Khavari, F.; Badri, A.; Zangeneh, A. A Tie-Line Power Smoothing via a Novel Dynamic Real-Time Pricing Mechanism in MMGs. Int. J. Electr. Power Energy Syst. 2022, 136, 107671. [Google Scholar] [CrossRef]
- Wang, Z.; Paranjape, R.; Chen, Z.; Zeng, K. Layered Stochastic Approach for Residential Demand Response Based on Real-Time Pricing and Incentive Mechanism. IET Gener. Transm. Distrib. 2020, 14, 423–431. [Google Scholar] [CrossRef]
- Ray, G.L.; Larsen, E.M.; Pinson, P. Evaluating Price-Based Demand Response in Practice—With Application to the EcoGrid EU Experiment. IEEE Trans. Smart Grid 2018, 9, 2304–2313. [Google Scholar] [CrossRef]
- Kaur, A.P.; Singh, M. Time-of-Use Tariff Rates Estimation for Optimal Demand-Side Management Using Electric Vehicles. Energy 2023, 273, 127243. [Google Scholar] [CrossRef]
- Shen, J.; Jiang, C.; Li, B. Controllable Load Management Approaches in Smart Grids. Energies 2015, 8, 11187–11202. [Google Scholar] [CrossRef]
- Chen, Y.; Han, B.; Li, Z.; Zhao, B.; Zheng, R.; Li, G. A Multi-Layer Interactive Peak-Shaving Model Considering Demand Response Sensitivity. Int. J. Electr. Power Energy Syst. 2023, 152, 109206. [Google Scholar] [CrossRef]
- Wu, B.; Fu, Y.; Wu, Y.; Zhou, Y. Electricity Spot Market Trading Mechanism Considering Renewable Energy Curtailment and Peak Shaving Compensation. In Proceedings of the 2025 2nd International Conference on Smart Grid and Artificial Intelligence (SGAI), Changsha, China, 21–23 March 2025; pp. 1298–1304. [Google Scholar]
- Jiang, T.; Tao, J.; Wang, K.; Yang, L.; Zhao, J.; Ju, P. Periodic Demand Response Resource Purchase Mechanism with Uncertainty and Multi-Time Scale Peak-Shaving Scheduling Strategy [考虑不确定性的周期性资源购买机制及多时间尺度调峰调度策略]. Zhongguo Dianji Gongcheng Xuebao/Proc. Chin. Soc. Electr. Eng. 2024, 44, 4261–4272. [Google Scholar] [CrossRef]
- Tian, Y.; Chen, H.; Liu, Y.; Gao, P.; Chen, L. Compensation Price Decision Method for Peak Shaving of Flexible Resources in Context of Ancillary Service Market [辅助服务市场背景下灵活性资源调峰补偿价格决策方法]. Dianli Zidonghua Shebei/Electr. Power Autom. Equip. 2024, 44, 154–161+188. [Google Scholar] [CrossRef]
- Alpízar-Castillo, J.; Linders, K.; Slaifstein, D.; Ramírez-Elizondo, L.; Bauer, P. Economic Opportunities of Power Curtailment and Peak Shaving on Residential PV-BESS Systems. In Proceedings of the 2024 20th International Conference on the European Energy Market (EEM), Istanbul, Turkiye, 10–12 June 2024; pp. 1–6. [Google Scholar]
- Alpízar-Castillo, J.; Ramírez-Elizondo, L.; Bauer, P. Addressing Premature Reinforcement of Low-Voltage Distribution Infrastructure with Peak-Shaving and Power Curtailment: A Business Model. In Proceedings of the 2024 20th International Conference on the European Energy Market (EEM), Istanbul, Turkiye, 10–12 June 2024; pp. 1–6. [Google Scholar]
- He, P.; Gong, Z.; Jin, H.; Dong, J.; Yun, L. Review of Peak-Shaving Problem of Electric Power System with High Proportion of Renewable Energy. Dianli Jianshe/Electr. Power Constr. 2022, 43, 108–121. [Google Scholar] [CrossRef]
- Fan, Y.; Zhang, P.; Luo, L.; Cao, Y.; Wang, N.; Chen, Y.; Yang, J.; Qin, Z. Operational Strategy of Virtual Power Plant for Participating in Coupled Peak-Shaving and Carbon Markets. In Proceedings of the 2024 IEEE PES 16th Asia-Pacific Power and Energy Engineering Conference (APPEEC), Nanjing, China, 25–27 October 2024; pp. 1–6. [Google Scholar]
- Abdelfattah, A.I.; Shaaban, M.F.; Osman, A.H.; Ali, A. Optimal Management of Seasonal Pumped Hydro Storage System for Peak Shaving. Sustainability 2023, 15, 11973. [Google Scholar] [CrossRef]
- Shen, J.; Jiang, C.; Liu, Y.; Qian, J. A Microgrid Energy Management System with Demand Response for Providing Grid Peak Shaving. Electr. Power Compon. Syst. 2016, 44, 843–852. [Google Scholar] [CrossRef]
- Ying, S.; Xiaoting, M.; Yuan, W.; Wenbin, C.; Guojing, D.; Yating, C.; Shuai, Y.; Yuchen, Z.; Lanxi, T.; Minjian, C. Research on Peak Shaving Strategy Based on Green Power Supply in Industrial Parks. In Proceedings of the 2023 International Conference on Power System Technology (PowerCon), Jinan, China, 21–22 September 2023; pp. 1–7. [Google Scholar]
- Eslaminia, N.; Mashhadi, H.R. Enhancing Peak Shaving through Nonlinear Incentive-Based Demand Response: A Consumer-Centric Utility Optimization Approach. Int. Trans. Electr. Energy Syst. 2023, 2023, 4650539. [Google Scholar] [CrossRef]
- Wei, M.; Wen, Y.; Meng, Q.; Zheng, S.; Luo, Y.; Liao, K. Combined Hybrid Energy Storage System and Transmission Grid Model for Peak Shaving Based on Time Series Operation Simulation. Glob. Energy Interconnect. 2023, 6, 154–165. [Google Scholar] [CrossRef]
- Yang, J.; Li, Q.; Zhang, Y.; Yao, L. Peak Shaving Optimization Modeling for Demand Response of Multiple EV Aggregators Considering Matching Degree of Power Grid Demand [考虑电网需求匹配度的多EV聚合商需求响应削峰优化建模]. Dianli Zidonghua Shebei/Electr. Power Autom. Equip. 2021, 41, 125–134. [Google Scholar] [CrossRef]
- Langner, F.; Kovačević, J.; Zwickel, P.; Dengiz, T.; Frahm, M.; Waczowicz, S.; Çakmak, H.K.; Matthes, J.; Hagenmeyer, V. Coordinated Price-Based Control of Modulating Heat Pumps for Practical Demand Response and Peak Shaving in Building Clusters. Energy Build. 2024, 324, 114940. [Google Scholar] [CrossRef]
- Zhu, M.; Ji, Y.; Ju, W.; Gu, X.; Liu, C.; Xu, Z. A Business Service Model of Smart Home Appliances Participating in the Peak Shaving and Valley Filling Based on Cloud Platform. IEICE Trans. Inf. Syst. 2021, E104D, 1185–1194. [Google Scholar] [CrossRef]
- Silva, B.N.; Khan, M.; Han, K. Futuristic Sustainable Energy Management in Smart Environments: A Review of Peak Load Shaving and Demand Response Strategies, Challenges, and Opportunities. Sustainability 2020, 12, 5561. [Google Scholar] [CrossRef]
- Chen, Z.; Wu, L.; Fu, Y. Real-Time Price-Based Demand Response Management for Residential Appliances via Stochastic Optimization and Robust Optimization. IEEE Trans. Smart Grid 2012, 3, 1822–1831. [Google Scholar] [CrossRef]
- Shahvari, S.Z.; Clark, J.D. Load Shifting with Heat Pump-Driven Metal Organic Frameworks (MOF)-Based Indirect Evaporative Cooling and Cost-Effectiveness in Residences in the United States. Energy Convers. Manag. 2024, 307, 118346. [Google Scholar] [CrossRef]
- Nolan, S.; Neu, O.; O’Malley, M. Capacity Value Estimation of a Load-Shifting Resource Using a Coupled Building and Power System Model. Appl. Energy 2017, 192, 71–82. [Google Scholar] [CrossRef]
- O’Reilly, R.; Cohen, J.; Reichl, J. Achievable Load Shifting Potentials for the European Residential Sector from 2022–2050. Renew. Sustain. Energy Rev. 2024, 189, 113959. [Google Scholar] [CrossRef]
- Arun, C.; Aswinraj, R.; Bijoy, M.T.; Nidheesh, M.; Rohikaa Micky, R. Day Ahead Demand Response Using Load Shifting Technique in Presence of Increased Renewable Penetration. In Proceedings of the 2022 IEEE 7th International conference for Convergence in Technology (I2CT), Mumbai, India, 7–9 April 2022; pp. 1–6. [Google Scholar]
- Obi, M.; Metzger, C.; Mayhorn, E.; Ashley, T.; Hunt, W. Nontargeted vs. Targeted vs. Smart Load Shifting Using Heat Pump Water Heaters. Energies 2021, 14, 7574. [Google Scholar] [CrossRef]
- Syranidou, C.; Linssen, J.; Stolten, D.; Robinius, M. On the Curtailments of Variable Renewable Energy Sources in Europe and the Role of Load Shifting. In Proceedings of the 2020 55th International Universities Power Engineering Conference (UPEC), Turin, Italy, 1–4 September 2020; pp. 1–6. [Google Scholar]
- Li, X.; Ma, R.; Gan, W.; Yan, S. Optimal Dispatch for Battery Energy Storage Station in Distribution Network Considering Voltage Distribution Improvement and Peak Load Shifting. J. Mod. Power Syst. Clean Energy 2022, 10, 131–139. [Google Scholar] [CrossRef]
- Fu, J.; Zheng, M.; Wang, X.; Sun, J.; Wang, T. Flow-Rate Optimization and Economic Analysis of Vanadium Redox Flow Batteries in a Load-Shifting Application. J. Energy Eng. 2017, 143, 04017064. [Google Scholar] [CrossRef]
- Baniasadi, A.; Habibi, D.; Bass, O.; Masoum, M.A.S. Optimal Real-Time Residential Thermal Energy Management for Peak-Load Shifting with Experimental Verification. IEEE Trans. Smart Grid 2018, 10, 5587–5599. [Google Scholar] [CrossRef]
- Ferraz, B.P.; Pereira, L.A.; Lemos, F.; Haffner, S. Residential Demand Response Based on Weighted Load Shifting and Reduction Target. J. Control. Autom. Electr. Syst. 2020, 31, 422–435. [Google Scholar] [CrossRef]
- Misra, S.; Dey, B.; Panigrahi, P.K.; Ghosh, S. A Swarm-Intelligent Based Load-Shifting Strategy for Clean and Economic Microgrid Operation. ISA Trans. 2024, 147, 265–287. [Google Scholar] [CrossRef]
- Wu, H.; Wang, C.; Yin, F.; Chen, Y.; Liu, K.; Zuo, Y. Demand Response Strategy of Smart Residential Grid Considering Residential Users’ Load Shifting and Multi-Level Games [考虑负荷转移和多重博弈的智能小区需求响应策略]. Dianwang Jishu/Power Syst. Technol. 2019, 43, 4550–4557. [Google Scholar] [CrossRef]
- Zohrabian, A.; Sanders, K.T. Emitting Less Without Curbing Usage? Exploring Greenhouse Gas Mitigation Strategies in the Water Industry through Load Shifting. Appl. Energy 2021, 298, 117194. [Google Scholar] [CrossRef]
- Abdulaal, A.; Asfour, S. A Linear Optimization Based Controller Method for Real-Time Load Shifting in Industrial and Commercial Buildings. Energy Build. 2016, 110, 269–283. [Google Scholar] [CrossRef]
- Rad, A.S.; Zangeneh, A. A Stochastic Bilevel Scheduling Model for the Determination of the Load Shifting and Curtailment in Demand Response Programs. J. Electr. Eng. Technol. 2018, 13, 1069–1078. [Google Scholar] [CrossRef]
- Son, Y.-J.; Lim, S.-H.; Yoon, S.-G.; Khargonekar, P.P. Residential Demand Response-Based Load-Shifting Scheme to Increase Hosting Capacity in Distribution System. IEEE Access 2022, 10, 18544–18556. [Google Scholar] [CrossRef]
- Jafarirad, H.; Rashidinejad, M.; Abdollahi, A. Load Shifting Demand Response in Energy Scheduling Based on Payment Cost Minimization Auction Mechanism. Sci. Iran. 2022, 29, 2450–2464. [Google Scholar] [CrossRef]
- Pourmousavi, S.A.; Patrick, S.N.; Nehrir, M.H. Real-Time Demand Response Through Aggregate Electric Water Heaters for Load Shifting and Balancing Wind Generation. IEEE Trans. Smart Grid 2014, 5, 769–778. [Google Scholar] [CrossRef]
- Li, M.; Wang, Y.; Tian, Y.; Liu, H. Deep Peak Shaving Model of Fire-Storage Combination under High Permeability Wind Power Conditions. In Proceedings of the 2020 IEEE 3rd Student Conference on Electrical Machines and Systems (SCEMS), Jinan, China, 4–6 December 2020; pp. 674–679. [Google Scholar]
- Zhang, W.; Zavala, V.M. Quantifying Space-Time Load Shifting Flexibility in Electricity Markets. Comput. Chem. Eng. 2023, 177, 108338. [Google Scholar] [CrossRef]
- Carvalho, P.M.; Peres, J.D.; Ferreira, L.A.; Ilic, M.D.; Lauer, M.; Jaddivada, R. Incentive-Based Load Shifting Dynamics and Aggregators Response Predictability. Electr. Power Syst. Res. 2020, 189, 106744. [Google Scholar] [CrossRef]
- Wang, X.; Tang, W. Designing Multistep Peak Time Rebate Programs for Curtailment Service Providers. In Proceedings of the 2019 North American Power Symposium (NAPS), Wichita, KS, USA, 13–15 October 2019; pp. 1–6. [Google Scholar]
- Vuelvas, J.; Ruiz, F. Rational Consumer Decisions in a Peak Time Rebate Program. Electr. Power Syst. Res. 2017, 143, 533–543. [Google Scholar] [CrossRef]
- Im, K.-M. Automated Demand Response System in Lighting for Optimization of Electricity Cost. Energy Effic. 2017, 10, 1329–1341. [Google Scholar] [CrossRef]
- Li, Y.; Gao, W.; Ruan, Y.; Ushifusa, Y. Demand Response of Customers in Kitakyushu Smart Community Project to Critical Peak Pricing of Electricity. Energy Build. 2018, 168, 251–260. [Google Scholar] [CrossRef]
- Sadati, S.M.B.; Moshtagh, J.; Shafie-khah, M.; Rastgou, A.; Catalão, J.P.S. Operational Scheduling of a Smart Distribution System Considering Electric Vehicles Parking Lot: A Bi-Level Approach. Int. J. Electr. Power Energy Syst. 2019, 105, 159–178. [Google Scholar] [CrossRef]
- Song, H.Y.; Lee, G.S.; Yoon, Y.T. Optimal Operation of Critical Peak Pricing for an Energy Retailer Considering Balancing Costs. Energies 2019, 12, 4658. [Google Scholar] [CrossRef]
- Sheidaei, F.; Ahmarinejad, A. Multi-Stage Stochastic Framework for Energy Management of Virtual Power Plants Considering Electric Vehicles and Demand Response Programs. Int. J. Electr. Power Energy Syst. 2020, 120, 106047. [Google Scholar] [CrossRef]
- Sharma, A.K.; Saxena, A.; Palwalia, D.K. Supervised Learning-Based Demand Response Simulator with Incorporation of Real Time Pricing and Peak Time Rebate. Int. Trans. Electr. Energy Syst. 2021, 31, e13229. [Google Scholar] [CrossRef]
- Bego, A.; Li, L.; Sun, Z. Identification of Reservation Capacity in Critical Peak Pricing Electricity Demand Response Program for Sustainable Manufacturing Systems. Int. J. Energy Res. 2014, 38, 728–736. [Google Scholar] [CrossRef]
- Park, S.C.; Jin, Y.G.; Yoon, Y.T. Designing a Profit-Maximizing Critical Peak Pricing Scheme Considering the Payback Phenomenon. Energies 2015, 8, 11363–11379. [Google Scholar] [CrossRef]
- Jang, D.; Eom, J.; Kim, M.G.; Rho, J.J. Demand Responses of Korean Commercial and Industrial Businesses to Critical Peak Pricing of Electricity. J. Clean. Prod. 2015, 90, 275–290. [Google Scholar] [CrossRef]
- Park, S.C.; Jin, Y.G.; Song, H.Y.; Yoon, Y.T. Designing a Critical Peak Pricing Scheme for the Profit Maximization Objective Considering Price Responsiveness of Customers. Energy 2015, 83, 521–531. [Google Scholar] [CrossRef]
- Cui, Q.; Wang, X.; Zeng, P.; Yao, L.; Wu, Z.; Tang, L. Multi-Objective Decision Model of Critical Peak Pricing Considering Capability of Wind Power Accommodation Subject to Peak Regulation. Proc. Chin. Soc. Electr. Eng. 2015, 35, 2662–2669. [Google Scholar] [CrossRef]
- Jang, D.; Eom, J.; Park, M.J.; Rho, J.J. Variability of Electricity Load Patterns and Its Effect on Demand Response: A Critical Peak Pricing Experiment on Korean Commercial and Industrial Customers. Energy Policy 2016, 88, 11–26. [Google Scholar] [CrossRef]
- Bamba, M.; Yamaguchi, Y.; Shimoda, Y. Evaluation of Response to DR for Residential Customers Based on Measured Electricity at Electric Board. IEEJ Trans. Electron. Inf. Syst. 2016, 136, 784–793. [Google Scholar] [CrossRef]
- Wang, Y.; Li, L. Critical Peak Electricity Pricing for Sustainable Manufacturing: Modeling and Case Studies. Appl. Energy 2016, 175, 40–53. [Google Scholar] [CrossRef]
- Hu, D.; Qi, X.; Li, S.; Wang, C.; Ai, X. Price Decision Model of High-Load Users Considering Optimal Wind Bidding Strategy. Power Syst. Technol. 2016, 40, 2265–2272. [Google Scholar] [CrossRef]
- Aghaei, J.; Alizadeh, M.-I. Critical Peak Pricing with Load Control Demand Response Program in Unit Commitment Problem. IET Gener. Transm. Distrib. 2013, 7, 681–690. [Google Scholar] [CrossRef]
- Zhang, X. Optimal Scheduling of Critical Peak Pricing Considering Wind Commitment. IEEE Trans. Sustain. Energy 2014, 5, 637–645. [Google Scholar] [CrossRef]
- Gutierrez-Alcaraz, G.; Tovar-Hernandez, J.H.; Lu, C.-N. Effects of Demand Response Programs on Distribution System Operation. Int. J. Electr. Power Energy Syst. 2016, 74, 230–237. [Google Scholar] [CrossRef]
- Arellano, J.; Garcia-Cerezo, A.; Carrion, M. Optimal Participation in Manual Frequency Restoration Reserve-Based Demand Response Programs for Large Consumers. IEEE Access 2025, 13, 59866–59885. [Google Scholar] [CrossRef]
- Zhang, F.; de Dear, R. Application of Taguchi Method in Optimising Thermal Comfort and Cognitive Performance during Direct Load Control Events. Build. Environ. 2017, 111, 160–168. [Google Scholar] [CrossRef]
- Xu, X.; Chen, C.-F.; Zhu, X.; Hu, Q. Promoting Acceptance of Direct Load Control Programs in the United States: Financial Incentive versus Control Option. Energy 2018, 147, 1278–1287. [Google Scholar] [CrossRef]
- Wang, S.; Tang, R. Supply-Based Feedback Control Strategy of Air-Conditioning Systems for Direct Load Control of Buildings Responding to Urgent Requests of Smart Grids. Appl. Energy 2017, 201, 419–432. [Google Scholar] [CrossRef]
- Zhu, L.; Niu, P.; Tang, L.; Yang, Q.; Ji, X. Robust Optimal Operation for Micro-Energy Grid Considering Uncertainties of Direct Load Control [考虑直接负荷控制不确定性的微能源网鲁棒优化运行]. Dianwang Jishu/Power Syst. Technol. 2020, 44, 1400–1409. [Google Scholar] [CrossRef]
- Yilmaz, S.; Xu, X.; Cabrera, D.; Chanez, C.; Cuony, P.; Patel, M.K. Analysis of Demand-Side Response Preferences Regarding Electricity Tariffs and Direct Load Control: Key Findings from a Swiss Survey. Energy 2020, 212, 118712. [Google Scholar] [CrossRef]
- Alasseri, R.; Rao, T.J.; Sreekanth, K.J. Pre-Implementation Assessment for Introducing Direct Load Control Strategies in the Residential Electricity Sector. Int. J. Energy Environ. Eng. 2021, 12, 433–451. [Google Scholar] [CrossRef]
- Elma, O.; Kuzlu, M.; Pipattanasomporn, M. A Smart Direct Load Control Approach Using Dynamic Voltage Control for Demand Response Programs. Electr. Power Compon. Syst. 2022, 50, 738–750. [Google Scholar] [CrossRef]
- Moradi-Sarvestani, S.; Jooshaki, M.; Fotuhi-Firuzabad, M.; Lehtonen, M. Incorporating Direct Load Control Demand Response into Active Distribution System Planning. Appl. Energy 2023, 339, 120897. [Google Scholar] [CrossRef]
- Wildstein, P.J.; Craig, M.T.; Vaishnav, P. Participant Overrides Can Halve the Reliability Value of Direct Load Control Programs. Energy Build. 2023, 299, 113606. [Google Scholar] [CrossRef]
- Miri, M.; McPherson, M. Demand Response Programs: Comparing Price Signals and Direct Load Control. Energy 2024, 288, 129673. [Google Scholar] [CrossRef]
- Nilsson, A.; Bartusch, C. Empowered or Enchained? Exploring Consumer Perspectives on Direct Load Control. Energy Policy 2024, 192, 114248. [Google Scholar] [CrossRef]
- Vesely, S.; Klöckner, C.A. Individual Differences in Acceptance of Direct Load Control. Energy Build. 2024, 325, 115009. [Google Scholar] [CrossRef]
- Gunay, B.; Elehwany, H.; Hobson, B.W.; Bahiraei, F.; Darwazeh, D. Deriving Optimal Direct Load Control Sequences for HVAC Systems of Small Commercial Buildings. Build. Serv. Eng. Res. Technol. 2025, 46. [Google Scholar] [CrossRef]
- Fabianek, P.; Liepold, C.; Madlener, R. A Multi-Criteria Assessment Framework for Direct Load Control in Residential Buildings from an Occupants’ Perspective. Energy 2025, 321, 135456. [Google Scholar] [CrossRef]
- Xu, Q.; Wu, X.; Yang, B. Dynamic Optimization Method of Direct Load Control for Air-Conditioning Load Considering Status Diversity Clustering. Autom. Electr. Power Syst. 2016, 40, 33–42. [Google Scholar] [CrossRef]
- Haring, T.W.; Mathieu, J.L.; Andersson, G. Comparing Centralized and Decentralized Contract Design Enabling Direct Load Control for Reserves. IEEE Trans. Power Syst. 2016, 31, 2044–2054. [Google Scholar] [CrossRef]
- Fattahi, A.; Ghodsi, S.; Dasu, S.; Ahmadi, R. Flattening Energy-Consumption Curves by Monthly Constrained Direct Load Control Contracts. Oper. Res. 2024, 72, 570–590. [Google Scholar] [CrossRef]
- Liu, S.; Gao, Y.; Yang, H.; Xie, X.; Ma, Y. Optimal Guidance Strategy for Flexible Load Based on Hybrid Direct Load Control and Time of Use. Glob. Energy Interconnect. China 2023, 6, 297–307. [Google Scholar] [CrossRef]
- Chauhan, R.K.; Maurya, S.K.; Chauhan, D.S. Direct Load Control Scheme for Flexible Loads under Automated Demand Response Program for Peak Demand Management, Loss Minimization, Asset Management, and Sustainable Development. Recent Adv. Electr. Electron. Eng. 2024, 17, 38–53. [Google Scholar] [CrossRef]
- Ozkop, E. A Survey on Direct Load Control Technologies in the Smart Grid. IEEE Access 2024, 12, 4997–5053. [Google Scholar] [CrossRef]
- Miao, Z.; Fan, L.; Osborn, D.; Yuvarajan, S. Wind Farms with HVdc Delivery in Inertial Response and Primary Frequency Control. IEEE Trans. Energy Convers. 2010, 25, 1171–1178. [Google Scholar] [CrossRef]
- Posma, J.; Lampropoulos, I.; Schram, W.; van Sark, W. Provision of Ancillary Services from an Aggregated Portfolio of Residential Heat Pumps on the Dutch Frequency Containment Reserve Market. Appl. Sci. 2019, 9, 590. [Google Scholar] [CrossRef]
- Perroy, E.; Lucas, D.; Debusschere, V. Provision of Frequency Containment Reserve Through Large Industrial End-Users Pooling. IEEE Trans. Smart Grid 2020, 11, 26–36. [Google Scholar] [CrossRef]
- Samani, A.E.; De Kooning, J.D.; Blanco, C.A.U.; Vandevelde, L. Flexible Operation Strategy for Formic Acid Synthesis Providing Frequency Containment Reserve in Smart Grids. Int. J. Electr. Power Energy Syst. 2022, 139, 107969. [Google Scholar] [CrossRef]
- Savolainen, R.; Einolander, J.; Lahdelma, R. Optimizing Building Hybrid Energy Systems for Demand Response Marketplace Operation. J. Energy Storage 2024, 102, 114108. [Google Scholar] [CrossRef]
- Kazme, H.Z.; Basumatary, K. Frequency Control Support in Low Inertia Power Grid by Energy Storage Systems: A Techno-Economic Analysis. In Proceedings of the 2022 IEEE International Conference on Power Electronics, Drives and Energy Systems, PEDES, Jaipur, India, 14–17 December 2022; IEEE: New York, NY, USA, 2022. [Google Scholar]
- Moews, S.; Klie, C.; Steen, A.-L.; Becker, C. Frequency Containment Reserve with a Pool of Renewable Energies and Storages. In Proceedings of the Power Supply Transformation—Grid Regulation and System Stability; 14. ETG/GMA-Symposium, Leipzig, Germany, 28–29 September 2022; pp. 1–7. [Google Scholar]
- Miletić, M.; Krpan, M.; Pavić, I.; Pandžić, H.; Kuzle, I. Optimal Primary Frequency Reserve Provision by an Aggregator Considering Nonlinear Unit Dynamics. IEEE Trans. Power Syst. 2024, 39, 3045–3058. [Google Scholar] [CrossRef]
- Li, W.; Du, P.; Lu, N. Design of a New Primary Frequency Control Market for Hosting Frequency Response Reserve Offers from Both Generators and Loads. IEEE Trans. Smart Grid 2018, 9, 4883–4892. [Google Scholar] [CrossRef]
- Mendieta, W.; Canizares, C.A. Primary Frequency Control in Isolated Microgrids Using Thermostatically Controllable Loads. IEEE Trans. Smart Grid 2021, 12, 93–105. [Google Scholar] [CrossRef]
- Pombo, D.V.; Iov, F.; Stroe, D.-I. A Novel Control Architecture for Hybrid Power Plants to Provide Coordinated Frequency Reserves. Energies 2019, 12, 919. [Google Scholar] [CrossRef]
- Reese, L.; Rettig, A.; Jauch, C.; Domin, R.J.; Karshüning, T. Joint Frequency Stabilisation in Future 100% Renewable Electric Power Systems. Energies 2025, 18, 418. [Google Scholar] [CrossRef]
- Borsche, T.; Markovic, U.; Andersson, G. A New Algorithm for Primary Frequency Control with Cooling Appliances. Comput. Sci. Res. Dev. 2016, 31, 89–95. [Google Scholar] [CrossRef]
- Iqbal, S.; Xin, A.; Jan, M.U.; Abdelbaky, M.A.; Rehman, H.U.; Salman, S.; Rizvi, S.A.A.; Aurangzeb, M. Aggregation of EVs for Primary Frequency Control of an Industrial Microgrid by Implementing Grid Regulation Charger Controller. IEEE Access 2020, 8, 141977–141989. [Google Scholar] [CrossRef]
- Samani, A.E.; D’Amicis, A.; de Kooning, J.D.M.; Bozalakov, D.; Silva, P.; Vandevelde, L. Grid Balancing with a Large-Scale Electrolyser Providing Primary Reserve. IET Renew. Power Gener. 2020, 14, 3070–3078. [Google Scholar] [CrossRef]
- Sabhahit, J.N.; Solanke, S.S.; Jadoun, V.K.; Malik, H.; Márquez, F.P.G.; Pinar-Pérez, J.M. Contingency Analysis of a Grid of Connected EVs for Primary Frequency Control of an Industrial Microgrid Using Efficient Control Scheme. Energies 2022, 15, 3102. [Google Scholar] [CrossRef]
- Codani, P.; Petit, M.; Perez, Y. Participation of an Electric Vehicle Fleet to Primary Frequency Control in France. Int. J. Electr. Hybrid. Veh. 2015, 7, 233–249. [Google Scholar] [CrossRef]
- Abbasi, E. Coordinated Primary Control Reserve by Flexible Demand and Wind Power through Ancillary Service–Centered Virtual Power Plant. Int. Trans. Electr. Energy Syst. 2017, 27, e2452. [Google Scholar] [CrossRef]
- Ye, J.; Wu, H.; Li, S.; Yang, L.; Xu, M. Optimal Dispatching Under Electric Water Heaters Participating in Primary Frequency Control and Considering Minimum Frequency Regulation Capacity Constraint of Generation Units [电热水器负荷参与一次调频下考虑机组最小调频容量约束的优化调度]. Mod. Electr. Power 2023, 40, 390–398. [Google Scholar] [CrossRef]
- Karagiannopoulos, S.; Vrettos, E.; Lopez, P.C.; Vrakopoulou, M.; Oldewurtel, F.; Andersson, G.; Zima, M. On Geographical Allocation of Primary Frequency Control Reserves in Large Interconnected Power Systems. In Proceedings of the 2014 Power Systems Computation Conference (PSCC), Wroclaw, Poland, 18–22 August 2014; IEEE: New York, NY, USA, 2014. [Google Scholar]
- Bachoumis, A.; Andriopoulos, N.; Plakas, K.; Magklaras, A.; Alefragis, P.; Goulas, G.; Birbas, A.; Papalexopoulos, A. Cloud-Edge Interoperability for Demand Response-Enabled Fast Frequency Response Service Provision. IEEE Trans. Cloud Comput. 2022, 10, 123–133. [Google Scholar] [CrossRef]
- Manner, P.; Tikka, V.; Honkapuro, S.; Tikkanen, K.; Aghaei, J. Electric Vehicle Charging as a Source of Nordic Fast Frequency Reserve—Proof of Concept. IET Gener. Transm. Distrib. 2024, 18, 1223–1234. [Google Scholar] [CrossRef]
- Panagi, S.; Lazari, A.; Koutsoloukas, V.; Aristidou, P. Impact of Fast Frequency Response on Renewable Energy Source Curtailment and Load Shedding. In Proceedings of the CIRED 2024 Vienna Workshop, Vienna, Austria, 19–20 June 2024; Volume 2024, pp. 505–508. [Google Scholar]
- Lozada, C.; Vargas, W.; Granda, N.; Chamba, M. Optimal Load Shedding Scheme Considering the Dynamic Frequency Response †. Eng. Proc. 2024, 77, 25. [Google Scholar] [CrossRef]
- Sebastian, O.H.; Carlos, B.D. Trade-off between Frequency Stability and Renewable Generation—Studying Virtual Inertia from Solar PV and Operating Stability Constraints. Renew. Energy 2024, 232, 121075. [Google Scholar] [CrossRef]
- Mahmoudnia, M.; Amraee, T.; Toulabi, M. Enhancing Security and Frequency Control: Integrating Wind Turbine Participation in Power Electronics-Controlled Sustainable Grids Operation. IEEE Trans. Consum. Electron. 2025, 71, 1647–1660. [Google Scholar] [CrossRef]
- Lingcong, M.; Chao, Q.; Liu, H.; Zhao, L.; Xie, H.; Zhen, H. Multi-Layer Coordinated Frequency Control Strategy for WTGs and Energy Storage Considering System Inertia Requirement. Electr. Power Syst. Res. 2025, 239, 111190. [Google Scholar] [CrossRef]
- Abayateye, J.; Zimmerle, D. Analysis of Grid Scale Storage Effectiveness for a West African Interconnected Transmission System. Energies 2025, 18, 3741. [Google Scholar] [CrossRef]
- Khan, I.A.; Mokhlis, H.; Mansor, N.N.; Illias, H.A.; Awalin, L.J.; Wang, L. New Trends and Future Directions in Load Frequency Control and Flexible Power System: A Comprehensive Review. Alex. Eng. J. 2023, 71, 263–308. [Google Scholar] [CrossRef]
- Qian, M.; Wang, J.; Yang, D.; Yin, H.; Zhang, J. An Optimization Strategy for Unit Commitment in High Wind Power Penetration Power Systems Considering Demand Response and Frequency Stability Constraints. Energies 2024, 17, 5725. [Google Scholar] [CrossRef]
- Mathur, A.; Nema, S.; Prakash, V.; Singh, J. Fast Frequency Response Constrained Stochastic Scheduling of Flexible Loads in Low Inertia Grids. E-Prime Adv. Electr. Eng. Electron. Energy 2024, 10, 100852. [Google Scholar] [CrossRef]
- Zhou, T.; Zhou, M.; Wang, S.; Li, Z.; Han, Y.; Capuder, T.; Zhang, N. Centralized Synthetic Inertia Control of Inverter-Based Thermostatically Controlled Load Clusters for Grid Frequency Regulation. iEnergy 2025, 4, 16–30. [Google Scholar] [CrossRef]
- Nema, S.; Prakash, V.; Pandžić, H. The Role of Thermostatically Controlled Loads in Power System Frequency Management: A Comprehensive Review. Sustain. Energy Grids Netw. 2025, 42, 101680. [Google Scholar] [CrossRef]
- Wilson, D.; Heimisson, B.; Gudmansson, R.; Baldursdottir, I.; Armannsson, O.; Halldorsson, K.; Linnet, E.; Bagleybter, O. Icelandic Operational Experience of Synchrophasor-Based Fast Frequency Response and Islanding Defence. CIGRE Sci. Eng. 2019, 2019, 89–99. [Google Scholar]
- Wu, D.; Ma, X.; Balducci, P.; Bhatnagar, D. An Economic Assessment of Behind-the-Meter Photovoltaics Paired with Batteries on the Hawaiian Islands. Appl. Energy 2021, 286, 116550. [Google Scholar] [CrossRef]
- Zhang, G.; Ren, J.; Zeng, Y.; Liu, F.; Wang, S.; Jia, H. Security Assessment Method for Inertia and Frequency Stability of High Proportional Renewable Energy System. Int. J. Electr. Power Energy Syst. 2023, 153, 109309. [Google Scholar] [CrossRef]
- Gao, N.; Dong, S.; Fang, X.; Hoke, A.; Gao, D.W.; Tan, J. Developing Frequency Stability Constraint for Unit Commitment Problem Considering High Penetration of Renewables. In Proceedings of the 2023 IEEE 50th Photovoltaic Specialists Conference, PVSC, San Juan, PR, USA, 11–16 June 2023; IEEE: New York, NY, USA, 2023. [Google Scholar]
- Taczi, I.; Vokony, I. Possible Role and Effects of Synthetic Inertia on the Future’s Power System. In Power Systems, Energy Markets and Renewable Energy Sources in South-Eastern Europe; Mavromatakis, F., Siderakis, K., Eds.; Trivent Publisher: Budapest, Hungary, 2016; Volume 3, pp. 32–47. ISBN 978-615-80340-7-4. [Google Scholar]
- Ullah, Z.; Ullah, K.; Gruosso, G. Using Controlled Thermostatic Loads in Buildings as Auxiliary Services to the Power Grid: An Investigation with Thoroughly Simulated Case Study. Int. J. Energy Res. 2024, 2024, 5581128. [Google Scholar] [CrossRef]
- Vokony, I.; Salama, H.; Barancsuk, L.; Sores, P. Spatial Aggregation of Local Flexibility—Horizon 2020 Project Experiences. Renew. Energy Power Qual. J. 2022, 20, 596–601. [Google Scholar] [CrossRef]
- Ullah, K.; Ullah, Z.; Basit, A.; Gruosso, G. Optimal Utilization of Frequency Ancillary Services in Modern Power Systems. E-Prime Adv. Electr. Eng. Electron. Energy 2024, 9, 100755. [Google Scholar] [CrossRef]
- Golpîra, H.; Marinescu, B. Enhanced Frequency Regulation Scheme: An Online Paradigm for Dynamic Virtual Power Plant Integration. IEEE Trans. Power Syst. 2024, 39, 7227–7239. [Google Scholar] [CrossRef]
- Alhajri, M.M.; Bassam Nour, D.; Alshabib, K.R.; Rob, R. Protecting Energy Storage Systems—Automated Generation Control—Against Coordinated and Dynamic Malicious Data Injection Cyber Attacks. In Proceedings of the 2024 6th Global Power, Energy and Communication Conference (GPECOM), Budapest, Hungary, 4–7 June 2024; pp. 494–499. [Google Scholar]
- Nayak, P.C.; Prusty, R.C.; Panda, S. Grasshopper Optimization Algorithm Optimized Multistage Controller for Automatic Generation Control of a Power System with FACTS Devices. Prot. Control Mod. Power Syst. 2021, 6, 8. [Google Scholar] [CrossRef]
- Shen, Y.; Wu, W.; Sun, S. Stochastic Model Predictive Control Based Fast-Slow Coordination Automatic Generation Control. IEEE Trans. Power Syst. 2024, 39, 5259–5271. [Google Scholar] [CrossRef]
- Xiang, M.; Yang, Z.; Yu, J. Hierarchical AGC Dispatch with Detailed Modeling of Energy Storage System Behaviors. IEEE Trans. Power Syst. 2023, 38, 1689–1701. [Google Scholar] [CrossRef]
- Ullah, K.; Tunio, M.A.; Ullah, Z.; Ejaz, M.T.; Anwar, M.J.; Ahsan, M.; Tandon, R. Ancillary Services from Wind and Solar Energy in Modern Power Grids: A Comprehensive Review and Simulation Study. J. Renew. Sustain. Energy 2024, 16, 032701. [Google Scholar] [CrossRef]
- Guida, G.; Bruno, G.; Ortolano, L.; Poli, M.; Palleschi, M.; Migliavacca, G.; Moneta, D.; Arrigoni, C.; Zanellini, F.; Croce, G.D.; et al. Smart TSO-DSO Interaction Schemes and ICT Solutions for the Integration of Ancillary Services from Distributed Generation. CIGRE Sci. Eng. 2019, 2019, 115–123. [Google Scholar]
- Ullah, K.; Ullah, Z.; Shaker, B.; Ibrar, M.; Ahsan, M.; Saeed, S.; Wadood, H. Line Congestion Management in Modern Power Systems: A Case Study of Pakistan. Int. Trans. Electr. Energy Syst. 2024, 2024, 6893428. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhou, L.; Shi, D.; Zhao, X.; Shan, X. Coordinated Active Power-Frequency Control Based on Safe Deep Reinforcement Learning [基于安全深度强化学习的电网有功频率协同优化控制]. Shanghai Jiaotong Daxue Xuebao/J. Shanghai Jiaotong Univ. 2024, 58, 682–692. [Google Scholar] [CrossRef]
- Lam, L.H.; Nam, L.K.; Dung, N.K.T.; Hieu, N.H. Two-Area Automatic Generation Control for Power Systems with Highly Penetrating Renewable Energy Sources. Electronics 2024, 13, 2907. [Google Scholar] [CrossRef]
- Misra, P.; Saxena, D. Electric Vehicles as Key Players in Frequency Regulation of Emerging Electricity Networks: An Overview and Key Issues. Smart Grids Sustain. Energy 2025, 10, 59. [Google Scholar] [CrossRef]
- Biswas, S.; Roy, P.K.; Chatterjee, K. FACTS-Based 3DOF-PID Controller for LFC of Renewable Power System Under Deregulation Using GOA. IETE J. Res. 2023, 69, 1486–1499. [Google Scholar] [CrossRef]
- Bhagat, S.K.; Saikia, L.C.; Babu, N.R.; Saha, D. Impact of PLL and Virtual Inertia on Deregulated AGC System Integrated with Parallel AC/HVDC. IETE J. Res. 2023, 69, 2514–2527. [Google Scholar] [CrossRef]
- Ullah, K.; Basit, A.; Ullah, Z.; Asghar, R.; Aslam, S.; Yafoz, A. Line Overload Alleviations in Wind Energy Integrated Power Systems Using Automatic Generation Control. Sustainability 2022, 14, 11810. [Google Scholar] [CrossRef]
- Verma, R.; Gawre, S.K.; Patidar, N.P.; Nandanwar, S. A State of Art Review on the Opportunities in Automatic Generation Control of Hybrid Power System. Electr. Power Syst. Res. 2024, 226, 109945. [Google Scholar] [CrossRef]
- Egea-Alvarez, A.; Beerten, J.; Van Hertem, D.; Gomis-Bellmunt, O. Primary and Secondary Power Control of Multiterminal HVDC Grids. In Proceedings of the 10th IET International Conference on AC and DC Power Transmission (ACDC 2012), Birmingham, UK, 4–5 December 2012; pp. 1–6. [Google Scholar]
- Bovera, F.; Rancilio, G.; Falabretti, D.; Merlo, M. Data-Driven Evaluation of Secondary-and Tertiary-Reserve Needs with High Renewables Penetration: The Italian Case. Energies 2021, 14, 2157. [Google Scholar] [CrossRef]
- Roos, A. Designing a Joint Market for Procurement of Transmission and Distribution System Services from Demand Flexibility. Renew. Energy Focus 2017, 21, 16–24. [Google Scholar] [CrossRef]
- Bae, H.; Tsuji, T.; Oyama, T.; Uchida, K. Supply and Demand Balance Control and Congestion Management by Locational Marginal Price Based on Balancing Market in Power System with Wind Power Integration. IEEJ Trans. Power Energy 2018, 138, 671–684. [Google Scholar] [CrossRef]
- Mousavi, M.; Alvarez, M.; Zhong, J.; Rönnberg, S. Effects of Flexibility Contracts on Manual Frequency Restoration Reserve Market Considering Transmission System Flexibility Issues. Int. J. Electr. Power Energy Syst. 2025, 166, 110576. [Google Scholar] [CrossRef]
- Ribó-Pérez, D.; Carrión, A.; García, J.R.; Bel, C.Á. Ex-Post Evaluation of Interruptible Load Programs with a System Optimisation Perspective. Appl. Energy 2021, 303, 117643. [Google Scholar] [CrossRef]
- Farahmand, H.; Hosseini, S.M.A.; Doorman, G.L.; Fosso, O.B. Flow Based Activation of Reserves in the Nordic Power System. In Proceedings of the IEEE PES General Meeting, Minneapolis, MN, USA, 25–29 July 2010; pp. 1–8. [Google Scholar]
- Weitzel, T.; Glock, C.H. Scheduling a Storage-Augmented Discrete Production Facility under Incentive-Based Demand Response. Int. J. Prod. Res. 2019, 57, 250–270. [Google Scholar] [CrossRef]
- Lu, R.; Hong, S.H. Incentive-Based Demand Response for Smart Grid with Reinforcement Learning and Deep Neural Network. Appl. Energy 2019, 236, 937–949. [Google Scholar] [CrossRef]
- Lucas, A.; Pegios, K.; Kotsakis, E.; Clarke, D. Price Forecasting for the Balancing Energy Market Using Machine-Learning Regression. Energies 2020, 13, 5420. [Google Scholar] [CrossRef]
- Håberg, M.; Doorman, G. Distributed Balancing Energy Activation and Exchange Optimisation. IET Gener. Transm. Distrib. 2019, 13, 4150–4157. [Google Scholar] [CrossRef]
- Lin, R.; Chen, S.; He, Z.; Wu, B.; Zhao, X.; Li, Q. DQN-PACG: Load Regulation Method Based on DQN and Multivariate Prediction Model. Knowl. Inf. Syst. 2024, 66, 7363–7387. [Google Scholar] [CrossRef]
- Ramasamy, M.; Kaliannan, T.; Ramasamy, S. Cost-Benefit Analysis in Demand Response with Penalty and Grid Management Using Blockchain. AIP Adv. 2025, 15, 015333. [Google Scholar] [CrossRef]
- Al-Gabalawy, M. Reinforcement Learning for the Optimization of Electric Vehicle Virtual Power Plants. Int. Trans. Electr. Energy Syst. 2021, 31, e12951. [Google Scholar] [CrossRef]
- Ihlemann, M.; van Stiphout, A.; Poncelet, K.; Delarue, E. Benefits of Regional Coordination of Balancing Capacity Markets in Future European Electricity Markets. Appl. Energy 2022, 314, 118874. [Google Scholar] [CrossRef]
- Koltsaklis, N.E.; Knápek, J. Integrated Market Scheduling with Flexibility Options. Renew. Sustain. Energy Rev. 2025, 208, 115020. [Google Scholar] [CrossRef]
- He, B.; Li, J.; Li, D.; Dong, J.; Zhu, L. Quadratic Function Based Price Adjustment Strategy on Monitoring Process of Power Consumption Load in Smart Grid. Int. J. Electr. Power Energy Syst. 2022, 134, 107124. [Google Scholar] [CrossRef]
- Singh, J.; Singh, S.P.; Verma, K.S.; Iqbal, A.; Kumar, B. Recent Control Techniques and Management of AC Microgrids: A Critical Review on Issues, Strategies, and Future Trends. Int. Trans. Electr. Energy Syst. 2021, 31, e13035. [Google Scholar] [CrossRef]
- Nasiri, N.; Zeynali, S.; Ravadanegh, S.N.; Rostami, N. A Robust Decision Framework for Strategic Behaviour of Integrated Energy Service Provider with Embedded Natural Gas and Power Systems in Day-Ahead Wholesale Market. IET Gener. Transm. Distrib. 2022, 16, 561–579. [Google Scholar] [CrossRef]
- Ge, Y.; Zhang, Y.; Hu, Q.; Wang, S.; Qiu, P.; Zou, B.; Yu, X.; Hu, R. Optimal Bidding Strategy for Data Center Participation in Day-Ahead Electricity Market. In Proceedings of the 2023 IEEE International Conference on Energy Internet (ICEI), Shenyang, China, 20–22 October 2023; pp. 170–175. [Google Scholar]
- Wang, Q.; Li, H. Electricity Retailers Considering Day-Ahead-Intraday Optimization Scheduling of Electric Vehicles. In Proceedings of the 2024 3rd International Conference on Energy, Power and Electrical Technology (ICEPET), Chengdu, China, 17–19 May 2024; pp. 1188–1193. [Google Scholar]
- Al-Awami, A.T.; Amleh, N.A.; Muqbel, A.M. Optimal Demand Response Bidding and Pricing Mechanism with Fuzzy Optimization: Application for a Virtual Power Plant. IEEE Trans. Ind. Appl. 2017, 53, 5051–5061. [Google Scholar] [CrossRef]
- Hedegaard, R.E.; Pedersen, T.H.; Petersen, S. Multi-Market Demand Response Using Economic Model Predictive Control of Space Heating in Residential Buildings. Energy Build. 2017, 150, 253–261. [Google Scholar] [CrossRef]
- Li, Y.; Miao, S.; Luo, X.; Yin, B.; Wang, J. Day-Ahead and Intra-Day Time Scales Coordinative Dispatch Strategy of Power System with Compressed Air Energy Storage [含压缩空气储能电力系统日前-日内协调调度策略]. Zhongguo Dianji Gongcheng Xuebao/Proc. Chin. Soc. Electr. Eng. 2018, 38, 2849–2860. [Google Scholar] [CrossRef]
- Shahryari, E.; Shayeghi, H.; Mohammadi-ivatloo, B.; Moradzadeh, M. An Improved Incentive-Based Demand Response Program in Day-Ahead and Intra-Day Electricity Markets. Energy 2018, 155, 205–214. [Google Scholar] [CrossRef]
- Yang, H.; Li, M.; Jiang, Z.; Zhang, P. Multi-Time Scale Optimal Scheduling of Regional Integrated Energy Systems Considering Integrated Demand Response. IEEE Access 2020, 8, 5080–5090. [Google Scholar] [CrossRef]
- Malehmirchegini, L.; Farzaneh, H. Demand Response Modeling in a Day-Ahead Wholesale Electricity Market in Japan, Considering the Impact of Customer Risk Aversion and Dynamic Price Elasticity of Demand. Energy Rep. 2022, 8, 11910–11926. [Google Scholar] [CrossRef]
- Yang, M.; Hu, Y.; Qian, H.; Liu, F.; Wang, X.; Tong, X.; Zeng, J. Optimization of Day-Ahead and Intra-Day Multi-Time Scale Scheduling for Integrated Power-Gas Energy System Considering Carbon Emission [计及碳排放的综合能源配网日前与日内多时间尺度优化调度]. Dianli Xitong Baohu Yu Kongzhi/Power Syst. Prot. Control 2023, 51, 96–106. [Google Scholar] [CrossRef]
- Bai, Y.; Liu, X.; Chen, X. Dynamics Analysis on Decision-Making of Load Aggregator for Day-Ahead Demand Response Market Bidding [面向需求响应日前市场投标的负荷聚合商决策动力学分析]. Dianli Xitong Zidong-Hua/Autom. Electr. Power Syst. 2022, 46, 95–103. [Google Scholar] [CrossRef]
- Yang, X.; Wang, X.; Leng, Z.; Deng, Y.; Deng, F.; Zhang, Z.; Yang, L.; Liu, X. An Optimized Scheduling Strategy Combining Robust Optimization and Rolling Optimization to Solve the Uncertainty of RES-CCHP MG. Renew. Energy 2023, 211, 307–325. [Google Scholar] [CrossRef]
- Wang, L.; Li, T.; Yang, C.; Chen, J.; Liu, Y.; Ren, S. Distributed Trusted Demand Response Bidding Mechanism Empowered by Blockchain. Intell. Converg. Netw. 2024, 5, 181–191. [Google Scholar] [CrossRef]
- Qixing, L.; Nan, L.; Xianzhuo, L.; Zhe, Z.; Lichao, L.; Bo, Z. Multi-Level Market Joint Dispatch Strategy for Multi-Energy Virtual Power Plant Considering Uncertainty and Refined Demand Response. Energy Rep. 2024, 11, 2077–2089. [Google Scholar] [CrossRef]
- Cai, Y.; Lu, Z.; Pan, Y.; He, L.; Zhou, C. Multi-Time-Scale Optimal Scheduling of AC-DC Hybrid Multi-Energy Microgrid Considering Multiple Differences [计及多重差异的交直流混合多能微网多时间尺度优化调度]. Diangong Jishu Xuebao/Trans. China Electrotech. Soc. 2024, 39, 3392–3410. [Google Scholar] [CrossRef]
- Li, N.; Liu, W.; Wan, X.; Ren, X.; Yu, H. Day-Ahead and Intraday Economic Optimization Models of the Stackelberg Game Considering Source-Load Uncertainty. IEEE Access 2025, 13, 14344–14357. [Google Scholar] [CrossRef]
- Papadimitriou, C.; Schulze, J.C.; Mitsos, A. A Practical Scenario Generation Method for Electricity Prices on Day-Ahead and Intraday Spot Markets. Comput. Chem. Eng. 2025, 199, 109118. [Google Scholar] [CrossRef]
- Hu, S.; Liu, D.; Yang, N.; Li, C.; Xu, E.; Xu, X.; Wu, F. AI-Based Integration of Flexible Diverse Electricity Aggregators in Multiple Electricity Markets Under Uncertainty. Energy 2025, 333, 137114. [Google Scholar] [CrossRef]
- Alangi, S.R.; Bjorndal, E.; Bjorndal, M. Can the European Intraday Market Be Designed as a Congestion Management Tool? Energy Econ. 2022, 113, 106171. [Google Scholar] [CrossRef]
- Deng, H.; Wu, H.; Liang, Z.; Tong, Z.; Shen, J. Two-Stage Robust Reserve Coordinated Operation Based on Real-Time Price Mechanism. J. Appl. Sci. Eng. 2025, 28, 1147–1159. [Google Scholar] [CrossRef]
- Zugno, M.; Morales, J.M.; Pinson, P.; Madsen, H. A Bilevel Model for Electricity Retailers’ Participation in a Demand Response Market Environment. Energy Econ. 2013, 36, 182–197. [Google Scholar] [CrossRef]
- Khan, A.S.M.; Verzijlbergh, R.A.; Sakinci, O.C.; Vries, L.J. De How Do Demand Response and Electrical Energy Storage Affect (the Need for) a Capacity Market? Appl. Energy 2018, 214, 39–62. [Google Scholar] [CrossRef]
- Clastres, C.; Rebenaque, O.; Jochem, P. Provision of Demand Response by French Prosumers with Photovoltaic-Battery Systems in Multiple Markets. Energy Syst. 2023, 14, 869–892. [Google Scholar] [CrossRef]
- Priesmann, J.; Münch, J.; Tillmanns, M.; Ridha, E.; Spiegel, T.; Reich, M.; Adam, M.; Nolting, L.; Praktiknjo, A. Artificial Intelligence and Design of Experiments for Resource Adequacy Assessment in Power Systems. Energy Strategy Rev. 2024, 53, 109118. [Google Scholar] [CrossRef]
- Gehbauer, C.; Lee, E.S.; Wang, T. An Evaluation of the Demand Response Potential of Integrated Dynamic Window and HVAC Systems. Energy Build. 2023, 298, 113481. [Google Scholar] [CrossRef]
- Fraunholz, C.; Tash, A.; Scheben, H.; Zillich, A. Demand Curtailment Allocation in Interconnected Electricity Markets. Appl. Energy 2025, 377, 124679. [Google Scholar] [CrossRef]
- Biggar, D.R.; Hesamzadeh, M.R. The Capacity Market Debate: What Is the Underlying Market Failure? Util Policy 2025, 95, 101926. [Google Scholar] [CrossRef]
- Ito, M.; Takano, A.; Shinji, T.; Yagi, T.; Hayashi, Y. Electricity Adjustment for Capacity Market Auction by a District Heating and Cooling System. Appl. Energy 2017, 206, 623–633. [Google Scholar] [CrossRef]
- Khadem, M.; Karami, M. Demand Response Planning in Capacity Market Using Microgrid. Int. J. Appl. Power Eng. 2022, 11, 7–13. [Google Scholar] [CrossRef]
- Sener, A.C. Texas’s Energy-Only Resource Adequacy Paradox. Electr. J. 2013, 26, 22–33. [Google Scholar] [CrossRef]
- Kim, H.; Kim, S.-S. The Resource Adequacy Scheme in the Korean Electricity Market. Energy Policy 2012, 47, 133–144. [Google Scholar] [CrossRef]
- Aalami, H.A.; Moghaddam, M.P.; Yousefi, G.R. Demand Response Modeling Considering Interruptible/Curtailable Loads and Capacity Market Programs. Appl. Energy 2010, 87, 243–250. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, K.M. Demand Response, Behind-the-Meter Generation and Air Quality. Environ. Sci. Technol. 2015, 49, 1260–1267. [Google Scholar] [CrossRef] [PubMed]
- Jalili, H.; Siano, P. Modeling of Unforced Demand Response Programs. Int. J. Emerg. Electr. Power Syst. 2021, 22, 233–241. [Google Scholar] [CrossRef]
- Brown, P.R.; O’Sullivan, F.M. Spatial and Temporal Variation in the Value of Solar Power Across United States Electricity Markets. Renew. Sustain. Energy Rev. 2020, 121, 109594. [Google Scholar] [CrossRef]
- Petz, M.; Meier, D.; Hierzer, J.; Achleitner, G.; Misak, K.; Bres, A.; Spreitzhofer, J. The Development of Heat Pumps in Austria until 2030 and Its Impact on Load Profiles—Evaluating Sensitivities Using a Simplified Test Model for European Resource Adequacy Assessments. Elektrotechnik Und Informationstech. 2021, 138, 583–589. [Google Scholar] [CrossRef]
- Gonzato, S.; Bruninx, K.; Delarue, E. The Effect of Short Term Storage Operation on Resource Adequacy. Sustain. Energy Grids Netw. 2023, 34, 101005. [Google Scholar] [CrossRef]
- Monitoring Analytics. 2024 State of the Market Report for PJM 337 Section 6 Demand Response Demand Response. 2024. Available online: https://www.monitoringanalytics.com/reports/PJM_State_of_the_Market/2024/2024-som-pjm-sec6.pdf (accessed on 27 October 2025).
- Kampelis, N.; Tsekeri, E.; Kolokotsa, D.; Kalaitzakis, K.; Isidori, D.; Cristalli, C. Development of Demand Response Energy Management Optimization at Building and District Levels Using Genetic Algorithm and Artificial Neural Network Modelling Power Predictions. Energies 2018, 11, 3012. [Google Scholar] [CrossRef]
- Thakur, J.; Chakraborty, B. Demand Side Management in Developing Nations: A Mitigating Tool for Energy Imbalance and Peak Load Management. Energy 2016, 114, 895–912. [Google Scholar] [CrossRef]
- GOPACS—Platform for Congestion Management. Available online: https://www.gopacs.eu/en/ (accessed on 3 September 2025).
- When Which Product?—GOPACS. Available online: https://www.gopacs.eu/en/products/when-which-product/ (accessed on 3 September 2025).
- FCR. Available online: https://www.elia.be/en/electricity-market-and-system/system-services/keeping-the-balance/fcr (accessed on 3 September 2025).
- NEBEF Mechanism Demand Response—RTE Services Portal. Available online: https://www.services-rte.com/en/view-data-published-by-rte/nebef-mechanism-demand-response.html (accessed on 10 August 2025).
- Participate in the NEBEF Mechanism—RTE Services Portal. Available online: https://www.services-rte.com/en/learn-more-about-our-services/participate-nebef-mechanism (accessed on 10 August 2025).
- Demand Flexibility Service 2023/24 | National Energy System Operator. Available online: https://www.neso.energy/data-portal/demand-flexibility-service (accessed on 3 September 2025).
- Demand Flexibility Service (DFS) | National Energy System Operator. Available online: https://www.neso.energy/industry-information/balancing-services/demand-flexibility-service-dfs (accessed on 10 August 2025).
- California ISO. 2024-Statistics. Available online: https://www.caiso.com/library/2024-key-statistics (accessed on 27 October 2025).
- Department of Market Monitoring California Independent System Operator Corporation. Demand Response Issues and Performance 2024; Department of Market Monitoring California Independent System Operator Corporation: Folsom, CA, USA, 2025; Available online: https://www.caiso.com/documents/demand-response-issues-and-performance-2024-mar-14-2025.pdf (accessed on 27 October 2025).
- California ISO-Public. Proxy Demand Resource (PDR) & Reliability Demand Response Resource (RDRR) Participation Overview. Available online: https://www.caiso.com/documents/pdr_rdrrparticipationoverviewpresentation.pdf (accessed on 27 October 2025).
- Interwencyjna Redukcja Poboru—PSE. Available online: https://www.pse.pl/uslugi-dsr/interwencyjna-redukcja-poboru (accessed on 10 August 2025).
- Aktualności Usług DSR—PSE. Available online: https://www.pse.pl/aktualnosci-uslug-dsr (accessed on 10 August 2025).
- System Kwalifikowania Dostawców Usługi Interwencyjnej Redukcji Poboru—Nowy Nabór—Aktualności—PSE. Available online: https://www.pse.pl/-/system-kwalifikowania-dostawcow-uslugi-interwencyjnej-redukcji-poboru-nowy-nab-2 (accessed on 10 August 2025).
- Keeping the Balance. Available online: https://www.elia.be/en/electricity-market-and-system/system-services/keeping-the-balance (accessed on 3 September 2025).
- Elia’s Methodology to Determine the Required Balancing Capacity (LFC Means); Elia Transmission Belgium (Belgian TSO): Brussels, Belgium, 2022. Available online: https://www.elia.be/-/media/project/elia/elia-site/public-consultations/2023/20230818_lfcmeans_v4_en_maindocument_trackchanges.pdf (accessed on 27 October 2025).
- Fingrid Calls for Electricity Flexibility in Very Cold Weather—Fingrid. Available online: https://www.fingrid.fi/en/news/news/2024/fingrid-calls-for-electricity-flexibility-in-very-cold-weather/ (accessed on 12 August 2025).
- Reserve Market Information—Fingrid. Available online: https://www.fingrid.fi/en/electricity-market-information/reserve-market-information/ (accessed on 12 August 2025).
- Reserve Products and Reserve Market Places; Fingrid Oyj (Finnish TSO): Helsinki, Finland, 2023. Available online: https://www.fingrid.fi/globalassets/dokumentit/en/electricity-market/reserves/reserve-products-and-reserve-market-places.pdf (accessed on 27 October 2025).
- The Way Forward-Solutions for a Changing Nordic Power System. 2018. Available online: https://www.svk.se/siteassets/om-oss/rapporter/2018/the-way-forward---solutions-for-a-changing-nordic-power-system.pdf (accessed on 27 October 2025).
- Unlocking Flexibility: Nordic TSO Discussion Paper on Third-Party Aggregators; Nordic TSOs—Statnett SF: Oslo, Norway; Energinet: Fredericia, Denmark; Fingrid Oyj: Helsinki, Finland; Svenska Kraftnät: Sundbyberg, Sweden. Available online: https://www.statnett.no/contentassets/98d9ab34fc9845fd8bc7563782eb8861/unlocking-flexibility---nordic-tso-discussion-paper-on-third-party-aggregation.pdf (accessed on 27 October 2025).
- 2024 in Review: PJM Operations Maintained Reliability | PJM Inside Lines. Available online: https://insidelines.pjm.com/2024-year-in-review-pjm-operations-maintained-reliability/ (accessed on 12 August 2025).
- 2024 Demand Response Activity Report; PJM Interconnection, LLC—Demand Side Response Operations: Audubon, PA, USA, 2025. Available online: https://www.pjm.com/-/media/DotCom/markets-ops/dsr/2024-demand-response-activity-report.ashx (accessed on 27 October 2025).
- Phillips, W.L.; Chang, J.; Charles, R.; Lead, T.; Beattie, J.; Bialecki, T.; Lee, P.; Schmitt, D.; Smith, D. 2024 Assessment of Demand Response and Advanced Metering. Pursuant to Energy Policy Act of 2005 Section 1252(e)(3). Staff Report. Federal Energy Regulatory Commission. 2024 Assessment of Demand Response and Advanced Metering i Acknowledgements Federal Energy Regulatory Commission Staff Team. 2024. Available online: https://www.ferc.gov/sites/default/files/2024-11/Annual%20Assessment%20of%20Demand%20Response_1119_1400.pdf (accessed on 27 October 2025).
- Load Resource Participation in the ERCOT Markets. Available online: https://www.ercot.com/services/programs/load/laar (accessed on 12 August 2025).
- ERCOT Breaks All-Time Demand Record Tuesday. Available online: https://www.click2houston.com/news/local/2024/08/21/ercot-breaks-all-time-demand-record-tuesday/ (accessed on 12 August 2025).
- Data Product Details. Available online: https://www.ercot.com/mp/data-products/data-product-details?id=NP3-108 (accessed on 12 August 2025).
- Price-Responsive Demand. Available online: https://www.iso-ne.com/markets-operations/markets/forward-capacity-market/fcm-participation-guide/price-responsive-demand (accessed on 13 August 2025).
- AESO 2024 Annual Market Statistics. Available online: https://www.aeso.ca/assets/Uploads/market-and-system-reporting/Annual-Market-Stats-2024.pdf (accessed on 27 October 2025).
- Rate Demand Underfrequency Load Shedding Credits (UFLS). AESO. Available online: https://www.aeso.ca/rules-standards-and-tariff/tariff/rate-demand-underfrequency-load-shedding-credits-ufls (accessed on 13 August 2025).
- Fast Frequency Response. AESO. Available online: https://www.aeso.ca/market/market-participation/ancillary-services/fast-frequency-response (accessed on 13 August 2025).
- Seasonal Peak Demand—NEM | Australian Energy Regulator (AER). Available online: https://www.aer.gov.au/industry/registers/charts/seasonal-peak-demand-nem (accessed on 13 August 2025).
- AEMO | Fact Sheet: The Reliability and Emergency Reserve Trader (RERT). Available online: https://www.aemo.com.au/learn/energy-explained/fact-sheets/the-reliability-and-emergency-reserve-trader (accessed on 13 August 2025).
- AEMO | Wholesale Demand Response Mechanism. Available online: https://www.aemo.com.au/energy-systems/electricity/national-electricity-market-nem/market-operations/wdrm (accessed on 13 August 2025).
- Sarfarazi, S.; Mohammadi, S.; Khastieva, D.; Hesamzadeh, M.R.; Bertsch, V.; Bunn, D. An Optimal Real-Time Pricing Strategy for Aggregating Distributed Generation and Battery Storage Systems in Energy Communities: A Stochastic Bilevel Optimization Approach. Int. J. Electr. Power Energy Syst. 2023, 147, 108770. [Google Scholar] [CrossRef]
- Tüysüz, M.; Okumuş, H.I.; Aymaz, Ş.; Çavdar, B. Real-Time Application of a Demand-Side Management Strategy Using Optimization Algorithms. Appl. Energy 2024, 368, 123373. [Google Scholar] [CrossRef]
- Cai, H.; Thingvad, A.; You, S.; Marinelli, M. Experimental Evaluation of an Integrated Demand Response Program Using Electric Heat Boosters to Provide Multi-System Services. Energy 2020, 193, 116729. [Google Scholar] [CrossRef]
- Lana, A.; Kaipia, T.; Pinomaa, A.; Nuutinen, P.; Narayanan, A.; Partanen, J. LVDC Network Integrated Functionalities for Demand Response. In Proceedings of the 2017 IEEE Second International Conference on DC Microgrids (ICDCM), Nuremburg, Germany, 27–29 June 2017; pp. 262–269. [Google Scholar]
- Navesi, R.B.; Naghibi, A.F.; Zafarani, H.; Tahami, H.; Pirouzi, S. Reliable Operation of Reconfigurable Smart Distribution Network with Real-Time Pricing-Based Demand Response. Electr. Power Syst. Res. 2025, 241, 111341. [Google Scholar] [CrossRef]
- Uzum, B.; Bahceci, S.; Yoldas, Y.; Onen, A. The Impact of Price-Based Demand Response on DSO-TSO Coordination System. In Proceedings of the 2025 7th International Congress on Human-Computer Interaction, Optimization and Robotic Applications (ICHORA), Ankara, Turkiye, 23–24 May 2025; pp. 1–7. [Google Scholar]
- PLEXOS® Energy Modeling Software | Energy Exemplar. Available online: https://www.energyexemplar.com/plexos (accessed on 8 September 2025).
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. MetaArXiv 2020. [Google Scholar] [CrossRef]



| DSR Type | Short Description | Advantages | Limitations/Transmission Applicability | Key References |
|---|---|---|---|---|
| Peak shaving | Targeted reduction in critical peak hours to limit balancing costs and interface stress | Simple deployment, high user acceptance, direct reduction in peak load | Effect is non-locational, congestion relief only if peaks coincide with constrained interfaces | [129,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162] |
| Load shifting (ToU/RTP) | Move energy to unconstrained hours and into DA/ID procurement windows | Scalable and market-compatible, smooths demand curve, supports DA/ID alignment | Limited spatial accuracy under zonal pricing, possible rebound effects | [130,143,144,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184] |
| CPP/PTR (event-based) | High incentives during declared stress windows, settlement vs. baseline | High responsiveness in tight system hours, measurable through event-based baselines | Requires verified baselines and telemetry, locational effect uncertain | [185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204] |
| Direct load control/interruptible | Deterministic curtailment via control signals or contractually interruptible load | Fast, deterministic, and verifiable; complements redispatch | Requires controllable downstream portfolios, high coordination cost | [205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225] |
| FCR/FFR/aFRR/mFRR | Frequency-related reserves from aggregated demand | Provides system-wide stability and reliability | Locationally neutral, acts globally, not suitable for targeted congestion management | [205,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296,297,298,299] |
| Market-integrated DR (DA/ID) | DR bids co-optimized with energy markets (e.g., NEBEF) | Compatible with market design, aligns with SDAC/IDAs, scalable | Congestion relief indirect, depends on market granularity | [300,301,302,303,304,305,306,307,308,309,310,311,312,313,314,315,316,317,318,319,320] |
| RA-countable DR (US) | DR that counts toward resource adequacy (e.g., CAISO PDR/RDRR) | Enhances system adequacy and reliability | Market-specific, focused on capacity adequacy, not network relief | [321,322,323,324,325,326,327,328,329,330,331,332,333,334,335,336,337] |
| Region/TSO | Product (Type) | Primary Objective | Typical Assets | MW (Latest) | Key References |
|---|---|---|---|---|---|
| Poland-PSE | IRP/IZP | Adequacy & short-notice relief | Large C&I via aggregators | ~950 (2022) | [350,351,352] |
| France-RTE | NEBEF (market-integrated) | DA/ID demand reductions | ≥100 kW industrial/commercial | ~1100 (indicative) | [343,344] |
| Belgium-Elia | FCR/aFRR/mFRR | Frequency & restoration | Mixed portfolios | — | [353,354] |
| Netherlands-TenneT NL | aFRR aggregation (pilot), GOPACS | Demonstrate deliverability, local CM | Heat pumps, EVs, CHP | multi-MW | [340,341] |
| GB-NESO | DFS (energy-based) | Peak shaving in stress events | Mass-market via suppliers | 3.7 GWh, >400 MW peak (2023/24) | [345,346] |
| Nordics (SvK, Fingrid, Statnett, Energinet) | FCR-N/FCR-D /aFRR/mFRR/FFR | Low-inertia stability | Mixed flexible loads | e.g., SE ~147 MW (22/23) | [355,356,357,358,359] |
| USA-PJM | DR in RPM & reserves | Adequacy & operating reserve | C&I portfolios | 8065 MW UCAP (DY24/25) | [360,361] |
| USA-MISO | Demand-side Response types | Ancillary | C&I via aggregators | ~12,700 (2023) | [362] |
| USA-ERCOT | LR/CLR | Ancillary & scarcity | Large industrial | events >3500 MW | [363,364,365] |
| USA-CAISO | PDR/RDRR (RA-countable) | Adequacy & event DSR | Aggregated C&I/res | ~1400 MW RA (2024) | [347,348,349] |
| USA-ISO-NE | Price-responsive demand | Market-integrated DSR | Large C&I portfolios | ~436 MW (2023) | [366] |
| Canada-AESO | FFR (ex-LSSi) | FFR (ex-LSSi) | FFR (ex-LSSi) | - | [367,368,369] |
| Australia- AEMO | WDRM, RERT | Wholesale DSR, emergency | DRSP portfolios | ~74 MW WDR (2025) | [370,371,372] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sidor, P.; Robak, S. Transmission-Targeted Demand-Side Response for Congestion Relief: A Systematic Review. Energies 2025, 18, 5705. https://doi.org/10.3390/en18215705
Sidor P, Robak S. Transmission-Targeted Demand-Side Response for Congestion Relief: A Systematic Review. Energies. 2025; 18(21):5705. https://doi.org/10.3390/en18215705
Chicago/Turabian StyleSidor, Piotr, and Sylwester Robak. 2025. "Transmission-Targeted Demand-Side Response for Congestion Relief: A Systematic Review" Energies 18, no. 21: 5705. https://doi.org/10.3390/en18215705
APA StyleSidor, P., & Robak, S. (2025). Transmission-Targeted Demand-Side Response for Congestion Relief: A Systematic Review. Energies, 18(21), 5705. https://doi.org/10.3390/en18215705

