Global Energy Transition and Low Carbon Technology Pathways
1. Introduction
2. An Overview of Published Articles
2.1. Modeling Optimal Transition Pathways
2.2. Energy System Resilience Considerations
2.3. Innovations in Energy System Optimization
2.4. Emerging Energy Technologies
2.5. Alternative Fuel Technologies
2.6. Life Cycle Assessment Perspectives
2.7. Industrial Decarbonization: Technological Pathways and Implementation Strategies
2.8. Sector-Specific Decarbonization Approaches
2.9. Facility-Level Decarbonization Analyses
2.10. Corporate Energy Transition Dynamics
3. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
List of Contributions
- Paiboonsin, P.; Oluleye, G.; Howells, M.; Yeganyan, R.; Cannone, C.; Patterson, S. Pathways to Clean Energy Transition in Indonesia’s Electricity Sector with Open-Source Energy Modelling System Modelling (OSeMOSYS). Energies 2024, 17, 75. https://doi.org/10.3390/en17010075.
- Gibson, A.; Makuch, Z.; Yeganyan, R.; Tan, N.; Cannone, C.; Howells, M. Long-Term Energy System Modelling for a Clean Energy Transition in Egypt’s Energy Sector. Energies 2024, 17, 2397. https://doi.org/10.3390/en17102397.
- Wang, B.; Wang, L.; Zhong, S.; Xiang, N.; Qu, Q. Low-Carbon Transformation of Electric System against Power Shortage in China: Policy Optimization. Energies 2022, 15, 1574. https://doi.org/10.3390/en15041574.
- Paisiripas, D.; Cho, K.-W.; Park, S.-J. Integration of Small Modular Reactors with Renewable Energy for Carbon Neutrality: A Case Study of Phuket, Thailand. Energies 2024, 17, 5565. https://doi.org/10.3390/en17225565.
- Gabbar, H.A.; Esteves, O.L.A. Real-Time Simulation of a Small Modular Reactor in-the-Loop within Nuclear-Renewable Hybrid Energy Systems. Energies 2022, 15, 6588. https://doi.org/10.3390/en15186588.
- Molière, M.; Privat, R.; Jaubert, J.-N.; Geiger, F. Supercritical CO2 Power Technology: Strengths but Challenges. Energies 2024, 17, 1129. https://doi.org/10.3390/en17051129.
- Sonthalia, A.; Kumar, N. Performance Improvement and Emission Reduction Potential of Blends of Hydrotreated Used Cooking Oil, Biodiesel and Diesel in a Compression Ignition Engine. Energies 2023, 16, 7431. https://doi.org/10.3390/en16217431.
- Jurić, Z.; Vidović, T.; Šimunović, J.; Radica, G. A Comprehensive Analysis of Hydrogen–Gasoline Blends in SI Engine Performance and Emissions. Energies 2024, 17, 1557. https://doi.org/10.3390/en17071557.
- Hu, S.; Chen, H. Comparative Life-Cycle Assessment of Liquefied Natural Gas and Diesel Tractor-Trailer in China. Energies 2022, 15, 392. https://doi.org/10.3390/en15010392.
- Mansouri, R.; Mungyeko Bisulandu, B.-J.R.; Ilinca, A. Assessing Energy Performance and Environmental Impact of Low GWP Vapor Compression ChilledWater Systems. Energies 2023, 16, 4751. https://doi.org/10.3390/en16124751.
- Faraldo, F.; Byrne, P. A Review of Energy-Efficient Technologies and Decarbonating Solutions for Process Heat in the Food Industry. Energies 2024, 17, 3051. https://doi.org/10.3390/en17123051.
- Issa, M.; Ilinca, A.; Martini, F. Ship Energy Efficiency and Maritime Sector Initiatives to Reduce Carbon Emissions. Energies 2022, 15, 7910. https://doi.org/10.3390/en15217910.
- Sechi, S.; Giarola, S.; Leone, P. Taxonomy for Industrial Cluster Decarbonization: An Analysis for the Italian Hard-to-Abate Industry. Energies 2022, 15, 8586. https://doi.org/10.3390/en15228586.
- Hou, X.; Zhong, S.; Zhao, J. A Critical Review on Decarbonizing Heating in China: Pathway Exploration for Technology with Multi-Sector Applications. Energies 2022, 15, 1183. https://doi.org/10.3390/en15031183.
- Chowdhury, N.I.; Gopalakrishnan, B.; Adhikari, N.; Li, H.; Liu, Z. Evaluating Electrification of Fossil-Fuel-Fired Boilers for Decarbonization Using Discrete-Event Simulation. Energies 2024, 17, 2882. https://doi.org/10.3390/en17122882.
- Okeke, I.J.; Kamath, D.; Nimbalkar, S.U.; Cresko, J. The Role of Low-Carbon Fuels and Carbon Capture in Decarbonizing the U.S. Clinker Manufacturing for Cement Production: CO2 Emissions Reduction Potentials. Energies 2024, 17, 5233. https://doi.org/10.3390/en17205233.
- Bhavani, G.D.; Meidute-Kavaliauskiene, I.; Mahapatra, G.S.; Činčikaitė, R. Pythagorean Fuzzy Storage Capacity with Controllable Carbon Emission Incorporating Green Technology Investment on a Two-Depository System. Energies 2022, 15, 9087. https://doi.org/10.3390/en15239087.
- Li, J.; Li, W.; Wang, L.; Jin, B. Environmental and Cost Impacts of Food Waste in University Canteen from a Life Cycle Perspective. Energies 2021, 14, 5907. https://doi.org/10.3390/en14185907.
- Thomas, A.; Castellano, R.; Punzo, G.; Scandurra, G. The Energy Transition in SMEs: The Italian Experience. Energies 2024, 17, 1160. https://doi.org/10.3390/en17051160.
- Lin, C.-H.; Wen, L.-C.; Lo, J.-C. Optimizing Corporate Energy Choices: A Framework for the Net-Zero Emissions Transition. Energies 2025, 18, 1582. https://doi.org/10.3390/en18071582.
References
- Zhou, Y.; Liu, J. Advances in emerging digital technologies for energy efficiency and energy integration in smart cities. Energy Build. 2024, 315, 114289. [Google Scholar] [CrossRef]
- Kong, J.; Dong, Y.; Zhang, Z.; Yap, P.-S.; Zhou, Y. Advances in smart cities with system integration and energy digitalization technologies: A state-of-the-art review. Sustain. Energy Technol. Assess. 2024, 72, 104012. [Google Scholar] [CrossRef]
- Zhao, P.; Gao, Y.; Wu, M.; Sun, X. How artificial intelligence affects carbon intensity: Heterogeneous and mediating analyses. Environ. Dev. Sustain. 2024. [Google Scholar] [CrossRef]
- Han, D.; Zhang, C.; Ping, J.; Yan, Z. Smart contract architecture for decentralized energy trading and management based on blockchains. Energy 2020, 199, 117417. [Google Scholar] [CrossRef]
- Zuo, Y. Tokenizing Renewable Energy Certificates (RECs)—A Blockchain Approach for REC Issuance and Trading. IEEE Access 2022, 10, 134477–134490. [Google Scholar] [CrossRef]
- Jia, S.; Meng, W.; Li, S. Risks of mineral resources in the supply of renewable energy batteries. Sci. Rep. 2025, 15, 10142. [Google Scholar] [CrossRef]
- Huber, S.T.; Steininger, K.W. Critical sustainability issues in the production of wind and solar electricity generation as well as storage facilities and possible solutions. J. Clean. Prod. 2022, 339, 130720. [Google Scholar] [CrossRef]
- Attílio, L.A. Impact of critical mineral prices on energy transition. Appl. Energy 2025, 377, 124688. [Google Scholar] [CrossRef]
- Guo, Z.; Mao, X.; Lu, J.; Gao, Y.; Chen, X.; Zhang, S.; Ma, Z. Can a new power system create more employment in China? Energy 2024, 295, 130977. [Google Scholar] [CrossRef]
- Zhang, R.; Li, W.; Li, Y.; Li, H. Job losses or gains? The impact of supply-side energy transition on employment in China. Energy 2024, 308, 132804. [Google Scholar] [CrossRef]
- Niu, N.; Ma, J.; Zhang, B.; Xu, C.; Wang, Z. Ripple effects of coal phaseout on employment in China: From mining to coal consumption sectors. Resour. Policy 2024, 97, 105290. [Google Scholar] [CrossRef]
- Bray, R.; Mejía Montero, A.; Ford, R. Skills deployment for a ‘just’ net zero energy transition. Environ. Innov. Soc. Transit. 2022, 42, 395–410. [Google Scholar] [CrossRef]
- Apostolopoulos, N.; Kakouris, A.; Liargovas, P.; Borisov, P.; Radev, T.; Apostolopoulos, S.; Daskou, S.; Anastasopoulou, E.Ε. Just Transition Policies, Power Plant Workers and Green Entrepreneurs in Greece, Cyprus and Bulgaria: Can Education and Retraining Meet the Challenge? Sustainability 2023, 15, 16307. [Google Scholar] [CrossRef]
- Muwanga, R.; Namugenyi, I.; Wabukala, B.M.; Tibesigwa, W.; Katutsi, P.V. Examining social-cultural norms affecting the adoption of solar energy technologies at the household level. Clean. Energy Syst. 2024, 9, 100164. [Google Scholar] [CrossRef]
- Ding, L.; Zheng, L.; Zhang, S.; Zhu, Y.; Shuai, J. Exploring rural residents’ willingness to adopt rooftop photovoltaic (pv) renovation: Considering moderating role of cultural concepts and environmental awareness. J. Green Build. 2024, 19, 137–178. [Google Scholar] [CrossRef]
- Farm, M.Y.; Vafaei-Zadeh, A.; Hanifah, H.; Nikbin, D. The role of value, belief and norm in shaping intentions to use residential rooftop solar for environment sustainability. Energy Policy 2024, 194, 114334. [Google Scholar] [CrossRef]
- Gu, J.; Li, Y.; Hong, J.; Wang, L. Carbon emissions cap or energy technology subsidies? Exploring the carbon reduction policy based on a multi-technology sectoral DSGE model. Humanit. Soc. Sci. Commun. 2024, 11, 798. [Google Scholar] [CrossRef]
- Jewell, J.; Mccollum, D.; Emmerling, J.; Bertram, C.; Gernaat, D.E.H.J.; Krey, V.; Paroussos, L.; Berger, L.; Fragkiadakis, K.; Keppo, I.; et al. Limited emission reductions from fuel subsidy removal except in energy-exporting regions. Nature 2018, 554, 229–233. [Google Scholar] [CrossRef] [PubMed]
- Bassi, A.M.; Pallaske, G.; Bridle, R.; Bajaj, K. Emission Reduction via Fossil Fuel Subsidy Removal and Carbon Pricing, Creating Synergies with Revenue Recycling. World 2023, 4, 225–240. [Google Scholar] [CrossRef]
- Khan, Z.; Ali, S.; Dong, K.; Li, R.Y.M. How does fiscal decentralization affect CO2 emissions? The roles of institutions and human capital. Energy Econ. 2021, 94, 105060. [Google Scholar] [CrossRef]
- Gyamfi, B.A.; Onifade, S.T.; Ofori, E.K.; Prah, S. Synergizing energy investments, environmental taxation, and innovative technology within carbon neutrality targets of E7 bloc: Do institutional pathways and structural changes matter? Appl. Energy 2025, 381, 125124. [Google Scholar] [CrossRef]
- Perera, A.T.D.; Hong, T. Vulnerability and resilience of urban energy ecosystems to extreme climate events: A systematic review and perspectives. Renew. Sustain. Energy Rev. 2023, 173, 113038. [Google Scholar] [CrossRef]
- Zhou, Y. Low-carbon urban–rural modern energy systems with energy resilience under climate change and extreme events in China—A state-of-the-art review. Energy Build. 2024, 321, 114661. [Google Scholar] [CrossRef]
- Setiawan, A.; Mentari, D.M.; Hakam, D.F.; Saraswani, R. From Climate Risks to Resilient Energy Systems: Addressing the Implications of Climate Change on Indonesia’s Energy Policy. Energies 2025, 18, 2389. [Google Scholar] [CrossRef]
- Minas, A.M.; García-Freites, S.; Walsh, C.; Mukoro, V.; Aberilla, J.M.; April, A.; Kuriakose, J.; Gaete-Morales, C.; Gallego-Schmid, A.; Mander, S. Advancing Sustainable Development Goals through energy access: Lessons from the Global South. Renew. Sustain. Energy Rev. 2024, 199, 114457. [Google Scholar] [CrossRef]
- Hosseini-Moghaddam, S.; Gnanamoorthy, B.; Liang, T.; Cheng, H.; Bernier, L. The aggregated leapfrogging estimate: A novel approach to defining energy leapfrogging. Renew. Energy Environ. Sustain. 2023, 8, 17. [Google Scholar] [CrossRef]
- Hannan, M.A.; Mollik, M.S.; Al-Shetwi, A.Q.; Rahman, S.; Mansor, M.; Begum, R.; Muttaqi, K.; Dong, Z. Vehicle to grid connected technologies and charging strategies: Operation, control, issues and recommendations. J. Clean. Prod. 2022, 339, 130587. [Google Scholar] [CrossRef]
- Yang, C.; Zhao, Y.; Li, X.; Zhou, X. Electric vehicles, load response, and renewable energy synergy: A new stochastic model for innovation strategies in green energy systems. Renew. Energy 2025, 238, 121890. [Google Scholar] [CrossRef]
- Sharshir, S.W.; Joseph, A.; Elsayad, M.M.; Tareemi, A.A.; Kandeal, A.; Elkadeem, M.R. A review of recent advances in alkaline electrolyzer for green hydrogen production: Performance improvement and applications. Int. J. Hydrogen Energy 2024, 49, 458–488. [Google Scholar] [CrossRef]
- Akimoto, K.; Sano, F.; Oda, J.; Kanaboshi, H.; Nakano, Y. Climate change mitigation measures for global net-zero emissions and the roles of CO2 capture and utilization and direct air capture. Energy Clim. Change 2021, 2, 100057. [Google Scholar] [CrossRef]
- Igdalov, S.; Fishman, T.; Blass, V. Tradeoffs and synergy between material cycles and greenhouse gas emissions: Opportunities in a rapidly growing housing stock. J. Ind. Ecol. 2024, 28, 1912–1925. [Google Scholar] [CrossRef]
- Schwarz, A.E.; Ligthart, T.N.; Godoi Bizarro, D.; De Wild, P.; Vreugdenhil, B.; van Harmelen, T. Plastic recycling in a circular economy; determining environmental performance through an LCA matrix model approach. Waste Manag. 2021, 121, 331–342. [Google Scholar] [CrossRef]
- Mohr, M.; Peters, J.F.; Baumann, M.; Weil, M. Toward a cell-chemistry specific life cycle assessment of lithium-ion battery recycling processes. J. Ind. Ecol. 2020, 24, 1310–1322. [Google Scholar] [CrossRef]
- Boza, P.; Evgeniou, T. Artificial intelligence to support the integration of variable renewable energy sources to the power system. Appl. Energy 2021, 290, 116754. [Google Scholar] [CrossRef]
- Cheng, J.; Liu, X. Techno-economic Comparison of Long Duration Energy Storage. In Proceedings of the 2024 IEEE 8th Conference on Energy Internet and Energy System Integration (EI2), Shenyang, China, 29 November–2 December 2024; pp. 4530–4537. [Google Scholar] [CrossRef]
- Weselek, A.; Ehmann, A.; Zikeli, S.; Lewandowski, I.; Schindele, S.; Högy, P. Agrophotovoltaic systems: Applications, challenges, and opportunities. A review. Agron. Sustain. Dev. 2019, 39, 35. [Google Scholar] [CrossRef]
- Azarova, E.; Jun, H. Investigating determinants of international clean energy investments in emerging markets. Sustainability 2021, 13, 11843. [Google Scholar] [CrossRef]
- Görgen, M.; Jacob, A.; Nerlinger, M. Get Green or Die Trying? Carbon Risk Integration into Portfolio Management. J. Portf. Manag. 2021, 47, 77–93. [Google Scholar] [CrossRef]
- Abba, Z.Y.I.; Balta-Ozkan, N.; Hart, P. A holistic risk management framework for renewable energy investments. Renew. Sustain. Energy Rev. 2022, 160, 112305. [Google Scholar] [CrossRef]
- Liebe, U.; Gewinner, J.; Diekmann, A. Large and persistent effects of green energy defaults in the household and business sectors. Nat. Hum. Behav. 2021, 5, 576–585. [Google Scholar] [CrossRef] [PubMed]
- Liao, X.; Zhong, S.; Huang, J.; Liu, Z.; Elshkaki, A.; Li, Y.; Shen, L.; He, Y.; An, L.; Zhu, Y.; et al. Insights of carbon reduction practices from Winter Olympics 2022. Sci. Bull. 2024, 69, 2034–2037. [Google Scholar] [CrossRef]
- Haddad, S.; Zhang, W.; Paolini, R.; Gao, K.; Altheeb, M.; Al Mogirah, A.; Bin Moammar, A.; Hong, T.; Khan, A.; Cartalis, C.; et al. Quantifying the energy impact of heat mitigation technologies at the urban scale. Nat. Cities 2024, 1, 62–72. [Google Scholar] [CrossRef]
- Harry, S.J.; Maltby, T.; Szulecki, K. Contesting just transitions: Climate delay and the contradictions of labour environmentalism. Political Geogr. 2024, 112, 103114. [Google Scholar] [CrossRef]
- Calvin, K.; Dasgupta, D.; Krinner, G.; Mukherji, A.; Thorne, P.W.; Trisos, C.; Romero, J.; Aldunce, P.; Barrett, K.; Blanco, G.; et al. IPCC, 2023: Climate Change 2023: Synthesis Report. Contribution of Working Groups, I.; II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, 1st ed.; Core Writing Team, Lee, H., Romero, J., Eds.; IPCC (Intergovernmental Panel on Climate Change): Geneva, Switzerland, 2023. [Google Scholar] [CrossRef]
| Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. | 
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, L.; Elshkaki, A.; Zhong, S.; Hu, X.; Wu, X.; Ge, J. Global Energy Transition and Low Carbon Technology Pathways. Energies 2025, 18, 5701. https://doi.org/10.3390/en18215701
Shen L, Elshkaki A, Zhong S, Hu X, Wu X, Ge J. Global Energy Transition and Low Carbon Technology Pathways. Energies. 2025; 18(21):5701. https://doi.org/10.3390/en18215701
Chicago/Turabian StyleShen, Lei, Ayman Elshkaki, Shuai Zhong, Xueyue Hu, Xinyi Wu, and Jianchao Ge. 2025. "Global Energy Transition and Low Carbon Technology Pathways" Energies 18, no. 21: 5701. https://doi.org/10.3390/en18215701
APA StyleShen, L., Elshkaki, A., Zhong, S., Hu, X., Wu, X., & Ge, J. (2025). Global Energy Transition and Low Carbon Technology Pathways. Energies, 18(21), 5701. https://doi.org/10.3390/en18215701
 
        



