Hierarchical Optimization Strategy Considering Regulation of Electric-Fused Magnesium High-Energy-Consuming Load and Deep Peak Regulation of Thermal Power
Abstract
1. Introduction
2. Analysis of Electric-Fused Magnesium Load-Absorbing Wind Power Principle
2.1. Operation Mode of Electric-Fused Magnesium Furnace
2.2. Model of the Load Regulation Characteristics of Electric-Fused Magnesium Furnace
2.3. Analysis of the Principle of Electric-Fused Magnesium Load-Absorbing Wind Power
3. Two-Layer Source–Load Coordination Optimization Model
3.1. The Upper-Layer Model
- 1
- The active power balance constraint within the system:
- 2
- The constraint conditions for the day-ahead output of wind power:
- 3
- The constraint conditions for the output of the thermal power plant.
- 4
- The upper and lower limit constraints of the adjustment power of the electric-fused magnesium load:
- 5
- The constraint on the number of adjustment times of the electric-fused magnesium load:
3.2. The Lower-Layer Model
3.2.1. The Deep Peak Regulation Cost Model of Thermal Power Units
- Coal consumption cost.
- 2.
- Additional costs in the deep peak regulation stage.
- 3.
- Compensation revenue during the deep peak regulation stage.
3.2.2. Objective Function
3.2.3. Constraints
- Power balance constraint of thermal power units:
- 2.
- Output constraint of thermal power units:
- 3.
- Ramp rate constraint of thermal power units:
- 4.
- Output constraint of units for deep peak regulation:
4. Solution Method
5. Analysis of Calculation Examples
5.1. Assumptions Section
5.2. Typical Wind Power Scenario Generation
5.3. Analysis of Results
5.4. Sensitivity Analysis
5.5. Comparison of Solution Times Across Different Schemes
6. Conclusions
Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Anika, O.C.; Nnabuife, S.G.; Bello, A.; Okoroafor, E.R.; Kuang, B.; Villa, R. Prospects of low and zero-carbon renewable fuels in 1.5-degree net zero emission actualisation by 2050: A critical review. Carbon Capture Sci. Technol. 2022, 5, 100072. [Google Scholar] [CrossRef]
- Mansouri, S.A.; Ahmarinejad, A.; Nematbakhsh, E.; Javadi, M.S.; Jordehi, A.R.; Catalao, J.P.S. Energy Hub Design in the Presence of P2G System Considering the Variable Efficiencies of Gas-Fired Converters. In Proceedings of the 2021 International Conference on Smart Energy Systems and Technologies (SEST), Virtual Conference, 6–8 September 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1–6. [Google Scholar]
- Nasir, M.; Jordehi, A.R.; Tostado-Véliz, M.; Tabar, V.S.; Amir Mansouri, S.; Jurado, F. Operation of energy hubs with storage systems, solar, wind and biomass units connected to demand response aggregators. Sustain. Cities Soc. 2022, 83, 103974. [Google Scholar] [CrossRef]
- Liang, Z.; Chen, H.; Chen, S.; Wang, Y.; Zhang, C.; Kang, C. Robust transmission expansion planning based on adaptive uncertainty set optimization under high-penetration wind power generation. IEEE Trans. Power Syst. 2021, 36, 2798–2814. [Google Scholar]
- Huang, J.; Du, Z.; Yu, Y.; Zhao, H.; Chen, Y. A two-layer optimal dispatch model for thermal unit deep peaking shaving and dynamic line rating. Int. J. Electr. Power Energy Syst. 2025, 172, 111098. [Google Scholar] [CrossRef]
- Zhou, X.; Cai, C.; Li, Y.; Wu, J.; Zhan, Y.; Sun, Y. A robust optimization model for demand response management with source-grid-load collaboration to consume wind-power. Glob. Energy Interconnect. 2023, 6, 738–750. [Google Scholar]
- Zhao, X.; Wang, Y.; Liu, C.; Cai, G.; Ge, W.; Zhou, J.; Wang, D. Low carbon scheduling method of electric power system considering energy-intensive load regulation of electrofused magnesium and wind powerfluctuation stabilization. Appl. Energy 2024, 357, 122573. [Google Scholar]
- Zhao, X.; Wang, Y.; Liu, C.; Cai, G.; Ge, W.; Wang, B.; Wang, D.; Shang, J.; Zhao, Y. Two-stage day-ahead and intra-day scheduling considering electric arc furnace control and wind power modal decomposition. Energy 2024, 302, 131694. [Google Scholar]
- Gan, L.; Yang, T.; Chen, X.; Shen, J.; Wang, B.; Yu, K. Low-carbon Scheduling of Integrated Energy System in Iron & Steel Industrial Park Considering Low-carbon Techniques and Process Control. Power Syst. Technol. 2023, 47, 3099–3113. [Google Scholar]
- Lin, L.; Tian, X.Y. Analysis of deep peak regulation and its benefit of thermal units in power system with large scale wind power integrated. Power Syst. Technol. 2017, 41, 2255–2263. [Google Scholar]
- Deng, T.T.; Lou, S.H.; Tian, X. Optimal Dispatch of Power System Integrated with Wind Power Considering Demand Response and Deep Peak Regulation of Thermal Power Units. Autom. Electr. Power Syst. 2019, 43, 24–41. [Google Scholar]
- Liu, X.; Chen, H.; Yao, C. Economic dispatch considering deep peak-regulation and interruptible loads for power system incorporated with wind farms. Electr. Power Autom. Equip. 2012, 32, 95–99. [Google Scholar]
- Nosratabadi, S.M.; Hooshmand, R.A.; Gholipour, E. A comprehensive review on microgrid and virtual power plant concepts employed for distributed energy resources scheduling in power systems. Renew. Sustain. Energy Rev. 2017, 67, 341–363. [Google Scholar] [CrossRef]
- Riveros, J.Z.; Bruninx, K.; Poncelet, K.; D’haeseleer, W. Bidding strategies for virtual power plants considering CHPs and intermittent renewables. Energy Convers. Manag. 2015, 103, 408–418. [Google Scholar] [CrossRef]
- Yan, S.; Zhang, Y.; Yin, W.; Li, B.; Ye, J.; Wu, Y.; Zhang, Y. Flexibility enhancement of renewable-penetrated power systems coordinating energy storage deployment and deep peak regulation of thermal generators. Electr. Power Syst. Res. 2024, 231, 110354. [Google Scholar] [CrossRef]
- Zhao, Y.; Dong, K.; Chen, L.; Cheng, T.; Cai, Q.; Zhang, Q. Optimal dispatching considering the participation of flexible resources on the load side in deep peak regulation market. In Proceedings of the 2023 IEEE/IAS Industrial and Commercial Power System Asia (I&CPS Asia), Chongqing, China, 7–9 July 2023; pp. 2166–2171. [Google Scholar]
- Guan, H.; Feng, Y.; Yang, X.; Du, Y.; Feng, D.; Zhou, Y. Optimization strategy of combined thermal-storage-photovoltaic economic operation considering deep peak load regulation demand. Energy Rep. 2022, 8, 112–120. [Google Scholar]
- Guo, X.; Liao, Y.; Li, G.; Han, Y.; Ma, X. Low-carbon economic dispatch of Photovoltaic-Carbon capture power plant considering deep peak regulation. J. Clean. Prod. 2023, 420, 138418. [Google Scholar]
- Wang, Y.; Susmel, L. The Modified Manson–Coffin Curve Method to estimate fatigue lifetime under complex constant and variable amplitude multiaxial fatigue loading. Int. J. Fatigue 2016, 83, 135–149. [Google Scholar] [CrossRef]
- Song, Y.; Wang, G.; Li, H.; Sun, Y.; Jin, H.; Su, T.; Wu, X.; Zhang, Q. New Energy and CCUS Thermal Power Synergistic Peaking Cost Model and Apportionment Optimization Strategy. IEEE Access 2025, 13, 132501–132513. [Google Scholar] [CrossRef]
- Carrión, M.; Arroyo, J.M. A computationally efficient mixed-integer linear formulation for the thermal unit commitment problem. IEEE Trans. Power Syst. 2006, 21, 1371–1378. [Google Scholar] [CrossRef]
- Wang, S.; Lou, S.; Wu, Y.; Cao, K.; Zhou, K. Robust optimal dispatch of large-scale wind power integration considering deep peak regulation cost of thermal power units. Autom. Electr. Power Syst. 2020, 44, 118–125. [Google Scholar]
- Lin, L.; Zou, L.; Zhou, P.; Tian, X. Multi-angle economic analysis on deep peak regulation of thermal power units with large-scale wind power integration. Autom. Electr. Power Syst. 2017, 41, 21–27. [Google Scholar]
- Zhang, G.; Chen, Y.; Zhang, J.; Tang, N.N.; Niu, Y. Research on optimization of day-ahead dispatching of wind power-photovoltaic-hydropower-thermal power-pumped storage combined power generation system. Acta Energiae Solaris Sin. 2020, 41, 79–85. [Google Scholar]
- Yan, S.; Gu, B.; Ai, S.; Tian, D. The Environmental Cost Accounting and Sensitivity Analysis for Thermal Power Plants. Electr. Power Sci. Eng. 2016, 32, 62. [Google Scholar]
Literature | Research Subject | Deep Peak Regulation | Peak Regulation Cost |
---|---|---|---|
[6] | IES | No | No |
[7,8] | Electric-fused magnesium | No | No |
[9] | Electricity loads | No | No |
[16] | BES | Yes | Partial Consideration |
[16] | VPP | Yes | No |
[17,18] | Electricity loads | Yes | Partial Consideration |
This Paper | Electric-Fused Magnesium | Yes | Comprehensive Consideration |
Type | Capacity/MW | Unit |
---|---|---|
Wind Power | 1800 | —— |
Conventional load | 2000 | —— |
Thermal Power (3033 MW) | 150 | G1 |
275 | G2–G4 | |
284 | G5, G6 | |
310 | G7, G8 | |
435 | G9, G10 | |
Electric-fused magnesium load | 200 | M1—M6 |
Maximum Output/MW | Minimum Output/MW | Ramp Rate/(MW/h) | a/($/MW2·h) | b/($/MW·h) | c/($/h) |
---|---|---|---|---|---|
150 | 45 | 60 | 0.2038 | 19.80 | 88.8 |
275 | 82.5 | 70 | 0.0645 | 22.00 | 153.0 |
284 | 85.2 | 80 | 0.0490 | 20.50 | 182.0 |
310 | 93 | 80 | 0.0450 | 21.62 | 192.0 |
435 | 130.5 | 120 | 0.0211 | 21.05 | 1313.6 |
Scheme | The Coal Consumption Cost of Thermal Power/$ | System Operation Cost/$ | The Wind Curtailment Rate/% |
---|---|---|---|
1 | 3,204,922.451 | 3,541,972.168 | 4.53 |
2 | 3,372,160.349 | 3,728,462.535 | 4.71 |
3 | 3,124,824.102 | 3,398,621.326 | 3.72 |
Scheme | Wear Cost of Deep Peak Regulation/$ | Fuel Consumption Cost of Deep Peak Regulation/$ | Environmental Additional Cost/$ | Electricity Quantity Loss Cost/$ | Compensation Revenue of Deep Peak Regulation/$ |
---|---|---|---|---|---|
1 | 53,107.57 | 316,000.00 | 151,479.64 | 15,930.00 | 140,625.00 |
2 | 54,278.23 | 324,152.64 | 159,832.01 | 16,620.49 | 147,203.58 |
3 | 51,325.70 | 306,920.52 | 144,692.97 | 14,952.21 | 125,831.20 |
Scheme | Solution Time/s |
---|---|
1 | 10.7256 |
2 | 15.3208 |
3 | 35.2910 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, K.; Wang, Y.; Wang, S.; Liu, C.; Zhao, X. Hierarchical Optimization Strategy Considering Regulation of Electric-Fused Magnesium High-Energy-Consuming Load and Deep Peak Regulation of Thermal Power. Energies 2025, 18, 5361. https://doi.org/10.3390/en18205361
Ren K, Wang Y, Wang S, Liu C, Zhao X. Hierarchical Optimization Strategy Considering Regulation of Electric-Fused Magnesium High-Energy-Consuming Load and Deep Peak Regulation of Thermal Power. Energies. 2025; 18(20):5361. https://doi.org/10.3390/en18205361
Chicago/Turabian StyleRen, Kexin, Yibo Wang, Shunjiang Wang, Chuang Liu, and Xudong Zhao. 2025. "Hierarchical Optimization Strategy Considering Regulation of Electric-Fused Magnesium High-Energy-Consuming Load and Deep Peak Regulation of Thermal Power" Energies 18, no. 20: 5361. https://doi.org/10.3390/en18205361
APA StyleRen, K., Wang, Y., Wang, S., Liu, C., & Zhao, X. (2025). Hierarchical Optimization Strategy Considering Regulation of Electric-Fused Magnesium High-Energy-Consuming Load and Deep Peak Regulation of Thermal Power. Energies, 18(20), 5361. https://doi.org/10.3390/en18205361