The Effect of Intake Temperature on the Idle Combustion Cycle Variation of Two-Stroke Aviation Kerosene Piston Engines
Abstract
:1. Introduction
2. Experimental Specifications
2.1. Experimental Setup
2.2. Test Conditions
2.3. Evaluation Index and Method
3. Results
3.1. Influence of Combustion Cyclic Variation on Output Work
3.2. Influence of Inlet Temperature on Output Work
3.3. Relationship Between Intake Air Temperature and Combustion Cycle-to-Cycle Variation Rate and Output Work
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
coefficient of variation of indicated mean effective pressure | |
IAT ( | intake air temperature |
IMEP | indicated mean effective pressure |
average of indicated mean effective pressure | |
difference in indicated mean effective pressure subtraction | |
total fuel injection quality | |
liquefied fuel quality | |
crankcase temperature | |
intake air temperature of 0 °C | |
combustion cyclic variation increment per unit temperature | |
output power increment per unit combustion cycle variation | |
output power increment per unit temperature | |
fuel evaporation rate | |
excess air coefficient |
References
- Zhang, Q.; Du, F.R. Small Aero-Piston Engine Heavy Fuel Technology Development Summary. Small Intern. Combust. Engines Veh. Technol. 2014, 43, 81–85. [Google Scholar]
- Hu, J.; Liu, B.; Zhang, C.; Gao, H.; Zhao, Z.; Zhang, F.; Wang, Y. Experimental Study on the Spray Characteristics of an Air-Assisted Fuel Injection System Using Kerosene and Gasoline. Fuel 2019, 235, 782–794. [Google Scholar] [CrossRef]
- Suhy, P.J.; Evers, L.W.; Morgan, E.J.; Wank, J.E. The Feasibility of a Kerosene Fueled Spark Ignited Two-Stroke Engine. In Proceedings of the SAE Technical Paper Series. International Off-Highway & Powerplant Congress and Exposition, Milwaukee, WI, USA, 12 September 1991; p. 911846. [Google Scholar] [CrossRef]
- Chang, C.; Wei, M.; Ji, H. Experimental Research on Cold Start of PFI Two-Stroke Spark-Ignition Kerosene Engine. J. Energy Eng. 2020, 146, 04020030. [Google Scholar] [CrossRef]
- Rodney, H.; Greg, B.; Steven, A. High Specific Power Output Direct Injection 2-Stroke Engine Applications. In Proceedings of the Small Engine Technology Conference & Exposition, Bangkok, Thailand, 9 January 2005; p. 2005–32–0066. [Google Scholar]
- Huo, W.Y.; Lin, Y.Z.; Zhang, C.; Zhuang, C.Q. Research on N-Decane as Surrogate Fuel of Aviation Kerosene in Atomization Process. J. Aerosp. Power 2016, 31, 188–195. [Google Scholar] [CrossRef]
- Song, Z.L.M.S. Research on Mixture Formation and Combustion Characteristics of the Conical Spray in a Gasoline Direct Injection Engine; Jiangsu University: Zhenjiang, China, 2019. [Google Scholar]
- Li, X.H.; Jiang, D.M.; Shen, X.H. Study on Evaluated Methods of Pressure Cyclic Variation in Spark Ignition Engines. J. Intern. Combust. Engine 2000, 18, 171–174. [Google Scholar] [CrossRef]
- Zheng, Z.Q.; Yao, M.F.; Zhang, B.; Chen, Z. Cycle to Cycle Variation Experiment of Homogeneous Charge Compression Ignition Combustion. J. Tianjin Univ. 2005, 6, 485–489. [Google Scholar]
- Liu, S.; Zhang, L.; Wang, Z.; Hua, L.; Zhang, Q. Investigating the Combustion Stability of Shale Gas Engines under HHO. Fuel 2021, 291, 120098. [Google Scholar] [CrossRef]
- Maurya, R.K.; Agarwal, A.K. Experimental Investigation on the Effect of Intake Air Temperature and Air–Fuel Ratio on Cycle-to-Cycle Variations of HCCI Combustion and Performance Parameters. Appl. Energy 2011, 88, 1153–1163. [Google Scholar] [CrossRef]
- Wang, Q.G.; Wang, B.; Yao, C. Study on Cyclic Variability of Dual Fuel Combustion in a Methanol Fumigated Diesel Engine. Fuel 2016, 164, 99–109. [Google Scholar] [CrossRef]
- An, Y.; Raman, V.; Tang, Q.; Shi, H.; Sim, J.; Chang, J.; Magnotti, G.; Johansson, B. Combustion Stability Study of Partially Premixed Combustion with Low-Octane Fuel at Low Engine Load Conditions. Appl. Energy 2019, 235, 56–67. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, Z.F.; Xu, F.; Yang, D.B.; Wang, J.X. Study of Cycle Variation in a Multi-Cylinder Gasoline HCCI Engine. Chin. Intern. Combust. Eng. 2010, 31, 1–6. [Google Scholar] [CrossRef]
- Liu, J.F.; Cai, X.L.; Yang, Y.X.; Zhang, P.; Gao, J.; Fang, X. Study on Idle and Low-load Characteristics of FAI Two-stroke DISI Engine. Small Intern. Combust. Engines Motorcycles 2006, 05, 16–19. [Google Scholar]
- Su, T.; Ji, C.; Wang, S.; Cong, X.; Shi, L. Enhancing Idle Performance of an N-Butanol Rotary Engine by Hydrogen Enrichment. Int. J. Hydrogen Energy 2018, 43, 6434–6442. [Google Scholar] [CrossRef]
- Ozdor, N.; Dulger, M.; Sher, E. An Experimental Study of the Cyclic Variability in Spark Ignition Engines. In Proceedings of the International Congress & Exposition, Detroit, MI, USA, 1 February 1996; p. 960611. [Google Scholar] [CrossRef]
- Chen, L.L. Research on Numerical Simulation of Performance and Fuel Injection Control for Two-Stroke Kerosene Engine; Nanjing University of Aeronautics and Astronautics: Nanjing, China, 2009. [Google Scholar]
- Yu, W. Study on Engine Power Recovery with Diesel Methanol Dual Fuel at High Altitude; Jiangsu University: Zhenjiang, China, 2022. [Google Scholar]
- Li, A. Performance Study of Ammonia-DME Dual Fuel Engine; Harbin Engineering University: Harbin, China, 2023. [Google Scholar]
- Fjare, P.D. Feedback Speed Control of a Small Two-Stroke Internal Combustion Engine that Propels an Unmanned Aerial Vehicle. Master’s Thesis, University of Nevada, Las Vegas, NV, USA, 2014. [Google Scholar]
- Ji, C.; Wang, S. Strategies for Improving the Idle Performance of a Spark-Ignited Gasoline Engine. Int. J. Hydrogen Energy 2012, 37, 3938–3944. [Google Scholar] [CrossRef]
- Ozdor, N.; Dulger, M.; Sher, E. Cyclic Variability in Spark Ignition Engines A Literature Survey. SAE Trans. 1994, 103, 940987. [Google Scholar]
- Li, B.L.; Wei, M.X. Study on Combustion Cyclic Variation of Small Two-Stroke Aero-Engine. J. Aerosp. Power 2011, 26, 315–322. [Google Scholar] [CrossRef]
- Fu, K.M.; Wei, Y.; Xu, R.F.; Liu, X.Y. Combustion Cycle-to-Cycle Variations of Opposed-Piston Two-Stroke Gasoline Direct Injection Engine. Int. J. Engine Res. 2024, 25, 717–726. [Google Scholar] [CrossRef]
Fuel Properties | Aviation Kerosene (RP-3) |
---|---|
Molecular carbon content | C7~C16 |
Density (20 °C)/(kg·m−3) | 775~830 |
Kinematic viscosity (20 °C)/(mm2·s−1) | 1.25 |
Lower calorific value (MJ/kg) | 43.4 |
Boiling point (°C) | 185 |
Cetane | 42 |
Saturated vapor pressure (38 °C)/(kPa) | 5.4 |
Flashpoint (°C) | 38 |
Theoretical air–fuel ratio | 14.65 |
Engine Characteristics | Specification |
---|---|
Bore (mm) | 52 |
Stroke (mm) | 40.3 |
Displacement (mL) | 170 |
Compression ratio | 6.7:1 |
Maximum power (kW)/(r/min) | 10/7200 |
Maximum torque (N·m)/(r/min) | 14/6000 |
Name | Type | Measurement Uncertainties |
---|---|---|
Cylinder pressure sensor | Kistler 6054BR | ±1% |
Temperature sensor | PT1000 | ±0.5 °C |
Crankshaft position sensor | POSITAL | 0.01° |
Air-to-fuel ratio analyzer | MEXA-730λ | ±0.01 |
Intake Air Temperature (°C) | Intake Pressure (kPa) | Working Condition |
---|---|---|
0 | 95 | Idle speed |
20 | 95 | Idle speed |
40 | 95 | Idle speed |
Intake Air Temperature (℃) | Crankcase Temperature (°C) | Engine Speed (rpm) |
---|---|---|
0 | 55/85/115 | 1000/2000/3000/4000/5000 |
20 | 55/85/115 | 1000/2000/3000/4000/5000 |
40 | 55/85/115 | 1000/2000/3000/4000/5000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Han, Z.; Liang, Y.; Zuo, Z.; Fang, Z.; Tian, W.; Fang, J.; Wu, X. The Effect of Intake Temperature on the Idle Combustion Cycle Variation of Two-Stroke Aviation Kerosene Piston Engines. Energies 2025, 18, 331. https://doi.org/10.3390/en18020331
Wang J, Han Z, Liang Y, Zuo Z, Fang Z, Tian W, Fang J, Wu X. The Effect of Intake Temperature on the Idle Combustion Cycle Variation of Two-Stroke Aviation Kerosene Piston Engines. Energies. 2025; 18(2):331. https://doi.org/10.3390/en18020331
Chicago/Turabian StyleWang, Jian, Zhiqiang Han, Yusheng Liang, Zinong Zuo, Zhongxin Fang, Wei Tian, Jia Fang, and Xueshun Wu. 2025. "The Effect of Intake Temperature on the Idle Combustion Cycle Variation of Two-Stroke Aviation Kerosene Piston Engines" Energies 18, no. 2: 331. https://doi.org/10.3390/en18020331
APA StyleWang, J., Han, Z., Liang, Y., Zuo, Z., Fang, Z., Tian, W., Fang, J., & Wu, X. (2025). The Effect of Intake Temperature on the Idle Combustion Cycle Variation of Two-Stroke Aviation Kerosene Piston Engines. Energies, 18(2), 331. https://doi.org/10.3390/en18020331