Research on Water Flow Control Strategy for PEM Electrolyzer Considering the Anode Bubble Effect
Abstract
:1. Introduction
2. Modeling of PEM EL
2.1. Electrolyzer Multi-Physics Field Model
2.1.1. Geometric Model
2.1.2. Model Assumption
- The PEM, GDLs, and CLs are isotropic and homogeneous.
- The water evaporation is ignored, as the reactants mainly exist in liquid form under operating conditions.
- All gasses are treated as incompressible ideal gasses.
- Hydrogen and oxygen crossovers are disregarded.
- The contact resistance between adjacent components is not considered.
2.1.3. Boundary Condition Setting and Model Verification
2.2. Impact of Water Flow Rate Variation on Electrolysis Energy Consumption
2.3. Revised Electrolyzer Equivalent Circuit Model
3. Design of the Water Flow Rate Controller
3.1. Determining the Control Objective
3.2. Water Flow Rate Controller
3.2.1. Circulating Water Pump Model
3.2.2. Performance Preset Control
3.2.3. Calculation of Control Rate
4. Results
4.1. Comparison of Water Flow Rate Tracking Performance
4.2. Impact of Water Flow Control on PEM EL Performance with Variable Power Input
5. Discussion
- The improved performance function significantly improves the dynamic response time of the water flow rate error tracking, so that the pump flow regulation better matches the electrical energy input variation.
- Under the flow control mode, the operating current of the electrolyzer rises, the overvoltage decreases significantly, and the electrolysis efficiency improves by 2.6% on average within 130 s of the simulation, proving the superiority of the proposed strategy.
- The proposed water flow control strategy provides a method to find the optimal working point of the electrolysis system. It can determine the respective optimal water supply flow rate for different models of electrolyzers in engineering practice, avoiding the waste of energy and loss of efficiency.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Parameter | Value |
---|---|
Channel length | 100 mm |
Channel height | 2 mm |
Channel width | 1.5 mm |
Channel spacing | 1 mm |
Thickness of CLs | 20 µm |
Thickness of GDLs | 380 µm |
PEM thickness | 50 µm |
Anode reversible potential | 1.229 V |
Cathode reversible potential | 0 V |
Anode entropy change | 326.36 J·mol−1·K−1 |
Cathode entropy change | −0.104 J·mol−1·K−1 |
Bipolar plate conductivity | 5 × 107 S·m−1 |
Conductivity of GDLs | 1.2 × 104 S·m−1 |
Conductivity of CLs | 3 × 103 S·m−1 |
Cathode specific active surface area | 6 × 107 m−1 |
Anode specific active surface area | 6 × 107 m−1 |
Transfer coefficients of the cathode electrode | 0.5 |
Transfer coefficients of the anode electrode | 0.5 |
Cathode reference exchange current density | 2.5 × 107 A·cm−2 |
Anode reference exchange current density | 5 × 103 A·cm−2 |
Gas pore volume fraction | 0.4 |
Gas pore tortuosity | 1.5 |
Electrolyte volume fraction | 0.3 |
References
- Wang, M.; Wang, Z.; Gong, X.; Guo, Z. The intensification technologies to water electrolysis for hydrogen production—A review. Renew. Sustain. Energy Rev. 2014, 29, 573–588. [Google Scholar] [CrossRef]
- Carmo, M.; Fritz, D.L.; Mergel, J.; Stolten, D. A comprehensive review on PEM water electrolysis. Int. J. Hydrogen Energy 2013, 38, 4901–4934. [Google Scholar] [CrossRef]
- Guilbert, D.; Vitale, G. Improved Hydrogen-Production-Based Power Management Control of a Wind Turbine Conversion System Coupled with Multistack Proton Exchange Membrane Electrolyzers. Energies 2020, 13, 1239. [Google Scholar] [CrossRef]
- Ali, D.; Gazey, R.; Aklil, D. Developing a thermally compensated electrolyser model coupled with pressurised hydrogen storage for modelling the energy efficiency of hydrogen energy storage systems and identifying their operation performance issues. Renew. Sustain. Energy Rev. 2016, 66, 27–37. [Google Scholar] [CrossRef]
- Petipas, F.; Brisse, A.; Bouallou, C. Benefits of external heat sources for high temperature electrolyser systems. Int. J. Hydrogen Energy 2014, 39, 5505–5513. [Google Scholar] [CrossRef]
- Polonský, J.; Mazúr, P.; Paidar, M.; Christensen, E.; Bouzek, K. Performance of a PEM water electrolyser using a TaC-supported iridium oxide electrocatalyst. Int. J. Hydrogen Energy 2014, 39, 3072–3078. [Google Scholar] [CrossRef]
- Onda, K.; Kyakuno, T.; Hattori, K.; Ito, K. Prediction of production power for high-pressure hydrogen by high-pressure water electrolysis. J. Power Sources 2004, 132, 64–70. [Google Scholar] [CrossRef]
- Degiorgis, L.; Santarelli, M.; Calì, M. Hydrogen from renewable energy: A pilot plant for thermal production and mobility. J. Power Sources 2007, 171, 237–246. [Google Scholar] [CrossRef]
- Clarke, R.E.; Giddey, S.; Ciacchi, F.T.; Badwal, S.P.S.; Paul, B.; Andrews, J. Direct coupling of an electrolyser to a solar PV system for generating hydrogen. Int. J. Hydrogen Energy 2009, 34, 2531–2542. [Google Scholar] [CrossRef]
- Cano, M.H.; Kelouwani, S.; Agbossou, K.; Dubé, Y. Power management system for off-grid hydrogen production based on uncertainty. Int. J. Hydrogen Energy 2015, 40, 7260–7272. [Google Scholar] [CrossRef]
- Dahbi, S.; Aboutni, R.; Aziz, A.; Benazzi, N.; Elhafyani, M.; Kassmi, K. Optimised hydrogen production by a photovoltaic-electrolysis system DC/DC converter and water flow controller. Int. J. Hydrogen Energy 2016, 41, 20858–20866. [Google Scholar] [CrossRef]
- Derbal-Mokrane, H.; Benzaoui, A.; M’Raoui, A.; Belhamel, M. Feasibility study for hydrogen production using hybrid solar power in Algeria. Int. J. Hydrogen Energy 2011, 36, 4198–4207. [Google Scholar] [CrossRef]
- Oi, T.; Sakaki, Y. Optimum hydrogen generation capacity and current density of the PEM-type water electrolyzer operated only during the off-peak period of electricity demand. J. Power Sources 2004, 129, 229–237. [Google Scholar] [CrossRef]
- Ojong, E.T.; Kwan, J.T.H.; Nouri-Khorasani, A.; Bonakdarpour, A.; Wilkinson, D.P.; Smolinka, T. Development of an experimentally validated semi-empirical fully-coupled performance model of a PEM electrolysis cell with a 3-D structured porous transport layer. Int. J. Hydrogen Energy 2017, 42, 25831–25847. [Google Scholar] [CrossRef]
- Baniasadi, S.T.A. Metal foams as flow distributors in comparison with serpentine and parallel flow fields in proton exchange membrane electrolyzer cells. Electrochim. Acta 2018, 290, 506–519. [Google Scholar]
- Millet, P.; Ranjbari, A.; de Guglielmo, F.; Grigoriev, S.A.; Auprêtre, F. Cell failure mechanisms in PEM water electrolyzers. Int. J. Hydrogen Energy 2012, 37, 17478–17487. [Google Scholar] [CrossRef]
- Afshari, E.; Khodabakhsh, S.; Jahantigh, N.; Toghyani, S. Performance assessment of gas crossover phenomenon and water transport mechanism in high pressure PEM electrolyzer. Int. J. Hydrogen Energy 2021, 46, 11029–11040. [Google Scholar] [CrossRef]
- Keller, R.; Rauls, E.; Hehemann, M.; Müller, M.; Carmo, M. An adaptive model-based feedforward temperature control of a 100 kW PEM electrolyzer. Control Eng. Pract. 2022, 120, 104992. [Google Scholar] [CrossRef]
- Zhao, D.; He, Q.; Yu, J.; Guo, M.; Fu, J.; Li, X.; Ni, M. A data-driven digital-twin model and control of high temperature proton exchange membrane electrolyzer cells. Int. J. Hydrogen Energy 2022, 47, 8687–8699. [Google Scholar] [CrossRef]
- Moradi Nafchi, F.; Afshari, E.; Baniasadi, E.; Javani, N. A parametric study of polymer membrane electrolyser performance, energy and exergy analyses. Int. J. Hydrogen Energy 2019, 44, 18662–18670. [Google Scholar] [CrossRef]
- Tijani, A.S.; Ghani, M.F.A.; Rahim, A.H.A.; Muritala, I.K.; Binti Mazlan, F.A. Electrochemical characteristics of (PEM) electrolyzer under influence of charge transfer coefficient. Int. J. Hydrogen Energy 2019, 44, 27177–27189. [Google Scholar] [CrossRef]
- Schnuelle, C.; Wassermann, T.; Fuhrlaender, D.; Zondervan, E. Dynamic hydrogen production from PV & wind direct electricity supply—Modeling and techno-economic assessment. Int. J. Hydrogen Energy 2020, 45, 29938–29952. [Google Scholar]
- Espinosa-López, M.; Darras, C.; Poggi, P.; Glises, R.; Baucour, P.; Rakotondrainibe, A.; Besse, S.; Serre-Combe, P. Modelling and experimental validation of a 46 kW PEM high pressure water electrolyzer. Renew. Energy 2018, 119, 160–173. [Google Scholar] [CrossRef]
- Abdin, Z.; Webb, C.J.; Gray, E.M. Modelling and simulation of a proton exchange membrane (PEM) electrolyser cell. Int. J. Hydrogen Energy 2015, 40, 13243–13257. [Google Scholar] [CrossRef]
- Villagra, A.; Millet, P. An analysis of PEM water electrolysis cells operating at elevated current densities. Int. J. Hydrogen Energy 2019, 44, 9708–9717. [Google Scholar] [CrossRef]
- Hernández-Gómez, Á.; Ramirez, V.; Guilbert, D.; Saldivar, B. Development of an adaptive static-dynamic electrical model based on input electrical energy for PEM water electrolysis. Int. J. Hydrogen Energy 2020, 45, 18817–18830. [Google Scholar] [CrossRef]
Number of Grids | Current Density (A/cm2) | Calculation Duration (min) |
---|---|---|
16,374 | 2.42 | 10 |
22,440 | 2.28 | 21 |
44,795 | 2.20 | 44 |
89,204 | 2.17 | 117 |
136,932 | 2.15 | 171 |
Parameter | Symbol | Value |
---|---|---|
Rated power of a single cell | 440 W | |
Rated voltage of a single cell | 2.04 V | |
Rated current of a single cell | 216 A | |
Water supply volume | 6 L/min | |
Number of cells in linear stack | - | 50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
An, L.; Tian, Y.; Zhao, H. Research on Water Flow Control Strategy for PEM Electrolyzer Considering the Anode Bubble Effect. Energies 2025, 18, 273. https://doi.org/10.3390/en18020273
An L, Tian Y, Zhao H. Research on Water Flow Control Strategy for PEM Electrolyzer Considering the Anode Bubble Effect. Energies. 2025; 18(2):273. https://doi.org/10.3390/en18020273
Chicago/Turabian StyleAn, Liheng, Yizhi Tian, and Haikun Zhao. 2025. "Research on Water Flow Control Strategy for PEM Electrolyzer Considering the Anode Bubble Effect" Energies 18, no. 2: 273. https://doi.org/10.3390/en18020273
APA StyleAn, L., Tian, Y., & Zhao, H. (2025). Research on Water Flow Control Strategy for PEM Electrolyzer Considering the Anode Bubble Effect. Energies, 18(2), 273. https://doi.org/10.3390/en18020273