Sustainable Corrosion Inhibitors from Pharmaceutical Wastes: Advancing Energy-Efficient Chemistry with Green Solutions
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Potentiodynamic Polarization
3.2. AC Impedance Spectroscopy
3.3. Gasometric Results
3.4. Scanning Electron Microscopy (SEM) and Contact Angle (CA) Studies
3.5. Computational Studies
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bejandi, M.S.; Behroozi, M.H.; Khalili, M.R.; Sharifi, R.; Javidparvar, A.A.; Oguzie, E. Pharmaceuticals for materials protection: Experimental and computational studies of expired closantel drug (C22H14Cl2I2N2O2) as a potent corrosion inhibitor. J. Ind. Eng. Chem. 2023, 131, 662–675. [Google Scholar] [CrossRef]
- Belhadj, N.; Maizia, R. Effectiveness of expired estradiol valerate drug molecule as a corrosion inhibitor for mild steel in 1 M HCl medium: Waste utilization perspective. J. Indian Chem. Soc. 2024, 101, 101287. [Google Scholar] [CrossRef]
- Yadav, M.; Sinha, R.R.; Sarkar, T.K.; Tiwari, N. Corrosion inhibition effect of pyrazole derivatives on mild steel in hydrochloric acid solution. J. Adhes. Sci. Technol. 2015, 29, 1690–1713. [Google Scholar] [CrossRef]
- Bhawsar, J.; Jani, M.; Jain, P. Evaluating the corrosion inhibition potential of expired ivermectin drug on mild steel: A comprehensive multi-method investigation. Corros. Commun. 2024. [Google Scholar] [CrossRef]
- Zakeri, A.; Zakeri, A.; Bahmani, E.; Bahmani, E.; Aghdam, A.S.R.; Aghdam, A.S.R. Plant extracts as sustainable and green corrosion inhibitors for protection of ferrous metals in corrosive media: A mini review. Corros. Commun. 2022, 5, 25–38. [Google Scholar] [CrossRef]
- Mamudu, U.; Santos, J.H.; Umoren, S.A.; Alnarabiji, M.S.; Lim, R.C. Investigations of corrosion inhibition of ethanolic extract of Dillenia suffruticosa leaves as a green corrosion inhibitor of mild steel in hydrochloric acid medium. Corros. Commun. 2024, 15, 52–62. [Google Scholar] [CrossRef]
- Bairagi, H.; Vashishth, P.; Ji, G.; Shukla, S.K.; Ebenso, E.E.; Mangla, B. Polymers and their composites for corrosion inhibition application: Development, advancement, and future scope–A critical review. Corros. Commun. 2024, 15, 79–94. [Google Scholar] [CrossRef]
- Li, P.; Shao, Z.; Fu, W.; Ma, W.; Yang, K.; Zhou, H.; Gao, M. Enhancing corrosion resistance of magnesium alloys via combining green chicory extracts and metal cations as organic-inorganic composite inhibitor. Corros. Commun. 2023, 9, 44–56. [Google Scholar] [CrossRef]
- Qiang, Y.; Guo, L.; Li, H.; Lan, X. Fabrication of environmentally friendly Losartan potassium film for corrosion inhibition of mild steel in HCl medium. Chem. Eng. J. 2020, 406, 126863. [Google Scholar] [CrossRef]
- Mahdavian, M.; Tehrani-Bagha, A.R.; Alibakhshi, E.; Ashhari, S.; Palimi, M.J.; Farashi, S.; Javadian, S.; Ektefa, F. Corrosion of mild steel in hydrochloric acid solution in the presence of two cationic gemini surfactants with and without hydroxyl substituted spacers. Corros. Sci. 2018, 137, 62–75. [Google Scholar] [CrossRef]
- El-Lateef, H.M.A. Experimental and computational investigation on the corrosion inhibition characteristics of mild steel by some novel synthesized imines in hydrochloric acid solutions. Corros. Sci. 2015, 92, 104–117. [Google Scholar] [CrossRef]
- Jaiswal, M.; Saxena, A.; Kaur, J. Application of expired Febuxostat drug as an effective corrosion inhibitor for steel in acidic medium: Experimental and theoretical studies. Chem. Data Collect. 2024, 52, 101149. [Google Scholar] [CrossRef]
- Oukhrib, R.; Abdellaoui, Y.; Berisha, A.; Oualid, H.A.; Halili, J.; Jusufi, K.; El Had, M.A.; Bourzi, H.; El Issami, S.; Asmary, F.A.; et al. DFT, Monte Carlo and molecular dynamics simulations for the prediction of corrosion inhibition efficiency of novel pyrazolylnucleosides on Cu(111) surface in acidic media. Sci. Rep. 2021, 11, 3771. [Google Scholar] [CrossRef] [PubMed]
- Kasprzhitskii, A.; Lazorenko, G. Corrosion inhibition properties of small peptides: DFT and Monte Carlo simulation studies. J. Mol. Liq. 2021, 331, 115782. [Google Scholar] [CrossRef]
- Ye, Y.; Yang, D.; Chen, H. A green and effective corrosion inhibitor of functionalized carbon dots. J. Mater. Sci. Technol. 2019, 35, 2243–2253. [Google Scholar] [CrossRef]
- Lei, G.; Lei, Z.; Chin-Hung, L.; Bochuan, T.; Jun, C.; Riadh, M.; Yan, T.; Amir Mahmoud, M. Mango leaves extract as sustainable corrosion inhibitor for X70 steel in HCl medium: Integrated experimental analysis and computational electronic/atomic-scale simulation. Sustain. Mater. Techno. 2024, 42, e01167. [Google Scholar] [CrossRef]
- Sheetal; Thakur, S.; Singh, A.K. Corrosion inhibition of mild steel by expired pyridoxine hydrochloride in 0.5 M H2SO4 solution. Inorg. Chem. Commun. 2024, 166, 112602. [Google Scholar] [CrossRef]
- Qiang, Y.; Zhang, S.; Tan, B.; Chen, S. Evaluation of Ginkgo leaf extract as an eco-friendly corrosion inhibitor of X70 steel in HCl solution. Corros. Sci. 2018, 133, 6–16. [Google Scholar] [CrossRef]
- Abdallah, M. Antibacterial drugs as corrosion inhibitors for corrosion of aluminium in hydrochloric solution. Corros. Sci. 2003, 46, 1981–1996. [Google Scholar] [CrossRef]
- Sundaram, R.G.; Vengatesh, G.; Sundaravadivelu, M. Surface morphological and quantum chemical studies of some expired drug molecules as potential corrosion inhibitors for mild steel in chloride medium. Surf. Interfaces 2020, 22, 100841. [Google Scholar] [CrossRef]
- Wiśniewska, P.; Saeb, M.R.; Bencherif, S.A. Biomaterials recycling: A promising pathway to sustainability. Front. Biomater. Sci. 2023, 2, 1260402. [Google Scholar] [CrossRef]
- Vaszilcsin, N.; Kellenberger, A.; Dan, M.L.; Duca, D.A.; Ordodi, V.L. Efficiency of Expired Drugs Used as Corrosion Inhibitors: A Review. Materials 2023, 16, 5555. [Google Scholar] [CrossRef] [PubMed]
- Attia, E.; Hyba, A.; Attia, E.M.; Hassan, N.S.; Hyba, A.M. Potentiodynamic Study on the Effect of Expired Septazole and Septrin Drugs on the Corrosion Inhibition of Tin Electrode in 1 M HCl Solution. J. Basic. Appl. Chem. 2019, 9, 11–18. [Google Scholar]
- Raghavendra, N.; Bhat, J.I. Chemical components of mature areca nut husk extract as a potential corrosion inhibitor for mild steel and copper in both acid and alkali media. Chem. Eng. Commun. 2017, 205, 145–160. [Google Scholar] [CrossRef]
- Raghavendra, N. Expired naproxen drug as a robust corrosion inhibitor of Al in 3 M hydrochloric acid system. Songklanakarin J. Sci. Technol. 2020, 42, 917–922. [Google Scholar] [CrossRef]
- Kalaiselvi, P.; Chellammal, S.; Palanichamy, S.; Subramanian, G. Artemisia pallens as corrosion inhibitor for mild steel in HCl medium. Mater. Chem. Phys. 2010, 120, 643–648. [Google Scholar] [CrossRef]
- Ma, X.; Jiang, X.; Xia, S.; Shan, M.; Li, X.; Yu, L.; Tang, Q. New corrosion inhibitor acrylamide methyl ether for mild steel in 1 M HCl. Appl. Surf. Sci. 2016, 371, 248–257. [Google Scholar] [CrossRef]
- Sathishkumar, A.; Soundararajan, R.; Sivasankaran, S.; Ramesh, A. Influence of eutectic-Si in as-cast and fibrous-eutectic-Si in LPBF-processed AlSi10Mg alloys on wear and corrosion behaviors treated with direct aging route. J. Mater. Sci. 2023, 58, 14889–14910. [Google Scholar] [CrossRef]
- Ahamad, I.; Prasad, R.; Quraishi, M. Thermodynamic, electrochemical and quantum chemical investigation of some Schiff bases as corrosion inhibitors for mild steel in hydrochloric acid solutions. Corros. Sci. 2009, 52, 933–942. [Google Scholar] [CrossRef]
- Aslam, R.; Mobin, M.; Aslam, J.; Lgaz, H.; Chung, I.-M. Inhibitory Effect of Sodium Carboxymethylcellulose and Synergistic Biodegradable Gemini Surfactants as Effective Inhibitors for MS Corrosion in 1 M HCl. J. Mater. Res. Technol. 2019, 8, 4521–4533. [Google Scholar] [CrossRef]
- Chitra, S.; Parameswari, K.; Selvaraj, A. Dianiline Schiff bases as inhibitors of mild steel corrosion in acid media. Int. J. Electrochem. Sci. 2023, 5, 1675–1697. [Google Scholar] [CrossRef]
- Solmaz, R. Investigation of corrosion inhibition mechanism and stability of Vitamin B1 on mild steel in 0.5 M HCl solution. Corros. Sci. 2014, 81, 75–84. [Google Scholar] [CrossRef]
- Popoola, L.T. Progress on pharmaceutical drugs, plant extracts and ionic liquids as corrosion inhibitors. Heliyon 2019, 5, e01143. [Google Scholar] [CrossRef] [PubMed]
- Behera, P.K.; Rao, S.; Popoola, L.T.; Swamirayachar, S.A.; AlFalah, M.G.K.; Kandemirli, F.; Kodange, S.; Prashanth, G.K.; Achalkumar, A.S. Room Temperature Columnar Liquid Crystalline Perylene Bisimide as a Novel Corrosion Resistant Surface Film for Mild Steel Surface. J. Bio- Tribo-Corros. 2022, 9, 18. [Google Scholar] [CrossRef]
- Renuka, P.; Rao, S.; Rao, P.; S, S.S.; Prashanth, G. Corrosion mitigation of mild steel in 1 M HCl acid using an expired drug: An experimental approach. Inorg. Chem. Commun. 2023, 160, 111871. [Google Scholar] [CrossRef]
- Wang, W.; Qu, F.; Zhang, Y.; Liu, Z.; Chang, H.; Xia, L.; Kong, M.; Lv, Y.; Li, G. Enhanced corrosion resistance of flaky carbonyl iron through dual silane surface modification for the application of electromagnetic wave absorption coatings. J. Mater. Sci. 2024, 59, 1721–1735. [Google Scholar] [CrossRef]
- Raghavendra, N. Expired Lorazepam Drug: A Medicinal Compound as Green Corrosion Inhibitor for Mild Steel in Hydrochloric Acid System. Chem. Afr. 2019, 2, 463–470. [Google Scholar] [CrossRef]
- Abeng, F.E.; Anadebe, V.C. Combined electrochemical, DFT/MD-simulation and hybrid machine learning based on ANN-ANFIS models for prediction of doxorubicin drug as corrosion inhibitor for mild steel in 0.5 M H2SO4 solution. Comput. Theor. Chem. 2023, 1229, 114334. [Google Scholar] [CrossRef]
- Benzbiria, N.; Thoume, A.; El Caid, Z.A.; Echihi, S.; Elmakssoudi, A.; Zarrouk, A.; Zertoubi, M. An investigation on the utilization of a synthesized benzodiazepine derivative as a corrosion inhibitor for carbon steel in sulfuric solution: Chemical and electrochemical synthesis, surface analysis (SEM/AFM), DFT and MC simulation. Colloids Surf. A Physicochem. Eng. Asp. 2023, 681, 132744. [Google Scholar] [CrossRef]
- Elqars, E.; Laamari, Y.; Sadik, K.; Bimoussa, A.; Oubella, A.; Mechnou, I.; Auhmani, A.; Taha, M.L.; Essadki, A.; Aboulmouhajir, A.; et al. Synthesis, experimental, theoretical, and molecular dynamic studies of 1-(2,5-dimethoxy-4-methylphenyl)ethan-1-thiosemicarbazone as green inhibitor for carbon steel corrosion. J. Mol. Struct. 2023, 1282, 135228. [Google Scholar] [CrossRef]
- Barrodi, M.R.; Mirzaee, A.; Kafashan, A.; Zahedifard, S.; Majidi, H.J.; Davoodi, A.; Hosseinpour, S. Synergistic effect in Tragacanth Gum-Ceftriaxone hybrid system as an environmentally friendly corrosion inhibitor for mild steel in acidic solutions. Mater. Today Commun. 2023, 34, 105390. [Google Scholar] [CrossRef]
Concentration (mg/L) | Corrosion Potential (mV) | Cathodic Tafel Slope (V/dec) | Anodic Tafel Slope (V/dec) | Corrosion Current (A) | Protection Efficiency |
---|---|---|---|---|---|
Bare | −483 | −5.81 | 7.34 | 0.0071340 | - |
0.25 | −510 | −4.70 | 5.34 | 0.0005198 | 92.75 |
0.5 | −517 | −4.97 | 5.17 | 0.0003460 | 95.38 |
0.75 | −515 | −4.68 | 5.02 | 0.0003050 | 95.77 |
1.00 | −518 | −4.93 | 5.54 | 0.0002312 | 96.81 |
Concentration (mg/L) | Chi-Squared Value | Charge Transfer Resistance (Ω) | Protection Efficiency |
---|---|---|---|
Bare | 1.35 × 10−5 | 31.34 | - |
0.25 | 1.76 × 10−5 | 49.93 | 37.23 |
0.5 | 2.54 × 10−5 | 115.4 | 72.84 |
0.75 | 3.68 × 10−5 | 141 | 77.77 |
1 | 2.07 × 10−5 | 333.4 | 90.59 |
Immersion Time (hours) | Concentration (mg/L) | Volume of Hydrogen Gas Evolution (mL) | Surface Coverage (Ɵ) | Protection Efficiency (%) |
---|---|---|---|---|
2 | Bare | 35 | - | - |
0.25 | 3.2 | 0.908 | 90.85 ± 0.045% | |
0.5 | 2.1 | 0.940 | 94.00 ± 0.032% | |
0.75 | 1.3 | 0.962 | 96.28 ± 0.043% | |
1 | 0.7 | 0.980 | 98.01 ± 0.016% | |
4 | Bare | 41 | - | - |
0.25 | 4.3 | 0.895 | 89.51 ± 0.053% | |
0.5 | 3.5 | 0.914 | 91.46 ± 0.067% | |
0.75 | 2.7 | 0.934 | 93.41 ± 0.087% | |
1 | 2.0 | 0.951 | 95.12 ± 0.035% | |
6 | Bare | 45 | - | - |
0.25 | 5.1 | 0.886 | 88.66 ± 0.036% | |
0.5 | 4.5 | 0.900 | 90.01 ± 0.038% | |
0.75 | 3.7 | 0.917 | 91.77 ± 0.034% | |
1 | 2.8 | 0.937 | 93.77 ± 0.024% | |
8 | Bare | 53 | - | - |
0.25 | 7 | 0.867 | 86.79 ± 0.033% | |
0.5 | 6.1 | 0.884 | 88.49 ± 0.037% | |
0.75 | 5.1 | 0.903 | 90.37 ± 0.054% | |
1 | 4 | 0.924 | 92.45 ± 0.058% | |
10 | Bare | 58 | - | - |
0.25 | 8.3 | 0.856 | 85.68 ± 0.043% | |
0.5 | 7 | 0.879 | 87.93 ± 0.063% | |
0.75 | 5.8 | 0.900 | 90.01 ± 0.058% | |
1 | 4.7 | 0.918 | 91.89 ± 0.047% | |
12 | Bare | 63 | - | - |
0.25 | 10 | 0.841 | 84.12 ± 0.043% | |
0.5 | 9.1 | 0.855 | 85.55 ± 0.038% | |
0.75 | 8 | 0.873 | 87.30 ± 0.053% | |
1 | 6.3 | 0.900 | 90.01 ± 0.048% |
EHOMO (eV) | ELUMO (eV) | Energy Gap (eV) | I | A | η | χ | σ | µ | Ω |
---|---|---|---|---|---|---|---|---|---|
−11.029 | −4.203 | 6.826 | 11.029 | 4.203 | 3.413 | 7.616 | 0.2929 | −7.616 | 8.497 |
Total Energy | Adsorption Energy | Rigid Adsorption Energy | Deformation Energy | dEad/dNI (ESL) | dEad/dNI (Water) |
---|---|---|---|---|---|
−151.09 | −3.23 × 105 | −264.26 | −3.23 × 105 | −9.82 × 104 | −4.51 × 104 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Raghavendra, N.; Chapi, S.; M. V., M.; Pawlak, M.; Saeb, M.R. Sustainable Corrosion Inhibitors from Pharmaceutical Wastes: Advancing Energy-Efficient Chemistry with Green Solutions. Energies 2025, 18, 224. https://doi.org/10.3390/en18020224
Raghavendra N, Chapi S, M. V. M, Pawlak M, Saeb MR. Sustainable Corrosion Inhibitors from Pharmaceutical Wastes: Advancing Energy-Efficient Chemistry with Green Solutions. Energies. 2025; 18(2):224. https://doi.org/10.3390/en18020224
Chicago/Turabian StyleRaghavendra, Narasimha, Sharanappa Chapi, Murugendrappa M. V., Małgorzata Pawlak, and Mohammad Reza Saeb. 2025. "Sustainable Corrosion Inhibitors from Pharmaceutical Wastes: Advancing Energy-Efficient Chemistry with Green Solutions" Energies 18, no. 2: 224. https://doi.org/10.3390/en18020224
APA StyleRaghavendra, N., Chapi, S., M. V., M., Pawlak, M., & Saeb, M. R. (2025). Sustainable Corrosion Inhibitors from Pharmaceutical Wastes: Advancing Energy-Efficient Chemistry with Green Solutions. Energies, 18(2), 224. https://doi.org/10.3390/en18020224