Heat Recovery Ventilation in School Classrooms Within Mediterranean Europe: A Climate-Sensitive Analysis of the Energy Impact Based on the Italian Building Stock
Abstract
1. Introduction
2. Materials and Methods
2.1. Mediterranean Climate
2.2. National School Building Stock Background
- Traditional building: old buildings, built until the post-war construction boom, made of full bricks or tuff, depending on the construction tradition of the considered region.
- 1960s–1980s Conventional building: refers to buildings built during the period of the most extensive urbanisation in Italy, characterised by walls made of two layers of hollow bricks with an air gap in between.
- 1960s–1980s Largely Glazed building: the largest urbanisation period was also characterised by prefabrication techniques [46], with exterior walls made of insulated sandwich panels and large windows occupying the entire space between the pillars.
- Recent building: refers to buildings built from 1990, after the introduction of the first national regulation on the energy performance of buildings [47], having walls made of two layers of high-density hollow bricks with different thicknesses of insulating layer in-between, depending on the climate zone.
2.3. Elaborations from the National School Building Database
2.4. Energy Simulations
2.4.1. School Building Construction Models
2.4.2. Usage Profiles, Internal Gains, and Building Service Systems Modelling
Natural and Mechanical Ventilation System Configuration
3. Results and Discussion
3.1. Thermal Energy Needs Savings
3.2. Primary Energy Density Impact
3.3. National Primary Energy Impact
3.3.1. Climate Zone and Construction Type
3.3.2. Provincial Scale
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
Symbols | Definition |
SFP | Specific Fan Power—(Ws/m3) |
t | Temperature—(°C) |
Annual variation of the thermal energy input on the heat generator—(kWh/m2) | |
Annual variation of electrical energy absorbed by the water loop pump—(kWh/m2) | |
Annual fan electricity consumption—(kWh/m2) | |
Annual primary energy density variation—(kWh/m2) | |
Total primary energy conversion factor for natural gas—(kWh/kWh) | |
Total primary energy conversion factor for electricity—(kWh/kWh) | |
Annual primary energy variation—(GWh) | |
Subscripts/superscripts | |
ct | Construction Type |
y | Considered construction type |
x | Considered Province |
z | Considered Region |
s | Supply |
a | Indoor |
o | Outdoor |
int | Internal |
Acronyms/abbreviation | |
IAQ | Indoor Air Quality |
MVHR | Mechanical Ventilation system with Heat Recovery |
NV | Natural Ventilation |
MV | Mechanical Ventilation |
NSBD | National School Building Database |
HDD | Heating Degree Day |
MIUR | Ministero dell’Istruzione, dell’Università e della Ricerca |
GSE | Gestore dei Servizi Energetici |
References
- Sundell, J.; Levin, H.; Nazaroff, W.W.; Cain, W.S.; Fisk, W.J.; Grimsrud, D.T.; Gyntelberg, F.; Li, Y.; Persily, A.K.; Pickering, A.C.; et al. Ventilation rates and health: Multidisciplinary review of the scientific literature: Ventilation rates and health. Indoor Air 2011, 21, 191–204. [Google Scholar] [CrossRef]
- Fisk, W.J. The ventilation problem in schools: Literature review. Indoor Air 2017, 27, 1039–1051. [Google Scholar] [CrossRef]
- Sadrizadeh, S.; Yao, R.; Yuan, F.; Awbi, H.; Bahnfleth, W.; Bi, Y.; Cao, G.; Croitoru, C.; De Dear, R.; Haghighat, F.; et al. Indoor air quality and health in schools: A critical review for developing the roadmap for the future school environment. J. Build. Eng. 2022, 57, 104908. [Google Scholar] [CrossRef]
- Daisey, J.M.; Angell, W.J.; Apte, M.G. Indoor air quality, ventilation and health symptoms in schools: An analysis of existing information: Indoor air quality, ventilation and health symptoms in schools. Indoor Air 2003, 13, 53–64. [Google Scholar] [CrossRef] [PubMed]
- Chithra, V.S.; Shiva Nagendra, S.M. A Review Of Scientific Evidence On Indoor Air Of School Building: Pollutants, Sources, Health Effects And Management. Asian J. Atmos. Environ. 2018, 12, 87–108. [Google Scholar] [CrossRef]
- Oliveira, M.; Slezakova, K.; Delerue-Matos, C.; Pereira, M.C.; Morais, S. Children environmental exposure to particulate matter and polycyclic aromatic hydrocarbons and biomonitoring in school environments: A review on indoor and outdoor exposure levels, major sources and health impacts. Environ. Int. 2019, 124, 180–204. [Google Scholar] [CrossRef] [PubMed]
- Mendell, M.J.; Heath, G.A. Do indoor pollutants and thermal conditions in schools influence student performance? A critical review of the literature. Indoor Air 2005, 15, 27–52. [Google Scholar] [CrossRef]
- Wargocki, P.; Porras-Salazar, J.A.; Contreras-Espinoza, S.; Bahnfleth, W. The relationships between classroom air quality and children’s performance in school. Build. Environ. 2020, 173, 106749. [Google Scholar] [CrossRef]
- European Commission; Joint Research Centre; Institute for Health and Consumer Protection; European Commission; Directorate General for Health and Consumers; Regional Environmental Centre for Central and Eastern Europe. SINPHONIE: Schools Indoor Pollution & Health Observatory Network in Europe: Final Report; Publications Office: Luxembourg, 2014; Available online: https://data.europa.eu/doi/10.2788/99220 (accessed on 24 October 2023).
- EN 16798-1; Energy Performance of Buildings. Ventilation for Buildings Indoor Environmental Input Parameters for Design and Assessment of Energy Performance of Buildings Addressing Indoor Air Quality, Thermal Environment, Lighting and Acoustics. Module M1-6, Definitive. CEN: Bruxelles, Belgium, 2019.
- Bhagat, R.K.; Davies Wykes, M.S.; Dalziel, S.B.; Linden, P.F. Effects of ventilation on the indoor spread of COVID-19. J. Fluid Mech. 2020, 903, F1. [Google Scholar] [CrossRef]
- Li, Y.; Leung, G.M.; Tang, J.W.; Yang, X.; Chao, C.Y.H.; Lin, J.Z.; Lu, J.W.; Nielsen, P.V.; Niu, J.; Qian, H.; et al. Role of ventilation in airborne transmission of infectious agents in the built environment? A multidisciplinary systematic review. Indoor Air 2007, 17, 2–18. [Google Scholar] [CrossRef]
- Avella, F.; Gupta, A.; Peretti, C.; Fulici, G.; Verdi, L.; Belleri, A.; Babich, F. Low-Invasive CO2-Based Visual Alerting Systems to Manage Natural Ventilation and Improve IAQ in Historic School Buildings. Heritage 2021, 4, 3442–3468. [Google Scholar] [CrossRef]
- Stazi, F.; Naspi, F.; D’Orazio, M. Modelling window status in school classrooms. Results from a case study in Italy. Build. Environ. 2017, 111, 24–32. [Google Scholar] [CrossRef]
- Avella, F.; Gupta, A. QAES PROJECT Qualità dell’Aria Negli Edifici Scolastici WP5. Sviluppo e Implementazione Soluzioni (English: Air Quality in School Buildings WP5. Solution Development and Implementation). 24 February 2022. Available online: https://www.qaes.it/ (accessed on 3 September 2024).
- Ferrari, S. Ventilation strategies to reduce airborne transmission of viruses in classrooms: A systematic review of scientific literature. Build. Environ. 2022, 222, 109366. [Google Scholar] [CrossRef]
- Stabile, L.; Dell’Isola, M.; Russi, A.; Massimo, A.; Buonanno, G. The effect of natural ventilation strategy on indoor air quality in schools. Sci. Total Environ. 2017, 595, 894–902. [Google Scholar] [CrossRef]
- Stabile, L.; Dell’Isola, M.; Frattolillo, A.; Massimo, A.; Russi, A. Effect of natural ventilation and manual airing on indoor air quality in naturally ventilated Italian classrooms. Build. Environ. 2016, 98, 180–189. [Google Scholar] [CrossRef]
- Zee, S.C.; Strak, M.; Dijkema, M.B.A.; Brunekreef, B.; Janssen, N.A.H. The impact of particle filtration on indoor air quality in a classroom near a highway. Indoor Air 2017, 27, 291–302. [Google Scholar] [CrossRef]
- Busato, F.; Cavallini, A. Window Opening or Mechanical Ventilation Systems for Italian Schools? Energetic Aspects, CO2 Concentration and Infection Risk Assessment Based on the SARS-CoV-2 Data. Buildings 2023, 13, 1743. [Google Scholar] [CrossRef]
- Awbi, H.B. Ventilation for Good Indoor Air Quality and Energy Efficiency. Energy Procedia 2017, 112, 277–286. [Google Scholar] [CrossRef]
- Rosbach, J.T.; Vonk, M.; Duijm, F.; Van Ginkel, J.T.; Gehring, U.; Brunekreef, B. A ventilation intervention study in classrooms to improve indoor air quality: The FRESH study. Environ. Health 2013, 12, 110. [Google Scholar] [CrossRef]
- Stabile, L.; Buonanno, G.; Frattolillo, A.; Dell’Isola, M. The effect of the ventilation retrofit in a school on CO2, airborne particles, and energy consumptions. Build. Environ. 2019, 156, 1–11. [Google Scholar] [CrossRef]
- Summa, S.; Remia, G.; Di Perna, C.; Stazi, F. Mechanically ventilated classrooms in central Italy’s heritage school buildings: Proposal of archetypes and CO2 prediction models. Build. Environ. 2024, 265, 111963. [Google Scholar] [CrossRef]
- Avanzini, M.; Pinheiro, M.D.; Gomes, R.; Rolim, C. Energy retrofit as an answer to public health costs of fuel poverty in Lisbon social housing. Energy Policy 2022, 160, 112658. [Google Scholar] [CrossRef]
- Adamopoulos, I.P.; Syrou, N.F.; Mijwil, M.; Thapa, P.; Ali, G.; Dávid, L.D. Quality of indoor air in educational institutions and adverse public health in Europe: A scoping review. Electron. J. Gen. Med. 2025, 22, em632. [Google Scholar] [CrossRef]
- Mendell, M.J.; Eliseeva, E.A.; Davies, M.M.; Spears, M.; Lobscheid, A.; Fisk, W.J.; Apte, M.G. Association of classroom ventilation with reduced illness absence: A prospective study in California elementary schools. Indoor Air 2013, 23, 515–528. [Google Scholar] [CrossRef]
- Ortiz, J.; Casquero-Modrego, N.; Salom, J. Health and related economic effects of residential energy retrofitting in Spain. Energy Policy 2019, 130, 375–388. [Google Scholar] [CrossRef]
- Apriesnig, J.L.; Manning, D.T.; Suter, J.F.; Magzamen, S.; Cross, J.E. Academic stars and Energy Stars, an assessment of student academic achievement and school building energy efficiency. Energy Policy 2020, 147, 111859. [Google Scholar] [CrossRef]
- Economidou, M.; Todeschi, V.; Bertoldi, P.; D’Agostino, D.; Zangheri, P.; Castellazzi, L. Review of 50 years of EU energy efficiency policies for buildings. Energy Build. 2020, 225, 110322. [Google Scholar] [CrossRef]
- Ruggieri, G.; Andreolli, F.; Zangheri, P. A Policy Roadmap for the Energy Renovation of the Residential and Educational Building Stock in Italy. Energies 2023, 16, 1319. [Google Scholar] [CrossRef]
- Zender–Świercz, E. A Review of Heat Recovery in Ventilation. Energies 2021, 14, 1759. [Google Scholar] [CrossRef]
- Pérez-Lombard, L.; Ortiz, J.; Pout, C. A review on buildings energy consumption information. Energy Build. 2008, 40, 394–398. [Google Scholar] [CrossRef]
- Laverge, J.; Janssens, A. Heat recovery ventilation operation traded off against natural and simple exhaust ventilation in Europe by primary energy factor, carbon dioxide emission, household consumer price and exergy. Energy Build. 2012, 50, 315–323. [Google Scholar] [CrossRef]
- Santos, H.R.R.; Leal, V.M.S. Energy vs. ventilation rate in buildings: A comprehensive scenario-based assessment in the European context. Energy Build. 2012, 54, 111–121. [Google Scholar] [CrossRef]
- Stabile, L.; Massimo, A.; Canale, L.; Russi, A.; Andrade, A.; Dell’Isola, M. The Effect of Ventilation Strategies on Indoor Air Quality and Energy Consumptions in Classrooms. Buildings 2019, 9, 110. [Google Scholar] [CrossRef]
- Calama-González, C.M.; León-Rodríguez, Á.L.; Suárez, R. Indoor Air Quality Assessment: Comparison of Ventilation Scenarios for Retrofitting Classrooms in a Hot Climate. Energies 2019, 12, 4607. [Google Scholar] [CrossRef]
- Cardelli, R.; Mian, N.J.; Puglisi, G.; Ferrari, S. Energy impact of mechanical ventilation in school classrooms: The Italian building stock scenario. In Proceedings of the 9th Conference of Sustainable Development of Energy, Water, and Environmental Systems (SDEWES), Rome, Italy, 8–12 September 2024. [Google Scholar]
- Ministero dell’Istruzione e del Merito. Ministero dell’Istruzione e del Merito, Catalogo Dataset Ambito Scuola. (In English: School Dataset Catalog). Available online: https://dati.istruzione.it/opendata/opendata/catalogo/elements1/?area=Edilizia%20Scolastica (accessed on 14 November 2024).
- Parlamento della Repubblica Italiana. Legge 11 gennaio 1996, n. 23, Norme per l’edilizia scolastica, (in English: School Building Regulations); Gazzetta Ufficiale: Roma, Italy, 1996. [Google Scholar]
- Moreci, E.; Ciulla, G.; Lo Brano, V. Annual heating energy requirements of office buildings in a European climate. Sustain. Cities Soc. 2016, 20, 81–95. [Google Scholar] [CrossRef]
- Parlamento della Repubblica Italiana. vol. DPR 412. Regolamento Recante Norme per la Progettazione, L’installazione, L’esercizio e la Manutenzione degli Impianti Termici degli Edifici al Fine del Contenimento dei Consumi Energetici, in Attuazione dell’art. 4, Comma 4, della Legge 9 Gennaio 1991, n. 10., (in English: Regulation Containing Rules for the Design, Installation, Operation and Maintenance of Heating Systems in Buildings for the Purpose of Reducing Energy Consumption, Pursuant to Art. 4, Paragraph 4, of Law 9 January 1991, No. 10.); Gazzetta Ufficiale n.96 14/10/1993; Decree of the President of the Republic (DPR): Rome, Italy, 1993. [Google Scholar]
- Palmini, F.; Di Ascenzo, D. Focus “Principali dati della Scuola—Avvio Anno Scolastico 2022/2023”, (in English: Focus “Main School Data—Start of the 2022/2023 School Year”). Ministero dell’Istruzione—Direzione Generale per i Sistemi Informativi e la Statistica—Ufficio di Statistica. October 2022. Available online: https://www.miur.gov.it/pubblicazioni/-/asset_publisher/6Ya1FS4E4QJw/content/focus-principali-dati-della-scuola-avvio-anno-scolastico-2022-2023- (accessed on 6 October 2023).
- In Ferrari, S.; Zanotto, V. Defining representative building energy models. In Building Energy Performance Assessment in Southern Europ2; SpringerBriefs in Applied Sciences and Technology; Springer: Cham, Switzerland, 2016; pp. 61–77. [Google Scholar] [CrossRef]
- Ferrari, S.; Zanotto, V. Office Buildings Cooling Need in the Italian Climatic Context: Assessing the Performances of Typical Envelopes. Energy Procedia 2012, 30, 1099–1109. [Google Scholar] [CrossRef]
- AITEC. Industrializzazione e Prefabbricazione Dell’edilizia Scolastica, (in English: Industrialization and Prefabrication of School Buildings); A.I.T.E.C. Associazione Italiana Tecnico-Economica del Cemento: Roma, Italy, 1966. [Google Scholar]
- Legge 9 Gennaio 1991, n. 10, Norme per L’attuazione del Piano Energetico Nazionale in Materia di Usi Razionale Dell’energia, di Risparmio Energetico e di Sviluppo delle Fonti Rinnovabili di Energia; Gazzetta Ufficiale: Roma, Italy, 1991. Available online: https://www.gazzettaufficiale.it/eli/id/1991/01/16/091G0015/sg (accessed on 24 July 2023).
- Sherman, G. QGIS (Quantum Geographic Information System). Computer Software, Grüt, Swiss. Available online: https://qgis.org/ (accessed on 19 January 2024).
- Fondazione Giovanni Agnelli. Rapporto Sull’edilizia Scolastica, (in English: Report on School Buildings); Laterza: Rome, Italy, 2020. [Google Scholar]
- McLean, D. Integrated Environmental Solutions Virtual Environment (IESVE). Computer Software, Glasgow, Scotland, UK. 1994. Available online: https://www.iesve.com/ (accessed on 11 June 2023).
- Airoldi, R.; Bottino, P.R.; Giovenale, F.; Gualandi, G.; Gualdi, F.; Merlo, R.; Oglialoro, M. Manuale di Edilizia Scolstica, (in English: School Building Manual); Carocci: Rome, Italy, 1999. [Google Scholar]
- di Bitonto, A.; Giordano, F. L’architettura degli Edifici per L’istruzione, (in English: The Architecture of Educational Buildings), 1st ed.; Officina Edizioni: Rome, Italy, 1995. [Google Scholar]
- Ministero della Transizione Ecologica. 2022. Available online: https://www.gazzettaufficiale.it/eli/id/2022/08/06/22A04307/sg (accessed on 9 December 2023).
- Helty, Brochure Flow 800. 6 November 2023. Available online: https://www.heltyair.com/prodotti/vmc-community/flow-800/ (accessed on 6 November 2023).
- AIRMASTER, AM 800. 6 November 2023. Available online: https://www.airmaster-as.com/products/ventilation-units-wall-mounted/am-800 (accessed on 6 November 2023).
- VORT HR 1200 FLAT. 24 December 2023. Available online: https://www.vortice.it/it/vmc_recupero_calore/recupero-calore-terziario/decentralizzato-da-soffitto/45999 (accessed on 6 November 2023).
- European Parliament. COMMISSION REGULATION (EU) No 1253/2014 of 7 July 2014 implementing Directive 2009/125/EC of the European Parliament and of the Council with Regard to Ecodesign Requirements for Ventilation Units, 2014. Available online: https://eur-lex.europa.eu/eli/reg/2014/1253/oj/eng (accessed on 12 September 2023).
- Ministero dello Sviluppo Economico. Decreto Interministeriale 26 Giugno 2015—Applicazione delle Metodologie di Calcolo delle Prestazioni Energetiche e Definizione delle Prescrizioni e dei Requisiti Minimi degli Edifici, (in English: Application of Energy Performance Calculation Methodologies and Definition of Minimum Building Requirements and Requirements). 2015. Available online: https://www.mimit.gov.it/index.php/it/normativa/decreti-interministeriali/decreto-interministeriale-26-giugno-2015-applicazione-delle-metodologie-di-calcolo-delle-prestazioni-energetiche-e-definizione-delle-prescrizioni-e-dei-requisiti-minimi-degli-edifici (accessed on 22 September 2023).
- CRESME. Centro di Ricerche di Mercato, Servizi per chi Opera nel Mondo delle Costruzioni e Dell’edilizia. Ristrutturazione Edilizia Riqualificazione Energetica Rigenerazione Urbana, (in English: Building Renovation, Energy Requalification, Urban Regeneration). 24 February 2014. Available online: https://www.cresme.it/ (accessed on 13 February 2024).
Climate Zone | HDDs | |
---|---|---|
Min | Max | |
Zone A | ≤600 | |
Zone B | 601 | 900 |
Zone C | 901 | 1400 |
Zone D | 1401 | 2100 |
Zone E | 2101 | 3000 |
Zone F | ≥3001 |
Construction Type | Age of Construction |
---|---|
Traditional buildings | Until 1959 |
1960s–1980s Conventional buildings | Between 1960 and 1989 |
1960s–1980s Largely Glazed buildings * | Between 1960 and 1989 |
Recent buildings | From 1990 |
Climate Zone | Reference City | HDD | Heating Season |
---|---|---|---|
Zone B | Palermo | 751 | 1 December–31 March |
Zone C | Naples | 1034 | 15 November–31 March |
Zone D | Rome | 1415 | 1 November–15 April |
Zone E | Milan | 2404 | 15 October–15 April |
Zone F | Cuneo | 3012 | No Limitations |
Three-Dimensional Representation | Construction Type | Wall Thickness | U-Value (Wall) | Wall Heat Capacity | Window-to-Wall Ratio | U-Value (Windows) | SHGC |
---|---|---|---|---|---|---|---|
[cm] | [W/(m2K)] | [kJ/(m2K)] | [%] | [W/(m2K)] | [-] | ||
Recent conventional building | 34.0 | 0.36 | 260 | 23 | 2.14 | 0.63 | |
1960s/1980s Conventional building | 35.0 | 0.98 | 264 | 23 | 2.91 | 0.76 | |
1960s/1980s Largely Glazed building | 14.0 | 0.36 | 53 | 63 | 2.91 | 0.76 | |
Traditional building | 54.0 | 0.98 | 587 | 23 | 2.91 | 0.76 |
Reference Models | Locations |
---|---|
2 Traditional buildings | Milan, Cuneo |
Rome, Naples, Palermo | |
1 1960s–1980s Conventional building | All |
1 1960s–1980s Largely Glazed building | All |
5 Recent buildings | Cuneo |
Milan, | |
Rome | |
Naples | |
Palermo |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferrari, S.; Puglisi, G.; Cardelli, R. Heat Recovery Ventilation in School Classrooms Within Mediterranean Europe: A Climate-Sensitive Analysis of the Energy Impact Based on the Italian Building Stock. Energies 2025, 18, 5069. https://doi.org/10.3390/en18195069
Ferrari S, Puglisi G, Cardelli R. Heat Recovery Ventilation in School Classrooms Within Mediterranean Europe: A Climate-Sensitive Analysis of the Energy Impact Based on the Italian Building Stock. Energies. 2025; 18(19):5069. https://doi.org/10.3390/en18195069
Chicago/Turabian StyleFerrari, Simone, Giovanni Puglisi, and Riccardo Cardelli. 2025. "Heat Recovery Ventilation in School Classrooms Within Mediterranean Europe: A Climate-Sensitive Analysis of the Energy Impact Based on the Italian Building Stock" Energies 18, no. 19: 5069. https://doi.org/10.3390/en18195069
APA StyleFerrari, S., Puglisi, G., & Cardelli, R. (2025). Heat Recovery Ventilation in School Classrooms Within Mediterranean Europe: A Climate-Sensitive Analysis of the Energy Impact Based on the Italian Building Stock. Energies, 18(19), 5069. https://doi.org/10.3390/en18195069