A Review of Green Hydrogen Technologies and Their Role in Enabling Sustainable Energy Access in Remote and Off-Grid Areas Within Sub-Saharan Africa
Abstract
1. Introduction
2. Materials and Methods
3. Hydrogen Production Technologies
4. Electrolysis Technologies for Green Hydrogen Production
5. Emerging Technologies and Material Innovation
6. Hydrogen Storage and Transport Technologies
7. Renewable Integration and Hybrid Systems
8. Techno-Economic and Environmental Assessments
- Green hydrogen has the lowest carbon intensity, typically near zero when produced with fully renewable electricity;
- Water demand is a critical consideration, particularly in dry regions where desalination is needed, increasing energy consumption and system complexity;
- Scarce materials: The need for platinum group metals (PGMs) such as iridium and platinum in PEM electrolyzers, and rare earths for related power electronics, is increasing;
- End-of-life management of system components, such as membrane recycling and safe disposal of catalysts, remains under-addressed in many studies.
9. Regional Feasibility in Sub-Saharan Africa
10. Policy, Financing, and Social Considerations
11. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
AEL | Alkaline Electrolyzer |
AEM/AEMs | Anion Exchange Membrane/Anion Exchange Membranes |
CAPEX | Capital Expenditure |
CCS | Carbon Capture and Storage |
CO2 | Carbon Dioxide |
COF/COFs | Covalent-Organic Framework/Covalent-Organic Frameworks |
CSP | Concentrated Solar Power |
EAPP | East African Power Pool |
EPC | Engineering, Procurement and Construction |
GHG | Greenhouse Gas |
H2 | Hydrogen |
HEM/HEMs | High-Entropy Material/High-Entropy Materials |
IRENA | International Renewable Energy Agency |
LCA | Life Cycle Assessment |
LCOH | Levelized Cost of Hydrogen |
LOHC/LOHCs | Liquid Organic Hydrogen Carrier/Liquid Organic Hydrogen Carriers |
MOF/MOFs | Metal–Organic Framework/Metal-Organic Frameworks |
NDCs | Nationally Determined Contributions |
OECD | Organization for Economic Co-operation and Development |
O&M | Operations and Maintenance |
PEM | Proton Exchange Membrane |
PGM/PGMs | Platinum Group Metal/Platinum Group Metals |
PV | Photovoltaic |
R&D | Research and Development |
SAPP | Southern African Power Pool |
SDG/SDG 7 | Sustainable Development Goal/Sustainable Development Goal 7 |
SMR | Steam Methane Reforming |
SOEC/SOECs | Solid Oxide Electrolysis Cell/Cells |
SSA | Sub-Saharan Africa |
USD | United States Dollar |
VRE | Variable Renewable Energy |
WACC | Weighted Average Cost of Capital |
SEFA | Sustainable Energy Fund for Africa |
References
- Kourougianni, F.; Arsalis, A.; Olympios, A.V.; Yiasoumas, G.; Konstantinou, C.; Papanastasiou, P.; Georghiou, G.E. A comprehensive review of green hydrogen energy systems. Renew. Sustain. Energy Rev. 2024, 231, 120911. [Google Scholar] [CrossRef]
- Ude, N.G.; Graham, R.C.; Yskandar, H. A review of current status of green hydrogen economy in Sub-Saharan Africa. IEEE Access 2024, 12, 149676–149699. [Google Scholar] [CrossRef]
- Bhandari, R.; Adhikari, N. A comprehensive review on the role of hydrogen in renewable energy systems. Renew. Sustain. Energy Rev. 2024, 82, 923–951. [Google Scholar] [CrossRef]
- Bhandari, R. Green hydrogen production potential in West Africa Case of Niger. Renew. Energy 2022, 196, 800–811. [Google Scholar] [CrossRef]
- Alzahrani, A.; Ramu, S.K.; Devarajan, G.; Vairavasundaram, I.; Vairavasundaram, S. A review on hydrogen-based hybrid microgrid system: Topologies for hydrogen energy storage, integration, and energy management with solar and wind energy. Energies 2022, 15, 7979. [Google Scholar] [CrossRef]
- Noussan, M.; Raimondi, P.P.; Scita, R.; Hafner, M. The Role of Green and Blue Hydrogen in the Energy Transition A Technological and Geopolitical Perspective. Sustainability 2020, 13, 298. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, R.; Lv, Z.; Liu, J.; Zhou, H.; Xu, C. Green hydrogen: A promising way to the carbon-free society. Chin. J. Chem. Eng. 2022, 43, 2–13. [Google Scholar] [CrossRef]
- Meharban, F.; Tang, X.; Yang, S.; Wu, X.; Lin, C.; Tan, L.; Hu, W.; Zhou, D.; Li, J.; Li, X. Harnessing direct seawater electrolysis for a sustainable offshore hydrogen future: A critical review and perspective. Appl. Energy 2025, 384, 125468. [Google Scholar] [CrossRef]
- Hassan, N.; Jalil, A.; Rajendran, S.; Khusnun, N.; Bahari, M.; Johari, A.; Kamaruddin, M.; Ismail, M. Recent review and evaluation of green hydrogen production via water electrolysis for a sustainable and clean energy society. Int. J. Hydrogen Energy 2024, 52, 420–441. [Google Scholar] [CrossRef]
- Xu, X.; Zhou, Q.; Yu, D. The future of hydrogen energy: Bio-hydrogen production technology. Int. J. Hydrogen Energy 2022, 47, 33677–33698. [Google Scholar] [CrossRef]
- Terlouw, T.; Bauer, C.; McKenna, R.; Mazzotti, M. Large-scale hydrogen production via water electrolysis: A techno-economic and environmental assessment. Energy Environ. Sci. 2022, 15, 3583–3602. [Google Scholar] [CrossRef]
- Nasser, M.; Megahed, T.F.; Ookawara, S.; Hassan, H. A review of water electrolysis–based systems for hydrogen production using hybrid/solar/wind energy systems. Environ. Sci. Pollut. Res. 2022, 29, 86994–87018. [Google Scholar] [CrossRef]
- Megía, P.J.; Vizcaíno, A.J.; Calles, J.A.; Carrero, A. Hydrogen Production Technologies: From Fossil Fuels toward Renewable Sources. A Mini Review. Energy Fuels 2021, 35, 16403–16415. [Google Scholar] [CrossRef]
- El-Emam, R.S.; Özcan, H. Comprehensive review on the techno-economics of sustainable large-scale clean hydrogen production. J. Clean. Prod. 2019, 220, 593–609. [Google Scholar] [CrossRef]
- Yu, M.; Wang, K.; Vredenburg, H. Insights into low-carbon hydrogen production methods: Green, blue and aqua hydrogen. Int. J. Hydrogen Energy 2021, 46, 21261–21273. [Google Scholar] [CrossRef]
- Perez, Y.G.C.; Santaella, J.R.B.; Susa, D.A.H. Green hydrogen state of the art review of generation technologies for the decarbonisation of the energy sector. Ing. Y Compet. 2024, 26, 1–22. [Google Scholar] [CrossRef]
- Ursua, A.; Gandia, L.M.; Sanchis, P. Hydrogen production from water electrolysis: Current status and future trends. Proc. IEEE 2012, 100, 410–426. [Google Scholar] [CrossRef]
- Mazumder, G.; Hasan, S.; Zishan, M.S.; Rahman, M.H. Solar PV- and PEM electrolyzer-based green hydrogen production cost for a selected location in Bangladesh. Acad. Green Energy 2023, 1, 1–9. [Google Scholar] [CrossRef]
- Mao, S.S.; Shen, S.; Guo, L. Nanomaterials for renewable hydrogen production, storage and utilization. Prog. Nat. Sci. Mater. Int. 2012, 22, 522–534. [Google Scholar] [CrossRef]
- Nnachi, G.U.; Richards, C.G.; Hamam, Y. Appraising the benefits of investing in green hydrogen in Sub-Saharan Africa’s energy mix. In Proceedings of the 2025 33rd Southern African Universities Power Engineering Conference (SAUPEC), Pretoria, South Africa, 29–30 January 2025. [Google Scholar]
- Oliveira, A.M.; Beswick, R.R.; Yan, Y. A Green Hydrogen Economy for a Renewable Energy Society. Curr. Opin. Chem. Eng. 2021, 33, 100701. [Google Scholar] [CrossRef]
- Hammi, Z.; Labjar, N.; Dalimi, M.; El Hamdouni, Y.; Lotfi, E.M.; El Hajjaji, S. Green hydrogen: A holistic review covering life cycle assessment, environmental impacts, and color analysis. Int. J. Hydrogen Energy 2024, 80, 1030–1045. [Google Scholar] [CrossRef]
- Nabgan, W.; Nabgan, B.; Jalil, A.A.; Ikram, M.; Hussain, I.; Bahari, M.B.; Tran, T.; Alhassan, M.; Owgi, A.; Parashuram, L.; et al. A bibliometric examination and state-of-the-art overview of hydrogen generation from photoelec-trochemical water splitting. Int. J. Hydrogen Energy 2024, 52, 358–380. [Google Scholar] [CrossRef]
- Qiu, G.; Li, T.; Xu, X.; Liu, Y.; Niyogi, M.; Cariaga, K.; Oses, C. High entropy powering green energy: Hydrogen, batteries, electronics, and catalysis. npj Comput. Mater. 2025, 11, 145. [Google Scholar] [CrossRef]
- Dincer, I.; Acar, C. Review and evaluation of hydrogen production methods for better sustainability. Int. J. Hydrogen Energy 2015, 40, 11094–11111. [Google Scholar] [CrossRef]
- Arpino, F.; Canale, C.; Cortellessa, G.; Dell’iSola, M.; Ficco, G.; Grossi, G.; Moretti, L. Green hydrogen for energy storage and natural gas system decarbonization: An Italian case study. Int. J. Hydrogen Energy 2023, 49, 586–600. [Google Scholar] [CrossRef]
- Xu, W.; Scott, K. The effects of ionomer content on PEM water electrolyser membrane electrode assembly performance. Int. J. Hydrogen Energy 2010, 35, 12029–12037. [Google Scholar] [CrossRef]
- Kumar, S.S.; Lim, H. An overview of water electrolysis technologies for green hydrogen production. Energy Rep. 2022, 8, 13793–13813. [Google Scholar] [CrossRef]
- Abbas, M.K.; Hassan, Q.; Tabar, V.S.; Tohidi, S.; Jaszczur, M.; Abdulrahman, I.S.; Salman, H.M. Techno-economic analysis for clean hydrogen production using solar energy under varied climate conditions. Int. J. Hydrogen Energy 2023, 48, 2929–2948. [Google Scholar] [CrossRef]
- Franzmann, D.; Heinrichs, H.; Lippkau, F.; Addanki, T.; Winkler, C.; Buchenberg, P.; Hamacher, T.; Blesl, M.; Linßen, J.; Stolten, D. Green hydrogen cost-potentials for global trade. Int. J. Hydrogen Energy 2023, 48, 33062–33076. [Google Scholar] [CrossRef]
- Vidas, L.; Castro, R. Recent Developments on Hydrogen Production Technologies: State-of-the-Art Review with a Focus on Green-Electrolysis. Appl. Sci. 2021, 11, 11363. [Google Scholar] [CrossRef]
- Dash, S.K.; Chakraborty, S.; Elangovan, D. A brief review of hydrogen production methods and their challenges. Energies 2023, 16, 1141. [Google Scholar] [CrossRef]
- Zou, X.; Zhang, Y. Noble metal-free hydrogen evolution catalysts for water splitting. Chem. Soc. Rev. 2015, 44, 5148–5180. [Google Scholar] [CrossRef]
- Feng, J.; Ma, C.; Dai, H. Earth-abundant transition metal catalysts for electrochemical hydrogen generation. Nat. Energy 2020, 5, 510–517. [Google Scholar]
- Omeiza, L.A.; Abdalla, A.M.; Wei, B.; Dhanasekaran, A.; Subramanian, Y.; Afroze, S.; Reza, S.; Abu Bakar, S.; Azad, A.K. Nanostructured Electrocatalysts for Advanced Applications in Fuel Cells. Energies 2023, 16, 1876. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, D.; Wang, S. High-entropy alloys for electrocatalysis: Design, characterization, and applications. Small 2022, 18, 2104339. [Google Scholar] [CrossRef]
- Gottesfeld, S.; Dekel, D.R.; Page, M.; Bae, C.; Yan, Y.; Zelenay, P.; Kim, Y.S. Anion exchange membrane fuel cells: Current status and remaining challenges. J. Power Sources 2017, 375, 170–184. [Google Scholar] [CrossRef]
- Rikukawa, M.; Sanui, K. Proton-conducting polymer electrolyte membranes based on hydrocarbon polymers. Prog. Polym. Sci. 2000, 25, 1463–1502. [Google Scholar] [CrossRef]
- Samat, N.A.S.A.; Goh, P.S.; Lau, W.J.; Guo, Q.; Ismail, A.F.; Wong, K.C. Green hydrogen revolution: Sus-tainable hydrogen separation using hydrogen-selective nanocomposite membrane technology. Int. J. Hydrogen Energy 2023, 99, 458–484. [Google Scholar] [CrossRef]
- Schlapbach, L.; Züttel, A. Hydrogen-storage materials for mobile applications. Nature 2001, 414, 353–358. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y. Advances in metal-organic frameworks for hydrogen storage. Highlights Sci. Eng. Technol.—ESMA 2024, 90, 178–183. [Google Scholar] [CrossRef]
- Abe, J.O.; Popoola, A.P.; Ajenifuja, E.; Popoola, O.M. Hydrogen energy, economy and storage: Review and recommendation. Int. J. Hydrogen Energy 2019, 44, 15072–15086. [Google Scholar] [CrossRef]
- Xie, Z.; Jin, Q.; Su, G.; Lu, W. A review of hydrogen storage and transportation: Progresses and challenges. Energies 2024, 17, 4070. [Google Scholar] [CrossRef]
- Al Ghafri, S.Z.S.; Swanger, A.; Jusko, V.; Siahvashi, A.; Perez, F.; Johns, M.L.; May, E.F. Modelling of liquid hydrogen boil-off. Energies 2022, 15, 1149. [Google Scholar] [CrossRef]
- Hren, R.; Vujanović, A.; Van Fan, Y.; Klemeš, J.J.; Krajnc, D.; Čuček, L. Hydrogen production, storage and transport for renewable energy and chemicals: An environmental footprint assessment. Renew. Sustain. Energy Rev. 2023, 173, 113113. [Google Scholar] [CrossRef]
- Negro, V.; Noussan, M.; Chiaramonti, D. The potential role of ammonia for hydrogen storage and transport: A critical review of challenges and opportunities. Energies 2023, 16, 6192. [Google Scholar] [CrossRef]
- Yang, M.; Hunger, R.; Berrettoni, S.; Sprecher, B.; Wang, B. A review of hydrogen storage and transport technologies. Clean Energy 2023, 7, 190–216. [Google Scholar] [CrossRef]
- Gibson, T.L.; Kelly, N.A. Predicting efficiency of solar powered hydrogen generation using photovolta-ic-electrolysis devices. Int. J. Hydrogen Energy 2010, 35, 900–911. [Google Scholar] [CrossRef]
- Arunachalam, M.; Han, D.S. Efficient solar-powered PEM electrolysis for sustainable hydrogen production: An integrated approach. Emergent Mater. 2024, 7, 1401–1415. [Google Scholar] [CrossRef]
- Nnabuife, S.G.; Hamzat, A.K.; Whidborne, J.; Kuang, B.; Jenkins, K.W. Integration of renewable energy sources in tandem with electrolysis: A technology review for green hydrogen production. Int. J. Hydrogen Energy 2025, 107, 218–240. [Google Scholar] [CrossRef]
- Hidouri, D.; Marouani, R.; Cherif, A. Modeling and Simulation of a Renewable Energy PV/PEM with Green Hydrogen Storage. Eng. Technol. Appl. Sci. Res. 2024, 14, 12543–12548. [Google Scholar] [CrossRef]
- Nnabuife, S.G.; Quainoo, K.A.; Hamzat, A.K.; Darko, C.K.; Agyemang, C.K. Innovative Strategies for Combining Solar and Wind Energy with Green Hydrogen Systems. Appl. Sci. 2024, 14, 9771. [Google Scholar] [CrossRef]
- Benghanem, M.; Mellit, A.; Almohamadi, H.; Haddad, S.; Chettibi, N.; Alanazi, A.M.; Dasalla, D.; Alzahrani, A. Hydrogen Production Methods Based on Solar and Wind Energy: A Review. Energies 2023, 16, 757. [Google Scholar] [CrossRef]
- Tahmasbi, M.; Siavashi, M.; Ahmadi, R. A comprehensive review of hydrogen production and storage methods: Fundamentals, advances, and SWOT analysis. Energy Convers. Manag. 2025, 26, 101005. [Google Scholar] [CrossRef]
- Mastropasqua, L.; Pecenati, I.; Giostri, A.; Campanari, S. Solar hydrogen production: Techno-economic analysis of a parabolic dish-supported high-temperature electrolysis system. Appl. Energy 2020, 261, 114392. [Google Scholar] [CrossRef]
- Olabode, O.; Ajewole, T.; Okakwu, I.; Alayande, A.; Akinyele, D. Hybrid power systems for off-grid locations: A comprehensive review of design technologies, applications, and future trends. Sci. Afr. 2021, 13, e00884. [Google Scholar] [CrossRef]
- Zhang, F.; Zhao, P.; Niu, M.; Maddy, J. The survey of key technologies in hydrogen energy storage. Int. J. Hydrogen Energy 2016, 41, 14535–14552. [Google Scholar] [CrossRef]
- World Energy Council; PwC; Electric Power Research Institute (EPRI). Hydrogen on the Horizon: Ready, Almost Set, Go? World Energy Council: London, UK, 2022. [Google Scholar]
- Chariri, F.; Pawenary, P.; Reza, A.M.; Pariaman, H.; Ramadhon, N.M. Techno-Economic Evaluation of Green Hydrogen Production from Off-Grid Solar PV Systems in Remote Areas of Indonesia. In Proceedings of the 10th International Conference on Science and Technology (ICST 2024), Yogyakarta, Indonesia, 23–24 October 2024. [Google Scholar]
- Imasiku, K.; Farirai, F.; Olwoch, J.; Agbo, S.N. A policy review of green hydrogen economy in Southern Africa. Sustainability 2021, 13, 13240. [Google Scholar] [CrossRef]
- Hyphen Hydrogen Energy. 2024. [Online]. Available online: https://www.hyphenafrica.com (accessed on 9 September 2025).
- Staffell, I.; Scamman, D.; Velazquez Abad, A.; Balcombe, P.; Dodds, P.E.; Ekins, P.; Shah, N.; Ward, K.R. The role of hydrogen and fuel cells in the global energy system. Energy Environ. Sci. 2019, 12, 463–491. [Google Scholar] [CrossRef]
- Xu, X.; Zhao, Z.; Song, C.; Xu, L.; Zhang, W. Seawater Membrane Distillation Coupled with Alkaline Water Electrolysis for Hydrogen Production: Parameter Influence and Techno-Economic Analysis. Membranes 2025, 15, 60. [Google Scholar] [CrossRef]
- Gado, M.G.; Nasser, M.; Hassan, H. Potential of solar and wind-based green hydrogen production frameworks in African countries. Int. J. Hydrogen Energy 2024, 68, 520–536. [Google Scholar] [CrossRef]
- Kiplagat, A.; Onyango, J.O.; Mutua, C.M. Geothermal-powered hydrogen: Opportunities for Kenya’s Olkaria field. Renew. Energy 2024, 215, 1120–1134. [Google Scholar]
- Adeyanju, T.O.; Akinlabi, A.O.; Olatunji, S.A. Techno-economic feasibility of green hydrogen systems in Ni-ger for rural electrification. Energy Rep. 2024, 10, 780–795. [Google Scholar]
- Obanor, E.I.; Dirisu, J.O.; Kilanko, O.O.; Salawu, E.Y.; Ajayi, O.O. Progress in green hydrogen adoption in the African context. Front. Energy Res. 2024, 12, 1429118. [Google Scholar] [CrossRef]
- Agyekum, E.B. Is Africa ready for green hydrogen energy takeoff? A multi-criteria decision-making analysis. Int. J. Hydrogen Energy 2024, 49, 219–233. [Google Scholar] [CrossRef]
- Ameli, N.; Dessens, O.; Winning, M.; Cronin, J.; Chenet, H.; Drummond, P.; Calzadilla, A.; Anandarajah, G.; Grubb, M. Higher cost of finance exacerbates a climate investment trap. Nat. Commun. 2021, 12, 4046. [Google Scholar] [CrossRef]
- Dato, P.; Dioha, M.; Hessou, H.; Houenou, B.; Mukhaya, B.; Okyere, M.A.; Odarno, L. Computation of weighted average cost of capital (WACC) in the power sector for African countries and the implications for country-specific electricity technology cost. Appl. Energy 2025, 397, 126333. [Google Scholar] [CrossRef]
- Ulsrud, M.; Winther, T.; Palit, D.; Rohracher, K. Solar mini-grids in rural Africa: Lessons for community ownership models. Energy Res. Soc. Sci. 2019, 52, 95–106. [Google Scholar]
- Koshikwinja, P.; Cavana, M.; Sechi, S.; Bochiellini, R.; Leone, P. Review of the hydrogen supply chain and use in Africa. Renew. Sustain. Energy Rev. 2025, 208, 115004. [Google Scholar] [CrossRef]
- Hildebrand, J.; Sadat-Razavi, P.; Rau, I. Different risks Different views: How hydrogen infrastructure is linked to societal risk perception. Energy Technol. 2024, 13, 2300998. [Google Scholar] [CrossRef]
- Zubairu, N.; Al Jabri, L.; Rejeb, A. A review of hydrogen energy in renewable energy supply chain finance. Discov. Sustain. 2025, 6, 186. [Google Scholar] [CrossRef]
- Mallapragada; Sepulveda, A.; Jenkins, J.; Larson, K. Hydrogen mini-grids and rural development. Energy Sustain. Dev. 2023, 75, 44–57. [Google Scholar]
- Kirubi, A. Community-owned mini-grids in Kenya: Equity and sustainability outcomes. Energy Policy 2018, 114, 132–140. [Google Scholar]
- BankWorld. Unleashing Opportunities for Women in Africa with Access to Energy (AFE). World Bank Blogs, January 2024. [Online]. Available online: https://blogs.worldbank.org/en/africacan/unleashing-opportunities-for-women-in-africa-with-access-to-energy-afe-0125?utm_source=chatgpt.com (accessed on 9 September 2025).
- Institute Stockholm Environment. Unleashing Opportunities for Women in Africa with Access to Energy (AFE). SEI Perspectives, 2022. [Online]. Available online: https://www.sei.org/perspectives/renewable-energy-womens-lives-kenyas-arid-semi-arid-lands?utm_source=chatgpt.com (accessed on 9 September 2025).
- Abdelsalam, R.A.; Mohamed, M.; Farag, H.E.; El-Saadany, E.F. Green hydrogen production plants: A tech-no-economic review. Energy Convers. Manag. 2024, 319, 118907. [Google Scholar] [CrossRef]
- Sarker, A.K.; Azad, A.K.; Rasul, M.G.; Doppalapudi, A.T. Prospect of green hydrogen generation from hybrid renewable energy sources: A review. Energies 2023, 16, 1556. [Google Scholar] [CrossRef]
Technology | Primary Source | CO2 Emissions (kg CO2/kg H2) | LCOH (€/kg) | Maturity | Off-Grid Suitability | Key Challenges |
---|---|---|---|---|---|---|
Grey | Natural gas (SMR) | 9–12 | 1.0–1.8 | High (commercial, global) | Very Low | High emissions, fossil dependence |
Blue | Natural gas (SMR + CCS) | 2–4 (depends on CCS) | 2.0–2.5 | Moderate (pilot/commercial) | Low | Methane leakage, CCS permanence |
Green | Renewables (electrolysis) | ≈0 (with renewables) | 3.5–6.0 (1.0–1.5 by 2050) | Growing (demo & pilot plants) | High (renewables integration) | High cost, scarce PGMs, water demand |
Aqua | Plasma pyrolysis/photonic water splitting | ≈0 (emerging R&D) | High/not commercial | Low (laboratory stage) | Promising (future potential) | Immature, scalability unproven |
Technology | Efficiency (%) | Capital Cost (€/kW) | Current Density (A/cm2) | Dynamic Response | Material Requirements | Off-Grid Suitability |
---|---|---|---|---|---|---|
Alkaline (AEL) | 55–65 | 500–800 | <0.5 | Slow | Abundant (Ni, Fe, Co) | Low (poor flexibility) |
PEM | 60–70 | 1000–1500 | >2.0 | Fast | High (Ir, Pt, Ti) | High (excellent with VRE) |
SOEC | 75–85 | 1200–2000 | 1.0–1.5 | Moderate | High-temp ceramics, Ni | Low–Moderate (needs heat) |
AEM | 55–65 | 600–1000 | 0.5–1.0 | Moderate–Fast | Non-noble (Ni, Co, Fe) | Promising (immature) |
Material Innovation | Application | Key Benefits | Challenges |
---|---|---|---|
Ni, Fe, Co-based catalysts | Electrolysis (OER, HER) | Lower cost vs. PGM, good activity | Stability under high current density |
Nanostructured catalysts | Electrolysis | High surface area, enhanced kinetics | Complex synthesis, scalability |
High-Entropy Materials (HEMs) | Catalysis, electrodes | Durability, resistance to degradation | Early-stage development |
Hybrid composites | Electrodes | Synergistic properties, improved efficiency | Cost and reproducibility |
AEMs | Electrolysis membranes | Lower cost, reduced ohmic losses | Chemical stability in alkaline media |
Composite PEMs | Fuel cells, electrolysis | Corrosion/crossover resistance | Manufacturing complexity |
Metal hydrides | Solid-state storage | High volumetric density, safety | Slow kinetics, weight |
Porous carbons (MOFs, COFs) | Storage | Lightweight, tunable adsorption | Limited large-scale feasibility |
Storage/Transport Method | Energy Density (MJ/L) | Efficiency (%) | Advantages | Challenges | Suitability (Remote) |
---|---|---|---|---|---|
Compressed H2 (350–700 bar) | 5–8 | ≈85 | Mature, simple | Low density, safer | High (small scale) |
Liquid H2 (LH2) | 8–10 | 60–70 | High density | Cryogenic loss, costly | Low |
Metal Hydrides | 1–3 | 70–80 | Safe, compact | Heavy, slow kinetics | Medium (stationary) |
LOHCs (e.g., toluene) | 6–7 | 65–75 | Liquid at ambient, safe | Energy-intensive release | Medium |
Ammonia as carrier | 12–13 | 55–65 | Easy shipping, existing infra | Toxicity, conversion losses | Low–Medium |
Pipelines | – | >90 | Cost-effective (large scale) | High CAPEX, fixed routes | Low (remote) |
Region/Country | Water Availability | Primary Renewable Resources | Key Challenges | Relative LCOH (Levelized Cost of H2) Impact |
---|---|---|---|---|
Niger (Arid Interior) | Very limited freshwater | High solar, limited wind | Water import/desalination, weak grid | Higher costs due to water scarcity |
Namibia (Arid Coastal) | Limited freshwater, coastal access | Excellent solar & wind | Desalination costs, infrastructure gaps | Moderate, improving with export projects |
Morocco (Coastal) | Seawater available (desalination feasible) | Strong solar & wind | Desalination energy demand | Lower costs due to renewables, moderate water costs |
South Africa (Coastal & Inland) | Mix of freshwater stress & coastal desalination | Solar, wind, coal infrastructure | Transitioning from fossil fuels, water stress inland | Moderate, improving with policy support |
Hydropower-Reliant Nations (e.g., Ethiopia) | High water availability | Hydropower, limited solar | Seasonal variability, infrastructure | Variable, depends on hydropower reliability |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Msweli, N.; Nnachi, G.U.; Richards, C.G. A Review of Green Hydrogen Technologies and Their Role in Enabling Sustainable Energy Access in Remote and Off-Grid Areas Within Sub-Saharan Africa. Energies 2025, 18, 5035. https://doi.org/10.3390/en18185035
Msweli N, Nnachi GU, Richards CG. A Review of Green Hydrogen Technologies and Their Role in Enabling Sustainable Energy Access in Remote and Off-Grid Areas Within Sub-Saharan Africa. Energies. 2025; 18(18):5035. https://doi.org/10.3390/en18185035
Chicago/Turabian StyleMsweli, Nkanyiso, Gideon Ude Nnachi, and Coneth Graham Richards. 2025. "A Review of Green Hydrogen Technologies and Their Role in Enabling Sustainable Energy Access in Remote and Off-Grid Areas Within Sub-Saharan Africa" Energies 18, no. 18: 5035. https://doi.org/10.3390/en18185035
APA StyleMsweli, N., Nnachi, G. U., & Richards, C. G. (2025). A Review of Green Hydrogen Technologies and Their Role in Enabling Sustainable Energy Access in Remote and Off-Grid Areas Within Sub-Saharan Africa. Energies, 18(18), 5035. https://doi.org/10.3390/en18185035