Decarbonizing Aviation: The Low-Carbon Footprint and Strategic Potential of Colombian Palm Oil for Sustainable Aviation Fuel
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Carbon Footprint of SAF Production
2.2.1. Carbon Footprint of Colombian CPO
2.2.2. SAF Carbon Footprint from Colombian CPO, as Feedstock
2.2.3. Data Source
CPO Production Chain Data
- (a)
- Plantation management
- (b)
- Land-use change (LUC)
- (c)
- Palm oil mill
SAF Production Data
Sensitivity Analysis
2.3. Analysis of Economic Aspects
2.4. Regulation for Renewable Fuels in Line with CO2 Emissions
2.5. Opportunities to Access Markets for CO2 Emission Reductions
3. Results
3.1. Emissions Balance
3.1.1. Balance of Colombian CPO Emissions
3.1.2. Emissions Balance of SAF Produced from Colombian CPO
3.1.3. Sensitivity Analysis
3.2. Analysis of Economic Aspects
3.3. Analysis of Regulations for Renewable Fuels
3.4. Analysis of Market Access Opportunities
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
APSColombia | Aceite de Palma Sostenible de Colombia (Sustainable palm oil from Colombia) | ILUC | Induce land-use change |
CAPEX | Capital expenditure | IPCC | Intergovernmental Panel on Climate Change |
CH4 | Gas methane | ISCC | International sustainability and carbon certification |
CI | Carbon Intensity | kg | kilograms |
CORSIA | Carbon Offsetting and Reduction Scheme for International Aviation | LCA | Life cycle assessment |
CO2 | Carbon dioxide | LCI | Life cycle inventory |
CO2eq | Carbon dioxide equivalents | LSf | Life cycle emissions value for a CORSIA eligible fuel in gCO2e/MJ |
CPO | Crude palm oil | LHV | Low heating value |
DLUC | Direct land-use change | LUC | Land-use change |
EU | European Union | m3 | Cubic meter |
EFB | Empty fruit bunches | MJ | Megajoules |
FFB | Fresh fruit bunches | OPEX | Operational expenditure |
g | grams | POM | Palm oil mill |
GHG | Greenhouse gases | POME | Palm oil mill effluent |
h | Hour | RED | Renewable Energy Directive |
ha | hectares | RSB | Roundtable on Sustainable Biomaterials |
H2 | Hydrogen | RSPO | Roundtable on Sustainable Palm Oil |
HEFA | Hydroprocessed esters and fatty acids | SAF | Sustainable aviation fuels |
IATA | International Air Transport Association | t | Tons |
ICAO | International Civil Aviation Organization | USA | United States of America |
References
- United Nations Environment Programme. Emissions Gap Report 2023: Broken Record–Temperatures Hit New Highs, Yet World Fails to Cut Emissions (Again); United Nations Environment Programme: Nairobi, Kenya, 2023. [Google Scholar] [CrossRef]
- Ritchie, H. What Share of Global CO2 Emissions Come from Aviation? Available online: https://ourworldindata.org/global-aviation-emissions (accessed on 6 December 2024).
- IATA. La Demanda Global del Transporte Aéreo de Pasajeros Continuó Recuperándose en 2023 (Cominucado 06), Ginebra, Suiza, 2024. Available online: https://www.iata.org/contentassets/b4cc9013a14c4a1e877728246de9738f/2024-01-31-02-sp.pdf (accessed on 7 January 2025).
- Prussi, M.; Lee, U.; Wang, M.; Malina, R.; Valin, H.; Taheripour, F.; Velarde, C.; Staples, M.D.; Lonza, L.; Hileman, J.I. CORSIA: The first internationally adopted approach to calculate life-cycle GHG emissions for aviation fuels. Renew. Sustain. Energy Rev. 2021, 150, 111398. [Google Scholar] [CrossRef]
- Zhang, J.; Webber, M.S.; Pu, Y.; Li, Z.; Meng, X.; Stone, M.L.; Wei, B.; Wang, X.; Yuan, S.; Klein, B.; et al. Sustainable Aviation Fuels from Biomass and Biowaste via Bio- and Chemo-Catalytic Conversion: Catalysis, Process Challenges, and Opportunities. Green Energy Environ. 2024, 10, 1210–1234. [Google Scholar] [CrossRef]
- IATA. La Producción de SAF se Triplica en 2024, Pero se Necesitan Más Oportunidades de Diversificación SAF, Dubai, 2024. Available online: https://www.iata.org/contentassets/04cad3013796497faed12d496c09a284/2024-06-02-03-sp.pdf (accessed on 7 January 2025).
- ICAO. CORSIA Sustainability Criteria for CORSIA Eligible Fuels; ICAO: Montreal, QC, Canada, 2022; p. 12. [Google Scholar]
- Jimenez, I.G. Estudio de Viabilidad del Uso de Combustibles de Aviación Sostenibles; ICAO: Punta Cana, Dominican Republic, 2017; p. 37. [Google Scholar]
- ICAO. CORSIA Methodology for Calculating Actual Life Cycle Emissions Values; ICAO: Montreal, QC, Canada, 2022; p. 40. [Google Scholar]
- Aerocivil. ABC Combustibles Sostenibles de Aviación (SAF); Aeronautica Civil de Colombia: Bogotá, Colombia, 2023; p. 13. [Google Scholar]
- IATA. La producción de SAF crece de forma lenta y desalentadora. In Comunicado No. 60; IATA, Ginebra: Le Grand-Saconnex, Switzerland, 2024; pp. 1–3. Available online: https://www.iata.org/contentassets/dc1cbdca37b847a6addc608c11df4590/2024-12-10-03-sp.pdf (accessed on 8 January 2025).
- ALTA. Índice de Competitividad del Transporte Aereo en América Latina y el Caribe; Asociación Latinoamericana y del Caribe de Transporte Aéreo, ALTA: Panamá City, Panama, 2023; p. 78. [Google Scholar]
- IATA. SAF Handbook; International Air Transport Association, IATA: Montreal, QC, Canada, 2024; Available online: https://www.iata.org (accessed on 7 January 2025).
- Ng, K.S.; Farooq, D.; Yang, A. Global Biorenewable Development Strategies for Sustainable Aviation Fuel Production. Renew. Sustain. Energy Rev. 2021, 150, 47. [Google Scholar] [CrossRef]
- Zahid, I.; Nazir, M.H.; Chiang, K.; Christo, F.; Ameen, M. ScienceDirect Current outlook on sustainable feedstocks and processes for sustainable aviation fuel production. Curr. Opin. Green Sustain. Chem. 2024, 49, 100959. [Google Scholar] [CrossRef]
- Eyberg, V.; Dieterich, V.; Bastek, S.; Dossow, M.; Spliethoff, H.; Fendt, S. Techno-economic assessment and comparison of Fischer–Tropsch and Methanol-to-Jet processes to produce sustainable aviation fuel via. Energy Convers. Manag. 2024, 315, 118728. [Google Scholar] [CrossRef]
- IEA. ETP Clean Energy Technology Guide. Available online: https://www.iea.org/articles/etp-clean-energy-technology-guide (accessed on 10 September 2024).
- IATA. Energy and New Fuels Infrastructure-Net Zero Roadmap; International Air Transport Association, IATA: Montreal, QC, Canada, 2022; p. 14. Available online: https://www.iata.org (accessed on 7 January 2025).
- Oil Word. World Supply, Demand and Prices Forecasts for Oilseeds, Oils and Meals; Oil Word: Hamburg, Germany, 2024; Available online: https://www.oilworld.biz/ (accessed on 13 December 2024).
- Fedepalma. Statistical Yearbook 2024—The Oil Palm Agroindustry in Colombia and the World 2019–2023; Fedepalma: Bogotá, Colombia, 2025; Available online: https://publicaciones.fedepalma.org/index.php/anuario/issue/view/1698 (accessed on 11 December 2024).
- Garcia-Nunez, J.A.; Ramirez-Contreras, N.E.; Rodriguez, D.T.; Silva-Lora, E.; Frear, C.S.; Stockle, C.; Garcia-Perez, M. Evolution of palm oil mills into bio-refineries: Literature review on current and potential uses of residual biomass and effluents. Resour. Conserv. Recycl. 2016, 110, 99–114. [Google Scholar] [CrossRef]
- Ramírez-Contreras, N.E.; Munar-Flórez, D.A.; Albarracín-Arias, J.A.; Romero-Rincón, V.; Arias-Camayo, P.; Ardila-Badillo, C.; García-Núñez, J.A.; Cuellar-Sánchez, M. Aceite de palma colombiano: Huella de carbono y retos para una producción sostenible. Palmas 2024, 45, 20–39. [Google Scholar] [CrossRef]
- Munar-Florez, D.; Caro-Caro, C.I.; Ramirez-Contreras, N.E.; Garcia-Nuñez, J.A. Low-carbon economy for the agricultural sector of the Colombian Orinoquia: An opportunity for bioenergy production. Gestión Y Ambient. 2023, 25, 22. [Google Scholar] [CrossRef]
- Fedepalma. Anuario Estadístico 2023: Principales Cifras de la Agroindustria de la Palma de Aceite en Colombia y en el Mundo 2018–2022; Fedepalma: Bogota, Colombia, 2023. [Google Scholar]
- Ramirez-Contreras, N.E.; Munar-Florez, D.; Garcia-Nuñez, J.; Mosquera-Montoya, M.; Faaij, A.P.C. The GHG emissions and economic performance of the Colombian palm oil sector; current status and long-term perspectives. J. Clean. Prod. 2020, 258, 1–19. [Google Scholar] [CrossRef]
- Cuellar, M. Tecnologías y Potencial de Generación de Biogás en el Sector Palmero Colombiano; Fedepalma: Bogota, Colombia, 2023. [Google Scholar]
- Gobierno de Colombia. Actualización de la Contribución Determinada a Nivel Nacional de Colombia (NDC); Gobierno de Colombia: Bogotá, Colombia, 2020; p. 112. Available online: https://www4.unfccc.int/sites/ndcstaging/PublishedDocuments/Colombia First/NDC actualizada de Colombia.pdf (accessed on 14 March 2025).
- FAO. AQUASTAT Perfil de País-Colombia; FAO—Food and Agriculture Organization of the United Nations: Roma, Italy, 2015; p. 21. Available online: https://openknowledge.fao.org/server/api/core/bitstreams/e3e402b7-5fdf-44e4-bf3d-28e305fe81bc/content (accessed on 5 September 2024).
- Ministerio de Agricultura y Desarrollo Rural. Resolución 261 de 2018, por Medio de la Cual se Define la Frontera Agrícola Nacional; Ministerio de Agricultura y Desarrollo Rural: Bogotá, Colombia, 2018; p. 152. Available online: https://www.minagricultura.gov.co/Normatividad/Resoluciones/Resolución No 000261 de 2018.pdf (accessed on 5 September 2024).
- Fedepalma. La palma de aceite en Colombia, cifras a 2024. In Infografia; Fedepalma: Bogotá, Colombia, 2025; p. 1. Available online: https://fedepalma.org/wp-content/uploads/2025/08/infografia_colombia_2024_1_fede.pdf (accessed on 3 April 2025).
- ICAO. CORSIA Eligible Fuels-Life Cycle Assessment Methodology; ICAO: Montreal, QC, Canada, 2024; p. 223. Available online: https://www2023.icao.int/environmental-protection/CORSIA/Documents/CORSIA_Eligible_Fuels/CORSIA_Supporting_Document_CORSIA%20Eligible%20Fuels_LCA_Methodology_V6.pdf (accessed on 14 July 2025).
- HEFA Production and Feedstock Selection, 2019. Available online: https://cbsci.ca/wp-content/uploads/CBSCI-HEFA-Production-and-Freedstock-Selection-single-page.pdf (accessed on 14 January 2025).
- Wang, B.; Ting, Z.J.; Zhao, M. Sustainable aviation fuels: Key opportunities and challenges in lowering carbon emissions for aviation industry. Carbon Capture Sci. Technol. 2024, 13, 100263. [Google Scholar] [CrossRef]
- Schomakers, E.-M.; Engelmann, L.; Ziefle, M. Diversity in the acceptance of sustainable aviation fuels: Uncovering varying motivational patterns. Fuel Commun. 2024, 20, 100129. [Google Scholar] [CrossRef]
- Furumo, P.R.; Aide, T.M. Characterizing commercial oil palm expansion in Latin America: Land use change and trade. Environ. Res. Lett. 2017, 12, 024008. [Google Scholar] [CrossRef]
- Zabala, S. Monitoreo Nacional de Deforestación en Colombia Asociada a Palma de Aceite a Partir de Sensores Remotos, Netherlands, 2023. Available online: https://satelligence.com/ (accessed on 4 August 2024).
- Rincón-Romero, V.; Molina-Villarreal, A.; Zabala-Quimbayo, A.; Barrera-Agudelo, O.R.; Torres-Leon, J.L. The oil palm cadastre in Colombia. Agron. Colomb. 2022, 40, 86–97. [Google Scholar] [CrossRef]
- IPCC. 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories; Calvo Buendia, E., Tanabe, K., Kranjc, A., Baasansuren, J., Fukuda, M., Ngarize, S., Osako, A., Pyrozhenko, Y., Shermanau, P., Federici, S., Eds.; IPCC: Geneva, Switzerland, 2019; ISBN 978-4-88788-232-4. [Google Scholar]
- IPCC. Chapter 4: Biological treatment of solid waste. In 2006 IPCC Guidelines for National Greenhouse Gas Inventories; IPCC: Geneva, Switzerland, 2006; pp. 1–8. [Google Scholar]
- IEA. Outlook for Biogas and Biomethane: A Global Geospatial Assessment; IEA: Paris, France, 2020. [Google Scholar] [CrossRef]
- Reinelt, T.; McCabe, B.K.; Hill, A.; Harris, P.; Baillie, C.; Liebetrau, J. Field measurements of fugitive methane emissions from three Australian waste management and biogas facilities. Waste Manag. 2022, 137, 294–303. [Google Scholar] [CrossRef] [PubMed]
- ICAO. CORSIA default Life Cycle Emissions Values for CORSIA Eligible Fuels. In Annex 16—Environmental Protection, Volume IV; ICAO: Montreal, QC, Canada, 2024; Volume 12. [Google Scholar] [CrossRef]
- IDEAM. Deforestación Asociada a Palma de Aceite Africana y Palma de Aceite Hibrida. 2021; IDEAM, Instituto de Hidrología, Meteorología y Estudios Ambientales: Bogota, Colombia, 2024; p. 27. [Google Scholar]
- Green Hydrogen Organization. Averting the Climate Crisis-the Role of Green Hydrogen and What Needs to be Done; Launching the Green Hydrogen Organization: Geneva, Switzerland, 2021; Available online: https://gh2.org/blog/mirage-blue-hydrogen-fading (accessed on 14 July 2025).
- MinEnergía. Hoja de Ruta Del Hidrógeno en Colombia; Ministerio de Minas y Energía de Colombia: Bogotá, Colombia, 2021. Available online: https://www.minenergia.gov.co/es/micrositios/enlace-ruta-hidrogeno/ (accessed on 5 September 2024).
- Gómez, M.L.; Posada, J.; Silva, V.; Martínez, L.; Mayorga, A.; Alvarez, O. Diagnosis of Challenges and Uncertainties for Implementation of Sustainable Aviation Fuel (SAF) in Colombia, and Recommendations to Move Forward. Energies 2023, 16, 5667. [Google Scholar] [CrossRef]
- ICAO. Benefits for CORSIA Participation. Available online: https://www.icao.int/environmental-protection/CORSIA/Pages/CORSIA-FAQs.aspx (accessed on 15 November 2024).
- IEA. Aviation. Available online: https://www.iea.org/energy-system/transport/aviation (accessed on 14 November 2024).
- European Commission. ReFuelEU Aviation, Mobility and Transport. Available online: https://transport.ec.europa.eu/transport-modes/air/environment/refueleu-aviation_en (accessed on 25 January 2025).
- U.S. Department of Energy; U.S. Department of Agriculture; U.S. Department of Transportation; U.S. Environmental Protection Agency. SAF Grand Challenge Roadmap (Flight Plan for Sustainable Aviation Fuel). 2022. Available online: https://www.energy.gov/sites/default/files/2022-09/beto-saf-gc-roadmap-report-sept-2022.pdf (accessed on 4 September 2024).
- ICF. Charting the Path: SAF Ecosystem in Japan; ICF: London, UK, 2023; p. 164. [Google Scholar]
- Lican, L. China Pilots ‘Sustainable Aviation Fuel,’ Dialogue Earth. Available online: https://dialogue.earth/en/digest/china-pilots-sustainable-aviation-fuel/#:~:text=China has launched a sustainable,considered more sustainable than kerosene (accessed on 30 August 2025).
- U.S. Department of the Treasury. U.S. Department of the Treasury Releases Guidance on Clean Fuels Production Credit; Press Releases; U.S. Department of the Treasury: Washington, DC, USA, 2025. Available online: https://home.treasury.gov/news/press-releases/jy2780 (accessed on 30 August 2025).
- European Parliament. Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009; European Parliament: Strasbourg, France, 2009; Volume 140, pp. 16–62. [Google Scholar] [CrossRef]
- European Parliament. Directive (EU) 2018/2001 of the European Parliament and of the Council on the promotion of the use of energy from renewable sources. Off. J. Eur. Union 2018, L 328, 82–209. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32018L2001&from=EN (accessed on 4 August 2024).
- European Union. Commission Delegated Regulation (EU) 2019/807 of 13 March 2019; European Commision: Brussels, Belgium, 2019; pp. 1–7. Available online: https://eur-lex.europa.eu/legal-content/ES/TXT/?uri=uriserv:OJ.L_.2019.133.01.0001.01.SPA (accessed on 4 August 2024).
- European Parliament. Directive (EU) 2023/2413 of the European Parliament and of the council of 18 October 2023. Off. J. Eur. Union 2023, 2413, 1–77. Available online: https://eur-lex.europa.eu/eli/dir/2023/2413/oj/eng (accessed on 12 August 2024).
- GREMCA. Gremca Recibió Certificado ISCC Corsia, Siendo la Primera Empresa Productora de Palma de Aceite en el Mundo en Alcanzar Este Logro, Noticias. Available online: https://gremca.com.co/gremca_recibio_certificado_iscc_corsia/ (accessed on 26 August 2025).
- Alianza del Humea. Certificación ISSC Corsia, Web Page. Available online: https://www.alhumea.com/nosotros/ (accessed on 26 August 2025).
- Palacio, C.J. Gremca, Primera Palmicultora en el Mundo en Certificar Sus Productos Como Libres de Deforestación, Agronegocios. Available online: https://www.agronegocios.co/agricultura/gremca-primera-palmicultora-en-el-mundo-en-certificar-sus-productos-como-libres-de-deforestacion-4214127 (accessed on 2 September 2025).
- Vergara, H. Certificación Mundial Para Utilizar Aceite Crudo de Palma en SAF; Fair News Colombia: Santa Marta, Colombia, 2025; pp. 10–11. Available online: https://www.daabon.com/documents/FAIR NEWS 2025.pdf (accessed on 5 September 2024).
- Ramírez-Contreras, N.E.; Munar-Florez, D.; Hilst, F.V.D.; Espinosa, J.C.; Ocampo-Duran, Á.; Ruíz-Delgado, J.; Molina-López, D.L.; Wicke, B.; Garcia-Nunez, J.A.; Faaij, A.P. GHG balance of agricultural intensification & bioenergy production in the Orinoquia region, Colombia. Land 2021, 10, 1–30. [Google Scholar] [CrossRef]
- Ramirez-Contreras, N.E.; Fontanilla-Díaz, C.A.; Pardo, L.E.; Delgado, T.; Munar-Florez, D.; Wicke, B.; Ruíz-Delgado, J.; van der Hilst, F.; Garcia-Nuñez, J.A.; Mosquera-Montoya, M.; et al. Integral analysis of environmental and economic performance of combined agricultural intensification & bioenergy production in the Orinoquia region. J. Environ. Manag. 2022, 303, 114137. [Google Scholar] [CrossRef] [PubMed]
- Aerocovil, Cielos Limpios. Economia y Aviación Para la Vida: Hoja de Ruta de Los Combustibles Sostenibles de Aviación en Colombia; Aeronautica Civil de Colombia: Bogotá, Colombia, 2024; p. 56. [Google Scholar]
- IATA. Sustainable Aviation Fuels. Fact Sheet 5, no. December; International Air Transport Association, IATA: Montreal, QC, Canada, 2018; p. 3. Available online: https://www.iata.org (accessed on 14 July 2025).
- UPRA. Metodología para la Identificación General de la Frontera Agrícola en Colombia; UPRA: Bogotá, Colombia, 2018. Available online: https://upra.gov.co (accessed on 2 August 2024).
Raw Materials | Technological Routes | TRL Level | Products |
---|---|---|---|
Vegetable Oils, Residual Fats: POME Oil, UCO, Animal Fats and Residues, FFA | Hydrotreating of esters and fatty acids (HEFA), also called Hydrotreated Vegetable Oil (HVO) | 9−10 | HVO: Renewable Diesel, BioJet |
Cane sugar, beet sugar, and liquors | Light Paraffinic Hydrocarbons | 7 | Synthetic isoparaffins (sugars to hydrocarbons) |
Alcohols (Methanol, Ethanol, Butanol) | Alcohol−to−Jet | 6 | Green Diesel, BioJet, Bionafts |
Vegetable biomass, cellulosic waste, lignocellulosic waste | Gasification and Fischer-Tropsch | 6 | Green Diesel, BioJet, Bionafts |
Biomass | Pyrolysis | 5 | Green Diesel, BioJet, Bionafts |
Sunlight, CO2 | Microalgae → Hydrotreating | 4 | Green Diesel, BioJet, Bionaphthas |
Land Cover | Central Zone | North Zone | Eastern Zone | |||
---|---|---|---|---|---|---|
Area 2007 (ha) | % LUC | Area 2007 (ha) | % LUC | Area 2007 (ha) | % LUC | |
Oil Palm | 113,175.75 | 57.4 | 77,714.10 | 66.2 | 127,929.01 | 47.4 |
Pastures | 39,992.63 | 20.3 | 16,247.88 | 13.8 | 53,495.21 | 19.8 |
Fragmented forest | 24,594.00 | 12.5 | 4984.20 | 4.2 | 13,049.43 | 4.8 |
Herbaceous vegetation | 13,969.44 | 7.1 | 11,610.99 | 9.9 | 67,172.26 | 24.9 |
Other areas without vegetation | 2378.69 | 1.2 | 6426.72 | 5.5% | 7656.04 | 2.8 |
Wet areas | 1174.69 | 0.6 | N/A | N/A | 251.86 | 0.1 |
No data | 1752.69 | 0.9 | 351.90 | 0.3% | 546.14 | 0.2 |
Area under oil palm plantation in 2020 (ha) | 197,037.88 | 117,335.79 | 270,099.94 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Munar-Flórez, D.A.; Ramírez-Contreras, N.E.; Albarracín-Arias, J.A.; Arias-Camayo, P.; Rincón-Romero, V.; García-Núñez, J.A.; Ardila-Badillo, C.; Cuéllar-Sánchez, M. Decarbonizing Aviation: The Low-Carbon Footprint and Strategic Potential of Colombian Palm Oil for Sustainable Aviation Fuel. Energies 2025, 18, 4978. https://doi.org/10.3390/en18184978
Munar-Flórez DA, Ramírez-Contreras NE, Albarracín-Arias JA, Arias-Camayo P, Rincón-Romero V, García-Núñez JA, Ardila-Badillo C, Cuéllar-Sánchez M. Decarbonizing Aviation: The Low-Carbon Footprint and Strategic Potential of Colombian Palm Oil for Sustainable Aviation Fuel. Energies. 2025; 18(18):4978. https://doi.org/10.3390/en18184978
Chicago/Turabian StyleMunar-Flórez, David Arturo, Nidia Elizabeth Ramírez-Contreras, Jorge Alberto Albarracín-Arias, Phanor Arias-Camayo, Víctor Rincón-Romero, Jesús Alberto García-Núñez, Camilo Ardila-Badillo, and Mónica Cuéllar-Sánchez. 2025. "Decarbonizing Aviation: The Low-Carbon Footprint and Strategic Potential of Colombian Palm Oil for Sustainable Aviation Fuel" Energies 18, no. 18: 4978. https://doi.org/10.3390/en18184978
APA StyleMunar-Flórez, D. A., Ramírez-Contreras, N. E., Albarracín-Arias, J. A., Arias-Camayo, P., Rincón-Romero, V., García-Núñez, J. A., Ardila-Badillo, C., & Cuéllar-Sánchez, M. (2025). Decarbonizing Aviation: The Low-Carbon Footprint and Strategic Potential of Colombian Palm Oil for Sustainable Aviation Fuel. Energies, 18(18), 4978. https://doi.org/10.3390/en18184978