Wind Turbine Electric Signals Simulator
Abstract
1. Introduction
2. Wind Turbine Electric Simulator Design
- TUGEN for turbine electrical generator signals and the three-phase controlled bridge rectifier. This module generates continuous voltage on output DC-LINK;
- DCDC4x—this module is powered by the DC-LINK bus and will output a fixed voltage to power the sinusoidal inverter;
- SIN3F—this module implements the three-phase sinusoidal inverter.
2.1. TUGEN Simulation Module Design
2.2. DCDC4X Simulation Module Design
2.3. SIN3F Simulation Module Design
3. Experimental Results of the Simulator
3.1. Simulated Generator Measurements
3.2. Simulated Bridge Rectifier Measurements
3.3. Simulated Voltage Stabilizer Measurements
3.4. Simulated Three-Phase Sinusoidal Inverter Measurements
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Serban, I.; Marinescu, C. Control strategy of three-phase battery energy storage systems for frequency support in microgrids and with uninterrupted supply of local loads. IEEE Trans. Power Electron. 2013, 29, 5010–5020. [Google Scholar] [CrossRef]
- Vlad, C.; Bratcu, A.I.; Munteanu, I.; Epure, S. Real-time replication of a stand-alone wind energy conversion system: Error analysis. Int. J. Electr. Power Energy Syst. 2014, 55, 562–571. [Google Scholar] [CrossRef]
- Vlad, C.; Munteanu, I.; Bratcu, A.I.; Ceanga, E. Anticipative Control of Low-Power Wind Energy Conversion Systems for Optimal Power Regime. Control Eng. Appl. Inform. 2009, 11, 26–35. [Google Scholar]
- Vlad, C.; Burlibasa, A.; Paduraru, R.; Epure, S.; Dache, C.; Lungu, C.V.; Georgescu, L.P.; Murariu, G. Wind turbine emulation using permanent magnet synchronous generator. In Proceedings of the 2018 22nd International Conference on System Theory, Control and Computing (ICSTCC), Sinaia, Romania, 10–12 October 2018; pp. 46–52, ISSN: 2372-1618. [Google Scholar]
- Barote, L.; Marinescu, C.; Georgescu, M. VRB modeling for storage in stand-alone wind energy systems. In Proceedings of the 2009 IEEE Bucharest PowerTech, Bucharest, Romania, 28 June 2009. [Google Scholar] [CrossRef]
- Hussain, J.; Mishra, M.K. Design and development of real-time small-scale wind turbine simulator. In Proceedings of the 2014 IEEE 6th India International Conference on Power Electronics (IICPE), Kurukshetra, India, 8–10 December 2014. [Google Scholar] [CrossRef]
- Enercon E-82. Available online: https://en.wind-turbine-models.com/turbines/5-enercon-e-82 (accessed on 2 April 2025).
- ESP32-WROOM-32. Available online: https://www.espressif.com/sites/default/files/documentation/esp32-wroom-32_datasheet_en.pdf (accessed on 4 March 2025).
- ENERCON E-82. Technical Description. Available online: https://archives.bape.gouv.qc.ca/sections/mandats/eole-mrc-erable/documents/PR1_ann-1.pdf (accessed on 2 April 2025).
- Rajendran, S.; Diaz, M.; Devi, V.S.K.; Jena, D.; Travieso, J.C.; Rodriguez, J. Wind Turbine Emulators—A Review. Processes 2023, 11, 747. [Google Scholar] [CrossRef]
- IEEE Std 1110™-2019; IEEE Guide for Synchronous Generator Modeling Practices and Parameter Verification with Applications in Power System Stability Analyses. IEEE Power and Energy Society: Piscataway, NJ, USA, 2019.
- Peqquena Suni, J.C.; Filho, E.R.; Fajoni, F. A guide for synchronous generator parameters determination using dynamic simulations based on IEEE standards. In Proceedings of the XIX International Conference on Electrical Machines (ICEM), Rome, Italy, 6–8 September 2010. [Google Scholar] [CrossRef]
- Schmitz, L.; Martins, D.C.; Coelho, R.F. Conception of high step-up DC-DC boost-based converters. In Proceedings of the 2017 Brazilian Power Electronics Conference (COBEP), Juiz de Fora, Brazil, 19–22 November 2017. Electronic ISBN:978-1-5090-6248-5. [Google Scholar] [CrossRef]
- Romaneli, E.F.R.; Barbi, I. A new DC-DC converter with low current ripple characteristics, in INTELEC. In Proceedings of the Twenty-Second International Telecommunications Energy Conference, Phoenix, AZ, USA, 10–14 September 2000; pp. 560–566. [Google Scholar]
- Guo, Y.; Biswas, S.; Wang, L. Bilinear Control of DC-DC Boost Converter in the Presence of Gaussian Disturbance of Load. In Proceedings of the 2019 IEEE 28th International Symposium on Industrial Electronics (ISIE), Vancouver, BC, Canada, 12–14 June 2019. Electronic ISBN 978-1-7281-3666-0. [Google Scholar] [CrossRef]
- Hassan, M.A.; Su, C.-L.; Chen, F.-Z.; Lo, K.-Y. Adaptive Passivity-Based Control of DC-DC Boost Power Converter Supplying Constant Power and Constant Voltage Loads. IEEE Trans. Ind. Electron. 2021, 69, 6204–6214. [Google Scholar] [CrossRef]
- Xi, F. Design of DC-DC Converters, IEEE SSCS Dallas Chapter, October 2007, Monolithic Power Systems Inc. Available online: https://ewh.ieee.org/r5/dallas/sscs/slides/DCDC_Design_Slides_Ver2.pdf (accessed on 25 June 2025).
- Taniguchi, K.; Kaku, S.; Irie, H. A Three-Phase Sinusoidal PWM Inverter. In Proceedings of the 1985 Annual Meeting Industry Applications Society, Toronto, ON, Canada, 6–11 October 1985. Print ISBN:978-1-5090-3190-0. [Google Scholar]
- Mahbub, M.; Hossain, M.A. Design, Simulation and Comparison of Three-phase Symmetrical Hybrid Sinusoidal PWM fed Inverter with Different PWM Techniques. In Proceedings of the 2021 2nd International Conference on Robotics, Electrical and Signal Processing Techniques (ICREST), Dhaka, Bangladesh, 5–7 January 2021. [Google Scholar] [CrossRef]
- Mehrnami, S.; Mazumder, S.K.; Soni, H. Modulation Scheme for Three-Phase Differential-Mode Ćuk Inverter, IEEE Transactions on Power Electronics. Available online: https://mazumder.lab.uic.edu/wp-content/uploads/sites/504/2021/03/TPEL2442157.pdf (accessed on 25 June 2025).
- Prasun, M.; Ramkrishan, M. Design, analysis, and impacts of sinusoidal LC filter on pulse-width modulated inverter fed induction motor drive. IEEE Trans. Ind. Electron. 2019, 67, 2678–2688. [Google Scholar] [CrossRef]
- Kumar, P.V.; Singh, S. Design of Sinusoidal Pulse Width Modulation 3 Phase Bridge Inverter. Int. Res. J. Eng. Technol. (IRJET) 2020, 7, 4935–4938, e-ISSN 2395-0056. [Google Scholar]
- Oriti, G. Common Mode EMI Analysis and Mitigation Methods in Three-Phase Inverters, Naval Postgraduate School. Available online: https://r6.ieee.org/scv-pels/wp-content/uploads/sites/108/dec2022_Oriti.pdf (accessed on 25 June 2025).
Case | CH4 Wind Speed (n) [V] | Reported Wind Speed (n) [%] | CH1 Maximum Output Voltage Amplitude [V] | CH1 Output Voltage RMS [V] | CH1 Output Signal Period [ms] | CH1 Output Signal Frequency [Hz] |
---|---|---|---|---|---|---|
(a) | 1.0 | 33.33 | 5.20 | 3.86 | 53.92 | 18.55 |
1.5 | 50.00 | 6.58 | 5.49 | 34.66 | 28.85 | |
2.0 | 66.67 | 7.37 | 5.12 | 25.44 | 39.31 | |
2.5 | 83.33 | 7.79 | 5.74 | 20.09 | 49.78 | |
(b) | 3.0 | 100.0 | 8.02 | 5.63 | 19.89 | 50.28 |
Case | CH4 Wind Speed (n) [V] | CH2-CH1 Time Delay [ms] | CH3-CH1 Time Delay [ms] | CH1 Period [ms] | CH2-CH1 Phase Delay [rad] | CH3-CH1 Phase Delay [rad] |
---|---|---|---|---|---|---|
(a) | 1.0 | 18.00 | 36.00 | 53.92 | 0.333828 | 0.667656 |
1.5 | 11.50 | 23.00 | 34.66 | 0.331795 | 0.663589 | |
2.0 | 8.50 | 17.00 | 25.44 | 0.334119 | 0.668239 | |
2.5 | 6.70 | 13.50 | 20.09 | 0.333499 | 0.671976 | |
(b) | 3.0 | 6.60 | 13.30 | 19.89 | 0.331825 | 0.668678 |
120° | 240° |
Case | CH4 Wind Speed (n) [V] | CH2 Maximum Output Voltage Amplitude [V] | CH2 Rectified Output Voltage [V] | CH2 Output Signal Period [ms] | CH2 Output Signal Frequency [Hz] |
---|---|---|---|---|---|
(a) | 1.00 | 4.32 | 4.14 | 10.63 | 94.04 |
1.50 | 5.04 | 4.85 | 5.78 | 173.16 | |
2.00 | 5.80 | 5.62 | 4.23 | 236.31 | |
2.50 | 6.60 | 6.31 | 3.33 | 299.85 | |
(b) | 3.00 | 6.56 | 6.24 | 3.32 | 301.20 |
Case | CH4/Wind Speed (n) [V] | CH2/Filtered DC-LINK (UC-DC) [V] |
---|---|---|
(a) | 1.00 | 4.34 |
1.50 | 4.86 | |
2.00 | 5.41 | |
2.50 | 6.30 | |
(b) | 3.00 | 6.30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sintea, S.; Panait, C.; Hnatiuc, B.; Tirpan, M.; Pomazan, C.; Hnatiuc, M. Wind Turbine Electric Signals Simulator. Energies 2025, 18, 4951. https://doi.org/10.3390/en18184951
Sintea S, Panait C, Hnatiuc B, Tirpan M, Pomazan C, Hnatiuc M. Wind Turbine Electric Signals Simulator. Energies. 2025; 18(18):4951. https://doi.org/10.3390/en18184951
Chicago/Turabian StyleSintea, Sorin, Cornel Panait, Bogdan Hnatiuc, Marian Tirpan, Catalin Pomazan, and Mihaela Hnatiuc. 2025. "Wind Turbine Electric Signals Simulator" Energies 18, no. 18: 4951. https://doi.org/10.3390/en18184951
APA StyleSintea, S., Panait, C., Hnatiuc, B., Tirpan, M., Pomazan, C., & Hnatiuc, M. (2025). Wind Turbine Electric Signals Simulator. Energies, 18(18), 4951. https://doi.org/10.3390/en18184951