Future Perspectives for Physics-Based Urban Building Energy Modelling Tools
Abstract
1. Introduction
1.1. Background
1.2. Review Methodology
1.3. Previous Reviews
N. | Authors | Year | Scope | Approach | Tools |
---|---|---|---|---|---|
[28] | Happle et al. | 2018 | Occupant behaviour | B-U | 12 |
[29] | Abbasabadi & Ashayeri | 2019 | Modelling methods, tools and techniques | B-U/T-D | 13 |
[14] | Ferrando & Causone | 2019 | Appropriate UBEM tool selection | B-U/T-D | 6 |
[5] | Yang & Jiang | 2019 | Sustainable Neighbourhood rating tools | - | 8 |
[21] | Ang et al. | 2020 | Examples and case studies | - | 12 |
[17] | Bukovzki et al. | 2020 | UBEM as a trigger for energy communities | B-U/T-D | - |
[25] | Ferrando et al. | 2020 | Differences between tools | B-U | 8 |
[22] | Hong et al. | 2020 | 10 questions about UBEMs | B-U | 18 |
[23] | Johari et al. | 2020 | Integration with other models | B-U | 9 |
[32] | Ali et al. | 2021 | SWOT analysis of UBEMs | B-U/T-D | 15 |
[4] | Doma & Ouf | 2022 | Occupant behaviour models and tools | B-U | 6 |
[26] | Kamel, Ehsan | 2022 | Tools, data sources and challenges | B-U | - |
[19] | Malhotra et al. | 2022 | Taxonomic review | B-U | 6 |
[27] | Kong et al. | 2023 | Development and calibration | B-U/T-D | 10 |
[30] | Pan et al. | 2023 | Future perspectives and challenges | B-U | - |
[2] | Yakut & Esen | 2023 | Model creation process | B-U | 20 |
[31] | Manfren et al. | 2024 | Data-driven methods | B-U | - |
[24] | Russo et al. | 2025 | Modelling of interconnected energy systems | B-U | 157 |
[6] | Yu et al. | 2025 | Integration with Urban Climate Model | B-U | 6 |
1.4. Aim of the Study
1.5. Outline of the Document
2. Urban Building Energy Models
2.1. Data Collection and Preprocessing
2.2. Bottom-Up Methods
2.2.1. Statistical Methods
2.2.2. Physics-Based Methods
2.3. Software Modelling Tools
2.4. UBEM Applications
3. Research Limitations and Gaps
4. Future Development Opportunities
4.1. Urban Digital Twins
4.2. Energy Communities
4.3. Positive Energy Districts
5. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BEM | Building Energy Models |
CEA | City Energy Analyst |
CoBAM | Commercial Building Agent-based Model |
ERT | Energy Related Topics |
DT | Digital Twins |
EC | Energy Communities |
GCPVS | Grid-Connected PV Systems |
HVAC | Heat and Ventilation Air Conditioners |
IoT | Internet of Things |
ML | Machine Learning |
MCDA | Multi-Criteria Decision Analysis |
OB | Occupancy Behaviour |
PED | Positive Energy Districts |
TEASER | Tool for Energy Analysis and Simulation for Efficient Retrofit |
UBEM | Urban Building Energy Models |
UMI | Urban Modelling Interface |
References
- Rentschler, J.; Avner, P.; Marconcini, M.; Su, R.; Strano, E.; Vousdoukas, M.; Hallegatte, S. Global evidence of rapid urban growth in flood zones since 1985. Nature 2023, 622, 87–92. [Google Scholar] [CrossRef] [PubMed]
- Yakut, M.Z.; Esen, S. A comprehensive survey of the urban building energy modeling (UBEM) process and approaches. Int. J. Energy Stud. 2023, 8, 87–116. [Google Scholar] [CrossRef]
- Speidel, S.; Bräunl, T. Leaving the grid—The effect of combining home energy storage with renewable energy generation. Renew. Sustain. Energy Rev. 2016, 60, 1213–1224. [Google Scholar] [CrossRef]
- Doma, A.; Ouf, M. Modelling occupant behaviour for urban scale simulation: Review of available approaches and tools. Build. Simul. 2022, 16, 169–184. [Google Scholar] [CrossRef]
- Yang, F.; Jiang, Z. Urban building energy modelling and urban design for sustainable neighbourhood development—A China perspective. IOP Conf. Ser. Earth Environ. Sci. 2019, 329, 012016. [Google Scholar] [CrossRef]
- Yu, Q.; Ketzler, G.; Mills, G.; Leuchner, M. Exploring the integration of urban climate models and urban building energy models through shared databases: A review. Theor. Appl. Clim. 2025, 156, 266. [Google Scholar] [CrossRef]
- Kharrazi, A.; Sreeram, V.; Mishra, Y. Assessment techniques of the impact of grid-tied rooftop photovoltaic generation on the power quality of low voltage distribution network—A review. Renew. Sustain. Energy Rev. 2020, 120, 109643. [Google Scholar] [CrossRef]
- Laveine, J.I.; Bozalakov, D.; Eetvelde, G.V.; Vandevelde, L. Impact of Solar Panel Orientation on the Integration of Solar Energy in Low-Voltage Distribution Grids. Int. J. Photoenergy 2020, 2020, 2412780. [Google Scholar] [CrossRef]
- Alboaouh, K.A.; Mohaghegh, S. Impact of Rooftop Photovoltaics on the Distribution System. J. Renew. Energy 2020, 2020, 4831434. [Google Scholar] [CrossRef]
- Obi, M.; Bass, R. Trends and challenges of grid-connected photovoltaic systems—A review. Renew. Sustain. Energy Rev. 2016, 58, 1082–1094. [Google Scholar] [CrossRef]
- Tavakoli, A.; Saha, S.; Arif, M.T.; Haque, M.E.; Mendis, N.; Oo, A.M.T. Impacts of grid integration of solar PV and electric vehicle on grid stability, power quality and energy economics: A review. IET Energy Syst. Integr. 2019, 243–260. [Google Scholar] [CrossRef]
- Brinkel, N.B.G.; Gerritsma, M.K.; AlSkaif, T.A.; Lampropoulos, I.; van Voorden, A.M.; Fidder, H.A.; Van Sark, W.G.J.H.M. Impact of rapid PV fluctuations on power quality in the low voltage grid and mitigation strategies using electric vehicles. Electr. Power Energy Syst. 2020, 118, 105741. [Google Scholar] [CrossRef]
- Oliveira e Silva, G.; Hendrick, P. Photovoltaic self-sufficiency of Belgian households using lithium-ion batteries, and its impact on the grid. Appl. Energy 2017, 195, 786–799. [Google Scholar] [CrossRef]
- Ferrando, M.; Causone, F. An overview of urban building energy modelling (UBEM) tools. In Proceedings of the 16th IBPSA Conference, Rome, Italy, 2–4 September 2019; pp. 3452–3459. [Google Scholar] [CrossRef]
- Sola, A.; Corchero, C.; Salom, J.; Sanmarti, M. Multi-domain urban-scale energy modelling tools: A review. Sustain. Cities Soc. 2020, 54, 101872. [Google Scholar] [CrossRef]
- Kang, X.; Chen, H.; Zhenlan Dou, Z.; Wang, X.; Liu, Z.; Zhang, C.; Jia, K.; Yan, D. A district-level building electricity use profile simulation model based on probability distribution inferences. Sustain. City Soc. 2024, 115, 105822. [Google Scholar] [CrossRef]
- Bukovszki, V.; Magyari, A.; Braun, M.K.; Kitti Párdi Reith, A. Energy Modelling as a Trigger for Energy Communities: A Joint Socio-Technical Perspective. Energies 2020, 13, 2274. [Google Scholar] [CrossRef]
- Oraiopoulos, A.; Howard, B. On the accuracy of Urban Building Energy Modelling. Renew. Sustain. Energy Rev. 2022, 158, 111976. [Google Scholar] [CrossRef]
- Malhotra, A.; Bischof, J.; Nichersu, A.; Hafele, K.H.; Exenberger, J.; Sood, D.; Allan, J.; Frisch, J.; Treeck, C.V.; O’Donnel, J.; et al. Information modelling for urban building energy simulation—A taxonomic review. Build. Environ. 2022, 208, 108552. [Google Scholar] [CrossRef]
- Reinhart, C.F.; Cerezo Davila, C. Urban Building Energy Models—A review of a nacient field. Build. Environ. 2016, 97, 196–202. [Google Scholar] [CrossRef]
- Ang, Y.Q.; Berzolla, Z.M.; Reinhart, C.F. From concept to application: A review of use cases in urban building energy modeling. Appl. Energy 2020, 279, 115738. [Google Scholar] [CrossRef]
- Hong, T.; Chen, Y.; Lou, X.; Lou, N.; Lee, S.H. Ten questions on urban building energy modeling. Build. Environ. 2020, 168, 106508. [Google Scholar] [CrossRef]
- Johari, F.; Peronato, G.; Sadeghian, P.; Zhao, X.; Widen, J. Urban building energy modeling: State of the art and future prospects. Renew. Sustain. Energy Rev. 2020, 128, 109902. [Google Scholar] [CrossRef]
- Russo, G.; Pompei, L.; Giuzio, G.F.; Magni, G.U.; Groppi, D.; Cipolla, G.; Vecchi, F.; Stasi, R.; Semeraro, S.; Garcia, D.A.; et al. Modelling the complexity of interconnected energy systems at different urban scales: A critical review. Renew. Sustain. Energy Rev. 2025, 223, 116007. [Google Scholar] [CrossRef]
- Ferrando, M.; Causone, F.; Hong, T.; Chen, Y. Urban building energy modeling (UBEM) tools: A state-of-the-art review of bot-tom-up physics-based approaches. Sustain. Cities Soc. 2020, 62, 102408. [Google Scholar] [CrossRef]
- Kamel, E. A Systematic Literature Review of Physics-Based Urban Building Energy Modeling (UBEM) Tools, Data Sources, and Challenges for Energy Conservation. Energies 2022, 15, 8649. [Google Scholar] [CrossRef]
- Kong, D.; Cheshmehzangi, A.; Zhang, Z.; Ardakani, S.P.; Gu, T. Urban building energy modeling (UBEM): A systematic review of challenges and opportunities. Energy Effic. 2023, 16, 69. [Google Scholar] [CrossRef]
- Happle, G.; Fonseca, J.A.; Schlueter, A. A review on occupant behavior in urban building energy models. Energy Build. 2018, 174, 276–292. [Google Scholar] [CrossRef]
- Abbasabadi, N.; Ashayeri, J.K.M. Urban energy use modeling methods and tools: A review and an outlook. Build. Environ. 2019, 161, 106270. [Google Scholar] [CrossRef]
- Pan, Y.; Zhu, M.; Lv, Y.; Yang, Y.; Liang, Y.; Yin, R.; Yang, Y.; Jia, X.; Wang, X.; Zeng, F.; et al. Building energy simulation and its application for building performance optimization: A review of methods, tools, and case studies. Adv. Appl. Energy 2023, 10, 100135. [Google Scholar] [CrossRef]
- Manfren, M.; Gonzalez-Carreon, K.M.; James, P.A.B. Interpretable Data-Driven Methods for Building Energy Modelling—A Review of Critical Connections and Gaps. Energies 2024, 17, 881. [Google Scholar] [CrossRef]
- Ali, U.; Shamsi, M.H.; Hoare, C.; Mangina, E.; O’Donnell, J. Review of urban building energy modeling (UBEM) approaches, methods and tools using qualitative and quantitative analysis. Energy Build. 2021, 246, 111073. [Google Scholar] [CrossRef]
- Li, W.; Zhou, Y.; Cetin, K.; Eom, J.; Wang, Y.; Chen, G.; Zhang, X. Modeling urban building energy use: A review of modeling approaches and procedures. Energy 2017, 141, 2445–2457. [Google Scholar] [CrossRef]
- Dabirian, S.; Panchabikesan, K.; Eicker, U. Occupant-centric urban building energy modeling: Approaches, input, and data sources—A review. Energy Build. 2022, 257, 111809. [Google Scholar] [CrossRef]
- Wang, C.; Ferrando, M.; Causone, F.; Jin, X.; Zhou, X.; Shi, X. Data acquisition for urban building energy modeling: A review. Build. Environ. 2022, 217, 109056. [Google Scholar] [CrossRef]
- Dahlström, L.; Brostrom, T.; Widen, J. Advancing urban building energy modelling through new model components and appli-cations: A review. Energy Build. 2022, 266, 112099. [Google Scholar] [CrossRef]
- Lim, H.; Zhai, Z.J. Review on stochastic modeling methods for building stock energy prediction. Build. Simul. 2017, 10, 607–624. [Google Scholar] [CrossRef]
- Fuchs, M.; Teichmann, J.; Lauster, M.; Remmen, P.; Streblow, R.; Müller, D. Workflow—Automation for combined modelling of buildings and district energy systems. Energy 2016, 117, 478–484. [Google Scholar] [CrossRef]
- Molitor, C.; Gross, S.; Zeitz, J.; Monti, A. MESCOSA multienergy system cosimulator for city district energy systems. IEEE Trans. Ind. Inform. 2014, 10, 2247–2256. [Google Scholar] [CrossRef]
- Frayssinet, L.; Merlier, L.; Kuznik, F.; Hubert, J.L.; Milliez, M.; Roux, J.J. Modeling the heating and cooling energy demand of urban buildings at city scale. Renew. Sustain. Energy Rev. 2018, 81, 2318–2327. [Google Scholar] [CrossRef]
- Li, Y.; Feng, H. Integrating urban building energy modeling (UBEM) and urban-building environmental impact assessment (UB-EIA) for sustainable urban development: A comprehensive review. Renew. Sustain. Energy Rev. 2025, 213, 115471. [Google Scholar] [CrossRef]
- Odeh, K.; De Wilde, P. Exploring the Potential of Digital Twins at the District Scale: A Framework for Investigation. In Proceedings of the 18th IBPSA Conference, Shanghai, China, 4–6 September 2023; pp. 2452–2459. [Google Scholar] [CrossRef]
- Schweizer-Ries, P. Energy Sustainable Communities: Environmental psychological investigations. Energy Policy 2008, 36, 4126–4135. [Google Scholar] [CrossRef]
- Happle, G.; Fonseca, J.A.; Schlueter, A. Effects of air infiltration modeling approaches in urban building energy demand fore-casts. Energy Procedia 2017, 122, 283–288. [Google Scholar] [CrossRef]
- Ang, Y.Q.; Polly, A.; Kulkarni, A.; Chambi, G.B.; Hernandez, M.; Haji, N.H. Multi-objective optimization of hybrid renewable energy systems with urban building energy modeling for a prototypical coastal community. Renew. Energy 2022, 201 Pt 1, 72–84. [Google Scholar] [CrossRef]
- Van Der Schoor, T.; Scholtens, B. The power of friends and neighbors: A review of community energy research. Curr. Opin. Environ. Sustain. 2019, 39, 71–80. [Google Scholar] [CrossRef]
- Li, Y.; Wen, Z.; Cao, Y.; Tan, Y.; Sidorov, D.; Panasetsky, D. A combined forecasting approach with model self-adjustment for re-newable generations and energy loads in smart community. Energy 2017, 129, 216–227. [Google Scholar] [CrossRef]
- Fonseca, J.; Schlueter, A. Integrated model for characterization of spatiotemporal building energy consumption patterns in neighborhoods and city districts. Appl. Energy 2015, 142, 247–265. [Google Scholar] [CrossRef]
- Soeiro, S.; Dias, M.F. Community renewable energy: Benefits and drivers. Energy Rep. 2020, 6, 134–140. [Google Scholar] [CrossRef]
- McKenna, E.; Pless, J.; Darby, S. Solar photovolvoltaic self-consumption in the UK residential sector: New estimates from a smart grid demonstration project. Energy Policy 2018, 118, 482–491. [Google Scholar] [CrossRef]
- Anastasovski, A.; Andreucci, M.B.; Kádár, J.; Paoli, M.D. Energy Storage in Urban Areas: The Role of Energy Storage Facilities, a Review. Energies 2024, 17, 1117. [Google Scholar] [CrossRef]
- Shen, J.; Wand, X.; Alorabi, A.H.; Yoshida, T.; Murayama, A.; Yang, P.P. System-level Methodology for Optimizing Urban Infra-structure Energy Resilience. Energy Proc. 2025, 50, 1–6. [Google Scholar]
- Petkov, I.; Gabrielli, P.; Spokaite, M. The impact of urban district composition on storage technology reliance: Trade-offs between thermal storage, batteries, and power-to-hydrogen. Energy 2021, 224, 120102. [Google Scholar] [CrossRef]
- Bauwens, T. Analyzing the determinants of the size of investments by community renewable energy members: Findings and policy implications from Flanders. Energy Policy 2019, 129, 841–852. [Google Scholar] [CrossRef]
- Borràs, I.M.; Neves, D.; Gomes, R. Using urban building energy modeling data to assess energy communities’ potential. Energy Build. 2023, 282, 112791. [Google Scholar] [CrossRef]
- Simoiu, M.S.; Fagarasan, I.; Ploix, S.; Calofir, V. Sizing and Management of an Energy System for a Metropolitan Station with Storage and Related District Energy Community. Energies 2021, 14, 5997. [Google Scholar] [CrossRef]
- Neves, D.; Baptista, P.; Rosa, P. Solar Energy Communities: An open data and georeferenced based modelling framework to pre-assess deployment potential at urban level. Energy 2023, 282, 128838. [Google Scholar] [CrossRef]
- Brøgger, M.; Bacher, P.; Wittchen, K.B. A hybrid modelling method for improving estimates of the average energy-saving potential of a building stock. Energy Build. 2019, 199, 287–296. [Google Scholar] [CrossRef]
- Bueno, B.; Norford, L.; Pigeon, G.; Britter, R. A resistance-capacitance network model for the analysis of the interactions between the energy performance of buildings and the urban climate. Build. Env. 2012, 54, 116–125. [Google Scholar] [CrossRef]
- Sareen, S.; Albert-Seifried, V.; Aelenei, L.; Reda, F.; Etminan, G.; Andreucci, M.B.; Kuzmic, M.; Maas, N.; Seco, O.; Civiero, P.; et al. Ten questions concerning positive energy districts. Build. Env. 2022, 216, 109017. [Google Scholar] [CrossRef]
- Civiero, P.; Pascual, J.; Arcas Abella, J.; Salom, J. Innovative PEDRERA Model Tool Boosting Sustainable and Feasible Renovation Programs at District Scale in Spain. Sustainability 2022, 14, 9672. [Google Scholar] [CrossRef]
- Bossi, S.; Gollner, C.; Theierling, S. Towards 100 Positive Energy Districts in Europe: Preliminary Data Analysis of 61 European Cases. Energies 2020, 13, 6083. [Google Scholar] [CrossRef]
- Hosseinalizadeh, S.; Cellura, S.; Ilardi, L.; Di Pilla, L.; Cellura, M.; Longo, S.; Guarino, F. Towards a holistic definition for positive energy districts: A decision support system for the renovation of neighborhoods. Build. Environ. 2025, 285 Pt A, 113505. [Google Scholar] [CrossRef]
- Sassenou, L.N.; Olivieri, L.; Olivieri, F. Challenges for positive energy districts deployment: A systematic review. Renew. Sustain. Energy Rev. 2024, 191, 114152. [Google Scholar] [CrossRef]
- Sawalhi, R.E. Investigating the Possibility of Jakobsgårdarna District in Borlänge, Sweden Becoming a Positive Energy District (PED). Master’s Thesis, Dalarna University, Falun, Sweden, 2022. Available online: https://www.diva-portal.org/smash/get/diva2:1696887/FULLTEXT01.pdf (accessed on 11 March 2025).
- Andreucci, M.B. Linking future energy systems with heritage requalification in Smart Cities. In On-Going Research and Experimentation in the City of Trento (IT); Firenze University Press: Florence, Italy, 2018. [Google Scholar] [CrossRef]
- Maestosi, P.C.; Andreucci, M.B.; Civiero, P. Sustainable Urban Areas for 2030 in a Post-Covid-19 Scenario: Focus on Innovative Research and Funding Frameworks to Boost Transition towards 100 Positive Energy Districts and 100 Climate-Neutral Cities. Energies 2021, 14, 216. [Google Scholar] [CrossRef]
- Olivadese, R.; Alpagut, B.; Pineda Revilla, B.; Brouwer, J.; Georgiadou, V.; Woestenburg, A.; van Wees, M. Towards Energy Citizenship for a Just and Inclusive Transition: Lessons Learned on Collaborative Approach of Positive Energy Districts from the EU Horizon2020 Smart Cities and Communities Projects. Proceedings 2020, 65, 20. [Google Scholar] [CrossRef]
- Natanian, J.; Guarino, F.; Manapragada, N.; Magyari, A.; Naboni, E.; De Luca, F.; Cellura, S.; Brunetti, A.; Reith, A. Ten questions on tools and methods for positive energy districts. Build. Environ. 2024, 255, 111429. [Google Scholar] [CrossRef]
- Pless, S.; Polly, B. Communities of the Future: Accelerating Zero Energy District Master Planning Preprint. 2018. Available online: https://www.osti.gov/biblio/1470715 (accessed on 11 July 2024).
- Fichera, A.; Puchino, A.; Volpe, R. Local Production and Storage in Positive Energy Districts: The Energy Sharing Perspective. Front. Sustain. Cities 2021, 3, 690927. [Google Scholar] [CrossRef]
- Maas, N.; Georgiadou, V.; Roelofs, S.; Lopes, R.A.; Pronto, A.; Martins, J. Implementation Framework for Energy Flexibility Technologies in Alkmaar and Évora. Energies 2020, 13, 5811. [Google Scholar] [CrossRef]
- Giuzio, G.F.; Russo, G.; Cipolla, G.; Pompei, L.; Stasi, R.; Buonomano, A. User-centric urban energy modelling: A reduced order model approach based on pre-calibrated archetypes dataset. Energy Build. 2025, 339, 115768. [Google Scholar] [CrossRef]
- Andreucci, M.B.; Paoli, M.D.; Haase, M. Exploring tools and indicators to support collaborative planning, design, implementation, operation, and evaluation of Positive Energy Districts. J. Phys. Conf. Ser. 2023, 2600, 082001. [Google Scholar] [CrossRef]
- Civiero, P.; Pascual, J.; Abella, J.A.; Figuero, A.B.; Salom, J. PEDRERA. Positive Energy District Renovation Model for Large Scale Actions. Energies 2021, 14, 2833. [Google Scholar] [CrossRef]
- Jradi, M. Towards positive energy islands—A Danish case study. J. Phys. Conf. Ser. 2023, 2600, 082017. [Google Scholar] [CrossRef]
- Perwez, U.; Shono, K.; Yamaguchi, Y.; Shimoda, Y. Multi-scale UBEM-BIPV coupled approach for the assessment of carbon neutrality of commercial building stock. Energy Build. 2023, 291, 113086. [Google Scholar] [CrossRef]
- Bottino-Leone, D.; Balest, J.; Cittati, V.M.; Pezzutto, S.; Fraboni, R.; Beltrami, F. Review of Existing Tools for the Assessment of European Building Stock Energy Demand for Space Heating and Cooling. Sustainability 2024, 16, 2462. [Google Scholar] [CrossRef]
- Hayes, B.; Kamrowska-Zaluska, D.; Petrovski, A.; Jiménez-Pulido, C. State of the Art in Open Platforms for Collaborative Urban Design and Sharing of Resources in Districts and Cities. Sustainability 2021, 13, 4875. [Google Scholar] [CrossRef]
Software | Type | Developer | Study | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Abbasabadi | Hong | Ferrando | Ali | Kamel | Malhotra | Dabirian | Kong | |||
Physics-based | ||||||||||
CESAR | Auxiliary | ETH | x | x (a) | x | |||||
CityBES | Web-based | LBNL | x | x | x | x | x (a) | x | x | |
CitySIM | Stand-alone | EPFL | x | x | x | x | x | x | x | x |
HUES | GIS-based | ETH | x | x | ||||||
UBEM | Web-based | MIT | x | x | x | x | ||||
SEMANCO | Web-based | FUNITEC | x (S) | x | x | |||||
UMI | Auxiliary | MIT | x | x | x | x | x | x (a) | x | x |
URBANopt | Stand-alone | NREL | x | x | x | x | x | |||
Reduced-order | ||||||||||
CEA | Stand-alone | ETH | x | x | x | x | x | |||
EnergyATLAS | Auxiliary | MIT | x | x | ||||||
OpenIDEAS | Auxiliary | KUL | x | x | x | |||||
SimStadt | Stand-alone | HFTS | x | x | x | x | x | x | x | |
TEASER | Auxiliary | RWTH | x | x | x | x (a) | x | x | ||
Statistical (Data-driven) | ||||||||||
CoBAM | Stand-alone | ANL | x | x | ||||||
Energy Proforma | Web-based | MIT | x | x | ||||||
Urban Footprint | Web-based | Calthorpe Analytics | x | x |
Gaps | Topic | Research Opportunities |
---|---|---|
Model integration |
|
|
Model standardisation |
|
|
Data collection |
|
|
Process automation |
|
|
Occupant behaviour |
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cevallos-Sierra, J.; Silva, C.S.; Ferrão, P. Future Perspectives for Physics-Based Urban Building Energy Modelling Tools. Energies 2025, 18, 4888. https://doi.org/10.3390/en18184888
Cevallos-Sierra J, Silva CS, Ferrão P. Future Perspectives for Physics-Based Urban Building Energy Modelling Tools. Energies. 2025; 18(18):4888. https://doi.org/10.3390/en18184888
Chicago/Turabian StyleCevallos-Sierra, Jaime, Carlos Santos Silva, and Paulo Ferrão. 2025. "Future Perspectives for Physics-Based Urban Building Energy Modelling Tools" Energies 18, no. 18: 4888. https://doi.org/10.3390/en18184888
APA StyleCevallos-Sierra, J., Silva, C. S., & Ferrão, P. (2025). Future Perspectives for Physics-Based Urban Building Energy Modelling Tools. Energies, 18(18), 4888. https://doi.org/10.3390/en18184888