Technical and Legal Challenges in the Energetic Utilization of Household-Produced Biogas in the European Market
Abstract
1. Introduction
2. Materials and Methods
- Availability of substrates for biogas production: “food waste”, “bio waste”, “food waste produced in Europe”
- Biogas production: “household biogas production”, “optimal temperature for biogas production”, “anaerobic digestion psychrophilic”, “temperature in Europe”
- Biogas purification: “water content in biogas”, “hydrogen sulfide content in biogas”, “biogas desulfurization”
- Biogas storage: “biogas storage”, “domestic biogas storage”, “biogas bag”, “biogas tank”
- Biogas utilization: “biogas cooker”, “biogas devices”, “appliances burning biogas”, “biogas fuel”
- Utilization of by-products: “biogas by-products”, digestate, “bio-fertilizer”.
3. Results
3.1. Availability of Substrates for Biogas Production
- the separate collection of bio-waste for composting and fermentation,
- the treatment of bio-waste in ways that ensure a high level of environmental protection,
- the use of environmentally safe materials produced from bio-waste.
- Municipal waste segregated and collected selectively, such as biodegradable kitchen waste (20 01 08), and
- Waste from gardens and parks (including cemeteries), biodegradable waste (20 02 01),
3.2. Biogas Production
- biomass inlet,
- digester,
- biogas storage,
- biogas outlet,
- biogas transfer system,
- digestate outlet,
- hydrogen sulfide filter to reduce hydrogen sulfide content from a minimum of 50 ppm (v/v) to a maximum of 100 ppm (v/v),
- disinfection unit (optional, depending on local regulations),
- an excess biogas release valve that automatically opens at pressures exceeding 20% of the system’s regular working pressure,
- a manual biogas shutoff valve, parallel to the automatic excess biogas release valve, connected to the biogas storage.
- Optimal period: Average monthly temperatures between 10 and 20 °C, conducive to efficient biogas production.
- Low-temperature period: Average monthly temperatures below 10 °C, during which biogas production may be less intensive.
- High-temperature period: Average monthly temperatures above 20 °C, during which biogas production may also be less intensive due to inhibited microbial growth.
- provides a sustainable source of energy for cooking, heating and electricity generation, reducing dependence on fossil fuels.
- helps manage kitchen waste, animal feces and agricultural residues, reducing landfill use and associated emissions.
- significantly reduces methane emissions from decomposing organic waste, helping to mitigate climate change.
- households using biogas save on energy costs and can benefit from government subsidies and incentives.
- high initial investment costs,
- maintenance requirements, and
- the need to educate the public about how the system works and its benefits.
- Strengthening financial incentives and subsidies to lower installation costs.
- Providing technical training and support for users to ensure efficient system operation.
- Enhancing research and development for more efficient and compact biogas technologies.
- Promoting awareness campaigns to educate the public on the benefits of biogas systems.
- Encouraging policy harmonization across European nations to support a wider adoption.
- increased financial incentives and subsidies for small-scale installations,
- expanded technical training and user support,
- investment in R&D for compact, efficient technologies,
- public awareness and education campaigns,
- harmonization of EU legislation, particularly in fuel registration and appliance certification,
- simplification of administrative procedures and reduction in approval times to encourage more users to invest,
- support for the development of local energy networks and community energy projects to promote cooperation and biogas sharing at the local level,
- promotion of circular economy business models that integrate energy production with waste recycling and resource recovery,
3.3. Biogas Purification
3.4. Biogas Storage
- be compatible with a biogas environment,
- have a tensile strength not less than 12 N/mm2,
- have a gas permeability of less than 350 cm/m2/d/bar of methane,
- not be hazardous to the user.
3.5. Biogas Utilization
3.6. Utilization of By-Products
- fresh crop digestate (CMC 4),
- digestate other than fresh crop digestate (CMC 5).
4. Discussion
- Regulatory exclusion:
- ▪
- Biogas is not classified as a recognized gaseous fuel under EN 437:2021-09 [96]
- ▪
- At the European level, there are currently no specific regulations dedicated exclusively to biogas storage in household biogas systems.
- Existing EU regulations mainly address industrial-scale digestate management, limiting clear guidelines for household-scale use.
- Market access restriction: Appliances using household biogas cannot be CE-certified or legally sold in the EU.
- Consumer risks:
- ▪
- use of imported non-CE appliances may void warranties, limit insurance coverage, and raise safety concerns.
- ▪
- risk of nutrient runoff or environmental contamination if digestate is applied improperly.
- ▪
- quality inconsistency: Household biogas often contains higher impurities (e.g., H2S, CO2) and variable composition.
- Need for appropriate planning of digestate application timing and quantities to protect soil and water quality.
- Limited availability of small-scale technologies for digestate processing (e.g., drying, pelletizing).
- Harmonization of EU legislation, particularly in fuel registration and appliance certification, e.g.,:
- ▪
- advocate for updating EN 437 to include biogas as a testable gaseous fuel,
- ▪
- develop EU-wide quality standards for household biogas to ensure safety and compatibility.
- Promote education for household biogas users, e.g., by:
- ▪
- develop tailored guidelines and best practices for household-scale digestate use and management,
- ▪
- expanded technical training and user support,
- ▪
- public awareness and education campaigns,
- ▪
- information on safe and effective digestate application to crops.
- Investment in R&D for compact, efficient technologies:
- ▪
- encourage innovation and market development for small-scale digestate processing technologies,
- ▪
- support research into low-cost purification technologies to stabilize gas quality,
- ▪
- encourage pilot regulatory programs allowing certified appliances for household biogas use,
- ▪
- increased financial incentives and subsidies for small-scale installations,
- ▪
- simplification of administrative procedures and reduction in approval times to encourage more users to invest,
- ▪
- increasing the availability and affordability of appropriate storage solutions, along with further standardization and certification,
- ▪
- support for the development of local energy networks and community energy projects to promote cooperation and biogas sharing at the local level,
- ▪
- promotion of circular economy business models that integrate energy production with waste recycling and resource recovery.
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
CE | EU Declaration of Conformity |
CEN | European Committee for Standardization |
CMC | Component Material Categories |
EC | European Commission |
EU | European Union |
GDP | Gross Domestic Product |
HBS | Household Biogas System |
ISO | International Organization for Standardization |
MSU | Montana State University |
v/v | volume/volume |
References
- Grando, R.L.; de Souza Antune, A.M.; da Fonseca, F.V.; Sánchez, A.; Barrena, R.; Font, X. Technology overview of biogas production in anaerobic digestion plants: A European evaluation of research and development. Renew. Sustain. Energy Rev. 2017, 80, 44–53. [Google Scholar] [CrossRef]
- The European Parliament and the Council of the European Union. Directive 2009/73/EC of the European Parliament and of the Council of 13 July 2009 concerning common rules for the internal market in natural gas and repealing Directive 2003/55/EC. Off. J. Eur. Union 2009, 211, 94–136. [Google Scholar]
- Jönsson, O.; Hammar, A.; Ivarsson, I. Biogas Feeding to the Natural Gas Grid and Digestate Use in the Swedish Biogas Plant of Laholm. Available online: https://www.iea-biogas.net/_download/sucess_laholm.pdf (accessed on 24 September 2024).
- Kusch-Brandt, S. Biogas Grids—An Intelligent Element in Efficient Utilisation of Renewable Energy. Available online: https://www.researchgate.net/publication/235701923_Biogas_Grids_-_An_Intelligent_Element_in_Efficient_Utilisation_of_Renewable_Energy (accessed on 24 September 2024).
- Biogas and Biomethane in Europe: Lessons from Denmark, Germany and Italy; Eyl-Mazzega, M.-A., Mathieu, C., Eds.; Études de l’Ifri, Ifri: Paris, France, 2019; Available online: https://www.europeangashub.com/wp-content/uploads/2019/04/eylmazzega_mathieu_et_al_biogas_biomethane_europe_2019.pdf (accessed on 24 September 2024).
- Zupancic, M.; Možic, V.; Može, M.; Cimerman, F.; Golobič, I. Current Status and Review of Waste-to-Biogas Conversion for Selected European Countries and Worldwide. Sustainability 2022, 14, 1823. [Google Scholar] [CrossRef]
- Gustafsson, M.; Anderberg, S. Biogas Policies and Production Development in Europe: A Comparative Analysis of Eight Countries. Biofuels 2022, 13, 93–944. [Google Scholar] [CrossRef]
- Sher, F.; Smječanin, N.; Hrnjić, H.; Karadža, A.; Omanović, R.; Šehović, E.; Sulejmanović, J. Emerging technologies for biogas production: A critical review on recent progress, challenges and future perspectives. Process Saf. Environ. Prot. 2024, 188, 834–859. [Google Scholar] [CrossRef]
- Holewa-Rataj, J.; Kukulska-Zając, E.; Pęgielska, M. Analysis of Biogas Injection into the Natural Gas Network. Nafta-Gaz 2012, 68, 523–529. [Google Scholar]
- Koch, R.; Hoffmann, C.; Welling, J. Regulatory barriers for small biogas plants in Europe. Sustainability 2016, 8, 298. [Google Scholar] [CrossRef]
- European Biogas Association. Policy Recommendations for Household Biogas; EBA: Brussels, Belgium, 2022; Available online: https://www.european-biogas.eu (accessed on 7 August 2025).
- Nielsen, T.B.; Hoffmann, C.; Jensen, P. Policy instruments for biogas development in Europe: Challenges and opportunities. Renew. Sustain. Energy Rev. 2021, 140, 110712. [Google Scholar] [CrossRef]
- Olczak, M.; Piebalgs, A. Biogas as a Component of EU Energy Security. 2023. Available online: https://www.pism.pl/publications/biogaz-jako-element-bezpieczenstwa-energetycznego-ue (accessed on 30 October 2024).
- Francisco López, A.; Lago Rodríguez, T.; Faraji Abdolmaleki, S.; Galera Martínez, M.; Bello Bugallo, P.M. From Biogas to Biomethane: An In-Depth Review of Upgrading Technologies That Enhance Sustainability and Reduce Greenhouse Gas Emissions. Appl. Sci. 2024, 14, 2342. [Google Scholar] [CrossRef]
- Swinbourn, R.; Li, C.; Wang, F. Cover Feature: A Comprehensive Review on Biomethane Production from Biogas Separation and its Techno-Economic Assessments. ChemSusChem 2024, 17, e202400779. [Google Scholar] [CrossRef]
- Stern, J. Narratives for Natural Gas in Decarbonising European Energy Markets; The Oxford Institute for Energy Studies: Oxford, UK, 2019; Available online: https://www.oxfordenergy.org/publications/narratives-natural-gas-decarbonising-european-energy-markets/ (accessed on 24 September 2024).
- European Commission (EC). Powering a Climate-Neutral Economy: An EU Strategy for Energy System Integration; European Commission: Brussels, Belgium, 2020; Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=COM:2020:299:FIN (accessed on 12 December 2024).
- Bedeković, G.; Grćić, I.; Anic Vucinic, A.; Premur, V. Recovery of waste expanded polystyrene in lightweight concrete production. Min. Geol.-Pet. Eng. Bull. 2019, 34, 73–80. [Google Scholar] [CrossRef]
- Friant, M.C.; Vermeulen, W.J.; Salomone, R. Analysing European Union circular economy policies: Words versus actions. Sustain. Prod. Consum. 2021, 27, 337–353. [Google Scholar] [CrossRef]
- Mazzi, A.; Ren, J. Circular Economy in Low-Carbon Transition. Energies 2021, 14, 8061. [Google Scholar] [CrossRef]
- European Commission (EC). Communication on an EU Strategy to Reduce Methane Emissions; European Comission: Brussels, Belgium, 2020; Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52020DC0663 (accessed on 12 December 2024).
- European Commission (EC). A Farm to Fork Strategy for a Fair, Healthy and Environmentally-Friendly Food System; EC: Brussels, Belgium, 2020; Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52020DC0381 (accessed on 12 December 2024).
- European Biogas Association (EBA). Market State and Trends in Renewable and Low-Carbon Gases in Europe; EBA: Brussels, Belgium, 2020; Available online: https://www.europeanbiogas.eu/wp-content/uploads/2020/12/GfC_MSTReport_2020_final.pdf (accessed on 12 December 2024).
- World Bioenergy Association. Global Bioenergy Statistics 2022. Available online: https://www.worldbioenergy.org/uploads/221223%20WBA%20GBS%202022.pdf (accessed on 30 October 2024).
- CEDIGAZ. Global Biomethane Market 2021 Assessment. Available online: https://www.cedigaz.org/global-biomethane-market-2021/ (accessed on 12 December 2024).
- International Energy Agency (IEA). Outlook for Biogas and Biomethane: Prospects for Organic Growth; IEA: Paris, France, 2022; Available online: https://iea.blob.core.windows.net/assets/03aeb10c-c38c-4d10-bcec-de92e9ab815f/Outlook_for_biogas_and_biomethane.pdf (accessed on 12 December 2024).
- Lund, H.; Andersen, A.N.; Østergaard, P.A.; Mathiesen, B.V.; Connolly, D. Energy system analysis of decentralized energy systems. Energy Policy 2015, 83, 437–449. [Google Scholar] [CrossRef]
- Smith, J.; Johnson, K. Local energy consumption and grid integration: Opportunities and challenges. Renew. Energy 2017, 102, 195–203. [Google Scholar] [CrossRef]
- Mertins, A.; Wawer, T. How to use biogas?: A systematic review of biogas utilization pathways and business models. Bioresour. Bioprocess. 2022, 9, 59. [Google Scholar] [CrossRef]
- Gao, Z.; Alshehri, K.; Li, Y.; Qian, H.; Sapsford, D.; Cleall, P.; Harbottle, M. Advances in biological techniques for sustainable lignocellulosic waste utilization in biogas production. Renew. Sustain. Energy Rev. 2022, 170, 112995. [Google Scholar] [CrossRef]
- Abanades, S.; Abbaspour, H.; Ahmadi, A. A critical review of biogas production and usage with legislations framework across the globe. Int. J. Environ. Sci. Technol. 2022, 19, 3377–3400. [Google Scholar] [CrossRef]
- Atelge, M.R.; Krisa, D.; Kumar, G. Biogas Production from Organic Waste: Recent Progress and Perspectives. Waste Biomass Valorization 2020, 11, 1019–1040. [Google Scholar] [CrossRef]
- Angelidaki, I.; Treu, L.; Tsapekos, P.; Luo, G.; Campanaro, S.; Wenzel, H.; Kougias, P.G. Biogas upgrading and utilization: Current status and perspectives. Biotechnol. Adv. 2020, 36, 107. [Google Scholar] [CrossRef]
- Smith, A.; Johnson, B. Industrial-scale biogas production: Trends and challenges. Renew. Energy 2019, 135, 147–158. [Google Scholar] [CrossRef]
- Obileke, K.; Onyeaka, H.; Nwokolo, N. Materials for the design and construction of household biogas digesters for biogas production: A review. Int. J. Energy 2020, 45, 3761–3779. [Google Scholar] [CrossRef]
- Feiz, R.; Johansson, M.; Lindkvist, E.; Moestedt, J.; Nilsson Påledal, S.; Ometto, F. The biogas yield, climate impact, energy balance, nutrient recovery, and resource cost of biogas production from household food waste—A comparison of multiple cases from Sweden. J. Clean. Prod. 2022, 378, 134536. [Google Scholar] [CrossRef]
- Holewa-Rataj, J.; Rataj, M.; Kapusta, P.; Brzeszcz, J.; Janiga, M.; Król, A. Home Biogas Production from Organic Waste: Challenges and Process Optimization of Methane Fermentation. Energies 2025, 18, 1745. [Google Scholar] [CrossRef]
- Ho, P.; Lee, C.; Zhang, X. Household biogas systems in developing countries: A review of technical, social and economic factors. Renew. Sustain. Energy Rev. 2018, 82, 1630–1641. [Google Scholar] [CrossRef]
- Bhattacharyya, S.C. Off-grid biogas applications in rural Asia: Potential and limitations. Energy Policy 2020, 139, 111341. [Google Scholar] [CrossRef]
- Rajendran, K.; Aslanzadeh, S.; Taherzadeh, M.J. Household Biogas Digesters—A Review. Energies 2012, 5, 2911–2942. [Google Scholar] [CrossRef]
- Kumar, R.; Singh, N.; Yadav, A. Low-cost biogas technologies: Feasibility and applications. Renew. Energy 2019, 135, 1057–1065. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, W.; Wang, X. Flexibility and robustness of biogas production systems under variable feedstock. J. Clean. Prod. 2018, 198, 1294–1303. [Google Scholar] [CrossRef]
- European Environment Agency. Circular Economy and Organic Waste Management; EEA Report No. 25/2020; European Environment Agency: Copenhagen, Denmark, 2020; Available online: https://www.eea.europa.eu/en/topics/in-depth/circular-economy/country-profiles-on-circular-economy/circular-economy-country-profiles-2024/denmark_2024-ce-country-profile_final.pdf/@@download/file (accessed on 7 August 2025).
- SNV. Household Bio-Digester Installations in Selected Countries in Africa and Asia in 2021. Available online: https://a.storyblok.com/f/191310/b8ca144d18/snv-20biodigester-20status-20brief-20-28final-29.pdf (accessed on 12 December 2024).
- World Health Organization. Household Air Pollution and Health; WHO Fact Sheet; WHO: Geneva, Switzerland, 2019; Available online: https://www.who.int/news-room/fact-sheets/detail/household-air-pollution-and-health (accessed on 7 August 2025).
- Iqbal, N.; Sakhani, M.A.; Khan, A.R.; Atiq-ur-Rehman; Ajmal, Z.; Khan, M.Z. Socioeconomic impacts of domestic biogas plants on rural households to strengthen energy security. Environ. Sci. Pollut. Res. 2021, 28, 27446–27456. [Google Scholar] [CrossRef]
- Montana State University. EPA Funded Household Biogas Project; Montana State University: Bozeman, MT, USA, 2023; Available online: https://www.montana.edu/news/20570/msu-receives-nearly-300-000-from-epa-for-study-to-help-divert-food-waste-from-landfills (accessed on 7 August 2025).
- Mendrey, K. Household Scale Anaerobic Digesters, AD & Biogas, Food Waste. 8 December 2020. Available online: https://www.biocycle.net/household-scale-anaerobic-digesters/ (accessed on 12 December 2024).
- Pryshliak, N.; Shynkovych, A.; Tokarchuk, D.; Korpaniuk, T. Efficiency of using individual biogas digesters for processing biowaste of rural households in Ukraine. East. Eur. Countrys. 2023, 27, 89–111. [Google Scholar] [CrossRef]
- Pimenow, S.; Pimenowa, O.; Moldavan, L.; Udova, L.; Wasilewski, M.; Wasilewska, N. Transforming Agriculture into Energy: Unlocking Ukraine’s Bioenergy Potential for Sustainable Post-Conflict Recovery. Energies 2025, 18, 1212. [Google Scholar] [CrossRef]
- Garfí, M.; Martí-Herrero, J.; Garwood, A.; Ferrer, I. Household anaerobic digesters for biogas production in Latin America: A review. Renew. Sustain. Energy Rev. 2016, 60, 599–614. [Google Scholar] [CrossRef]
- IPCC. Mitigation Pathways Compatible with 1.5 °C in the Context of Sustainable Development; Special Report; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2021; Available online: https://www.ipcc.ch/sr15/ (accessed on 7 August 2025).
- Jensen, T.B.; Nielsen, P.H. Food waste valorization through household biogas plants. Waste Manag. 2020, 104, 45–53. [Google Scholar] [CrossRef]
- Parlament Europejski I Rada Unii Europejskiej. Dyrektywa Parlamentu Europejskiego i Rady 2008/98/WE z dnia 19 listopada 2008 r. w sprawie odpadów oraz uchylająca niektóre dyrektywy. J. Eur. Union 2008, 312, 3–30. [Google Scholar]
- European Citizens’ Panel on Food Waste Final Recommendations. Available online: https://citizens.ec.europa.eu/system/files/2023-04/ECP1_Citizens%20Recommendations_EN_final.pdf (accessed on 12 December 2024).
- Dimitriadis, D. Opinia Europejskiego Komitetu Ekonomiczno-Społecznego w sprawie zielonej księgi w sprawie gospodarowania bioodpadami w Unii Europejskiej COM(2008) 811 wersja ostateczna (2009/C 318/18). Dz. Urzędowy Unii Eur. 2008, 85. [Google Scholar]
- Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions Ensuring Resilient and Sustainable Use of EU’s Natural Resources; COM/2023/410 Final. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex:52023DC0410 (accessed on 8 July 2025).
- Krah, C.Y.; Bahramian, M.; Hynds, P.; Priyadarshini, A. Household food waste generation in high-income countries: A scoping review and pooled analysis between 2010 and 2022. J. Clean. Prod. 2024, 471, 143375. [Google Scholar] [CrossRef]
- EN ISO 23590:2021; Household Biogas System Requirements: Design, Installation, Operation, Maintenance and Safety. International Organization for Standardization: Geneva, Switzerland, 2021.
- List of Cities by Average Temperature. Available online: https://en.wikipedia.org/wiki/List_of_cities_by_average_temperature (accessed on 12 December 2024).
- Nie, E.; He, P.; Zhang, H.; Hao, L.; Shao, L.; Lü, F. How does temperature regulate anaerobic digestion? Renew. Sustain. Energy Rev. 2021, 150, 111453. [Google Scholar] [CrossRef]
- Akindolire, M.A.; Rama, H.; Roopnarain, A. Psychrophilic anaerobic digestion: A critical evaluation of microorganisms and enzymes to drive the process. Renew. Sustain. Energy Rev. 2022, 161, 112394. [Google Scholar] [CrossRef]
- Tiwari, B.R.; Tarek Rouissi, T.; Brar, S.K.; Surampalli, R.Y. Critical insights into psychrophilic anaerobic digestion: Novel strategies for improving biogas production. Waste Manag. 2021, 131, 513–526. [Google Scholar] [CrossRef]
- Wang, H.; Zhou, O. Dominant factors analyses and challenges of anaerobic digestion under cold environments. J. Environ. Manag. 2023, 348, 119378. [Google Scholar] [CrossRef]
- Pavičić, J.; Novak Mavar, K.; Brki’c, V.; Simon, K. Biogas and Biomethane Production and Usage: Technology Development, Advantages and Challenges in Europe. Energies 2022, 15, 2940. [Google Scholar] [CrossRef]
- European Biogas Association (EBA). Available online: www.europeanbiogas.eu (accessed on 13 February 2025).
- Biometane Map. Available online: https://www.gie.eu/wp-content/uploads/filr/10165/GIE_EBA_BIO_2024_A0_FULL_116.pdf. (accessed on 13 February 2025).
- Edwards, J.; Othman, M.; Burn, S. A review of policy drivers and barriers for the use of anaerobic digestion in Europe, the United States and Australia. Renew. Sustain. Energy Rev. 2015, 52, 815–828. [Google Scholar] [CrossRef]
- Xue, S.; Song, J.; Wang, X.; Shang, Z.; Sheng, C.; Li, C.; Zhu, Y.; Liu, J. A systematic comparison of biogas development and related policies between China and Europe and corresponding insights. Renew. Sustain. Energy Rev. 2020, 117, 109474. [Google Scholar] [CrossRef]
- Hijazi, O.; Munro, S.; Zerhusen, B.; Effenberger, M. Review of life cycle assessment for biogas production in Europe. Renew. Sustain. Energy Rev. 2016, 54, 1291–1300. [Google Scholar] [CrossRef]
- O’Connor, S.; Ehimen, E.; Pillai, S.C.; Black, A.; Tormey, D.; Bartlett, J. Biogas production from small-scale anaerobic digestion plants on European farms. Renew. Sustain. Energy Rev. 2021, 139, 110580. [Google Scholar] [CrossRef]
- Raport Biogaz i Biometan w Polsce. Available online: https://magazynbiomasa.pl/biogas-and-biomethane-in-poland-report-pobierz-za-darmo/ (accessed on 13 February 2025).
- Teraz Środowisko—Biogaz i Biometan w Polsce. 2024. Available online: https://bioinitium.ios.edu.pl/publikacja-teraz-srodowisko-biogaz-i-biometan-w-polsce-2024-insight/#:~:text=Teraz%20%C5%9Arodowisko%20wyda%C5%82o%20specjalny%20numer%20publikacji%20%E2%80%9EBiogaz,z%20Krajowym%20O%C5%9Brodkiem%20Wsparcia%20Rolnictwa%20s%C4%85%20patronami (accessed on 13 February 2025).
- Bioenergy Europe Statistical Report, 2020. Available online: https://www.europeanbiogas.eu/wp-content/uploads/2020/11/Biogas-Report-2020-EBA-Bioenergy-Europe.pdf (accessed on 13 February 2025).
- Scarlat, N.; Dallemand, J.-F.; Fahl, F. Biogas: Developments and perspectives in Europe. Renew. Energy 2018, 129 Pt A, 457–472. [Google Scholar] [CrossRef]
- Gerlach, F.; Grieb, B.; Zerger, U. Sustainable Biogas Production, a Handbook for Organic Farmers. Available online: https://ec.europa.eu/energy/intelligent/projects/sites/ieeprojects/files/projects/documents/sustaingas_handbook_en.pdf (accessed on 12 December 2024).
- Gostomczyk, W. Efektywność Substratów Wykorzystywanych do Produkcji Biogazu, Politechnika Koszalińska Wydział Nauk Ekonomicznych. 2021. Available online: https://www.imp.gda.pl/bf2020/BF2012/prezentacje/p141.pdf (accessed on 12 December 2024).
- Mezmur, Y.; Bogale, W. Simulation and experimental analysis of biogas upgrading. AIMS Energy 2019, 7, 371–381. [Google Scholar] [CrossRef]
- Butlewski, K. Metody uzdatniania biogazu z uwzględnieniem możliwości integracji termicznej z procesem fermentacji biomasy. Probl. Inżynierii Rol. 2016, 24, 67–83. [Google Scholar]
- Rujisangvittaya, K.; Phoolphundh, S. Sulfur Oxidizing Bacterial Biofilter for Removal of Hydrogen Sulfide (H2S) from Biogas. J. Sustain. Energy Environ. 2015, 6, 71–74. [Google Scholar]
- Skerman, A.G.; Heubeck, S.; Batstone, D.J.; Tait, S. Low-cost filter media for removal of hydrogen sulphide from piggery biogas. Process Saf. Environ. Prot. 2017, 105, 117–126. [Google Scholar] [CrossRef]
- Klemba, K. Biogazownia jako potencjalne źródło zagrożeń emisjami odorowymi oraz działania prewencyjne. Eliksir 2015, 2, 22–27. [Google Scholar]
- Janas, M.; Zawadzka, A. Assessment of environmental impact of agricultural biogas plants. Acta Innov. 2018, 27, 24–30. [Google Scholar] [CrossRef]
- Fernández, M.; Ramírez, M.; Pérez, R.M.; Gómez, J.M.; Cantero, D. Hydrogen sulphide removal from biogas by an anoxic biotrickling filter packed with Pallrings. Chem. Eng. J. 2013, 225, 456–463. [Google Scholar] [CrossRef]
- La Borgne, S.; Baquerizo, G. Microbial Ecology of Biofiltration Units Used for the Desulfurization of Biogas. Chem. Eng. 2019, 3, 72. [Google Scholar] [CrossRef]
- Zulkefli, N.N.; Masdar, M.S.; Jahim, J.; Majlan, E.H. Overview of H2S Removal Technologies from Biogas Production. Int. J. Appl. Eng. Res. 2016, 11, 10060. [Google Scholar]
- Żygadło, M.; Madejski, R. The conversion of biomass into energy in farm biogas plant. Arch. Waste Manag. Environ. Prot. 2016, 18, 55–66. [Google Scholar]
- Mwacharo, F.; Bhandari, S.; Othman, A.; Rautio, A.R. Biogas Drying and Purification Methods; Centria University of Applied Sciences: Kokkola, Finland, 2020; Available online: https://www.theseus.fi/bitstream/handle/10024/356234/978-952-7173-55-8.pdf?sequence=2&isAllowed=y (accessed on 12 December 2024).
- Kasiński, S.; Szuszkiewicz, J.; Rudnicki, M. Regional Strategies for Implementing Methane Fermentation Technology in Waste Management: Environmental, Technological, and Social Perspectives. Sustainability 2024, 16, 9034. [Google Scholar] [CrossRef]
- Nguyen, L.N.; Kumar, J.; Vu, M.T.; Mohammed, J.A.H.; Pathak, N.; Commault, A.S.; Sutherland, D.; Zdarta, J.; Tyagi, V.K.; Nghiem, L.D. Biomethane production from anaerobic co-digestion at wastewater treatment plants: A critical review on development and innovations in biogas upgrading techniques. Sci. Total Environ. 2021, 765, 142753. [Google Scholar] [CrossRef] [PubMed]
- Żarczyński, A.; Rosiak, K.; Anielak, P.; Ziemiński, K.; Wolf, W. Practical methods of removing hydrogen sulfide from biogas. Part II, Application of sorption solutions and biological methods. Acta Innov. 2015, 5, 57–71. Available online: https://www.proakademia.eu/gfx/baza_wiedzy/315/15_57-71_pol._2_2.pdf (accessed on 12 December 2024).
- IRENA. Biogas for Domestic Cooking: Technology Brief, International Renewable Energy Agency, Abu Dhabi. 2017. Available online: https://www.irena.org/Publications/2017/Dec/Biogas-for-domestic-cooking-Technology-brief (accessed on 12 December 2024).
- EN 16726:2015+A1:2018; Gas Infrastructure—Quality of Gas—Group H. European Committee for Standardization (CEN): Brussels, Belgium, 2018.
- prEN 16726:2024; Gas Infrastructure—Quality of Gas—Group H. Draft Standard. European Committee for Standardization (CEN): Brussels, Belgium, 2024. Available online: https://cdn.standards.iteh.ai/samples/77239/c2f00f378a5d4563b910f13a938baf9f/oSIST-prEN-16726-2024.pdf (accessed on 7 September 2025).
- The European Parliament and the Council of the European Union. Regulation (EU) 2016/426 of the European Parliament and of the Council of 9 March 2016 on appliances burning gaseous fuels and repealing Directive 2009/142/EC. Off. J. Eur. Union 2016, 81, 99–147. [Google Scholar]
- EN 437:2021-09; Test Gases—Test Pressures—Equipment Categories. European Committee for Standardization (CEN): Brussels, Belgium, 2021.
- The European Parliament and the Council of the European Union. Regulation (EU) 2019/1009 of the European Parliament and of the Council of 5 June 2019 laying down rules on the making available on the market of EU fertilising products and amending Regulations (EC) No 1069/2009 and (EC) No 1107/2009 and repealing Regulation (EC) No 2003/2003. Off. J. Eur. Union 2019, 170, 1–114. [Google Scholar]
- The European Commission. Commission Delegated Regulation (EU) 2022/1519 of 5 May 2022 amending Regulation (EU) 2019/1009 of the European Parliament and of the Council as regards the requirements applicable to EU fertilising products containing inhibiting compounds and the post processing of digestate. Off. J. Eur. Union 2022, 263, 5–15. [Google Scholar]
- Wystalska, K.; Kwarciak-Kozłowska, A. Utilization of Digestate from Agricultural and Food Waste for the Production of Biochar Used to Remove Methylene Blue. Sustainability 2023, 15, 14723. [Google Scholar] [CrossRef]
- Vilanova Plana, P.; Noche, B. A review of the current digestate distribution models: Storage and transport. WIT Trans. Ecol. Environ. 2016, 202, 2016. [Google Scholar] [CrossRef]
- Horta, C.; Carneiro, J.P. Use of Digestate as Organic Amendment and Source of Nitrogen to Vegetable Crops. Appl. Sci. 2022, 12, 248. [Google Scholar] [CrossRef]
- Mucha, A.P.; Dragisa, S.; Dror, I.; Garuti, M.; van Hullebusch, E.D.; Repinc, S.K.; Muňoz, J.; Rodriguez-Perez, S.; Stres, B.; Usťak, S.C.; et al. Re-Use of Digestate and Recovery Techniques. In Trace Elements in Anaerobic Biotechnologies; IWA Publishing: London, UK, 2019; p. 181. [Google Scholar] [CrossRef]
- Witorożec-Piechnik, A.; Kopiński, J.; Markowska-Strzemska, E.; Woźniak, M. Environmental safety aspects of using the digestate from an agricultural biogas plant. Pol. J. Agron. 2023, 52, 54–61. [Google Scholar] [CrossRef]
- Singh, D.; Tembhare, M.; Dikshit, A.K.; Dangi, M.B.; Kumar, S. Technical and operational challenges in setting up a decentralized biogas plant: Opportunities and future perspective toward sustainable nation. Process Saf. Environ. Prot. 2024, 185, 392–407. [Google Scholar] [CrossRef]
- Castellani, P.; Ferronato, N.; Ragazzi, M.; Torretta, V. Organic waste valorization in remote islands: Analysis of economic and environmental benefits of onsite treatment options. Waste Manag. Res. 2023, 41, 881–893. [Google Scholar] [CrossRef] [PubMed]
- Metson, G.S.; Feiz, R.; Lindegaard, I.; Ranggård, T.; Quttineh, N.H.; Gunnarsson, E. Not all sites are created equal—Exploring the impact of constraints to suitable biogas plant locations in Sweden. J. Clean. Prod. 2022, 349, 131390. [Google Scholar] [CrossRef]
- Kabeyi, M.J.B.; Olanrewaju, O.A. Biogas Production and Applications in the Sustainable Energy Transition. J. Energy 2022, 43, 8750221. [Google Scholar] [CrossRef]
- Verner, V.; Mazancová, J.; Jelínek, M. Economics and perception of small-scale biogas plant benefits installed among peri-urban and rural areas in central Vietnam. Biomass Convers. Biorefinery 2023, 13, 11959–11971. [Google Scholar] [CrossRef]
- Munir, A.; Gul, J. Biogas technology adoption and household welfare perspectives for sustainable development. Energy Policy 2023, 181, 13728. [Google Scholar] [CrossRef]
- Wu, J.; Atchike, D.W.; Ahmad, M. Crucial Adoption Factors of Renewable Energy Technology: Seeking Green Future by Promoting Biomethane. Processes 2023, 11, 2005. [Google Scholar] [CrossRef]
- Pizarro-Loaiza, C.A.; Torrellas, A.A.M.; Torres-Lozada, P.; Palatsi, J.; Bonmatí, A. Environmental, social and health benefits of alternative renewable energy sources. Case study for household biogas digesters in rural areas. J. Clean. Prod. 2021, 297, 126722. [Google Scholar] [CrossRef]
- Cui, D.; Liang, S.; Wang, D. Observed and projected changes in global climate zones based on Köppen climate classification. WIREs Clim. Change 2021, 12, e701. [Google Scholar] [CrossRef]
- Mushtaq, K.; Zaidi, A.A.; Askari, S.J. Design and performance analysis of floating dome type portable biogas plant for domestic use in Pakistan. Sustain. Energy Technol. Assess. 2016, 14, 21–25. [Google Scholar] [CrossRef]
- Abbas, I.; Liu, J.; Noor, R.S. Development and performance evaluation of small size household portable biogas plant for domestic use. Biomass Convers. Biorefinery 2022, 12, 3107–3119. [Google Scholar] [CrossRef]
Country | City | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Albania | Tirana | 6.7 | 7.8 | 10.0 | 13.4 | 18.0 | 21.6 | 24.0 | 23.8 | 20.7 | 16.0 | 11.7 | 8.1 |
Andorra | Andorra la Vella | 2.2 | 3.5 | 5.8 | 7.5 | 11.5 | 15.4 | 18.8 | 18.5 | 14.9 | 10.3 | 5.7 | 3.0 |
Austria | Vienna | 0.3 | 1.5 | 5.7 | 10.7 | 15.7 | 18.7 | 20.8 | 20.2 | 15.4 | 10.2 | 5.1 | 1.1 |
Belarus | Minsk | −4.5 | −4.4 | 0.0 | 7.2 | 13.3 | 16.4 | 18.5 | 17.5 | 12.1 | 6.6 | 0.6 | −3.4 |
Belgium | Brussels | 3.3 | 3.7 | 6.8 | 9.8 | 13.6 | 16.2 | 18.4 | 18.0 | 14.9 | 11.1 | 6.8 | 3.9 |
Bosnia and Herzegovina | Sarajevo | −0.5 | 1.4 | 5.7 | 10.0 | 14.8 | 17.7 | 19.7 | 19.7 | 15.3 | 11.0 | 5.4 | 0.9 |
Bulgaria | Sofia | −0.5 | 1.1 | 5.4 | 10.6 | 15.4 | 18.9 | 21.2 | 21.0 | 16.5 | 11.3 | 5.1 | 0.7 |
Croatia | Zagreb | 0.3 | 2.3 | 6.4 | 10.7 | 15.8 | 18.8 | 20.6 | 20.1 | 15.9 | 10.5 | 5.0 | 1.4 |
Cyprus | Nicosia | 10.6 | 10.6 | 13.1 | 17.1 | 22.3 | 26.9 | 29.7 | 29.4 | 26.2 | 22.3 | 16.3 | 12.0 |
Czech Republic | Prague | −1.4 | −0.4 | 3.6 | 8.4 | 13.4 | 16.1 | 18.2 | 17.8 | 13.5 | 8.5 | 3.1 | −0.3 |
Denmark | Copenhagen | 1.4 | 1.4 | 3.5 | 7.7 | 12.5 | 15.6 | 18.1 | 17.7 | 13.9 | 9.8 | 5.5 | 2.5 |
Estonia | Tallinn | −2.9 | −3.6 | −0.6 | 4.8 | 10.2 | 14.5 | 17.6 | 16.5 | 12.0 | 6.5 | 2.0 | −0.9 |
Finland | Helsinki | −3.9 | −4.7 | −1.3 | 3.9 | 10.2 | 14.6 | 17.8 | 16.3 | 11.5 | 6.6 | 1.6 | −2.0 |
France | Paris | 4.9 | 5.6 | 8.8 | 11.4 | 15.1 | 18.2 | 20.4 | 20.2 | 16.9 | 12.9 | 8.1 | 5.4 |
Germany | Berlin | 0.6 | 2.3 | 5.1 | 10.2 | 14.8 | 17.9 | 20.3 | 19.7 | 15.3 | 10.5 | 6.0 | 1.3 |
Greece | Athens | 10.2 | 10.9 | 13.2 | 16.9 | 21.8 | 26.6 | 29.3 | 29.3 | 25.0 | 20.1 | 15.5 | 11.5 |
Hungary | Budapest | 0.4 | 2.3 | 6.1 | 12.0 | 16.6 | 19.7 | 21.5 | 21.2 | 16.9 | 11.8 | 5.4 | 1.8 |
Iceland | Reykjavík | −0.5 | 0.4 | 0.5 | 2.9 | 6.3 | 9.0 | 10.6 | 10.3 | 7.4 | 4.4 | 1.1 | −0.2 |
Ireland | Dublin | 5.3 | 5.3 | 6.8 | 8.3 | 10.9 | 13.6 | 15.6 | 15.3 | 13.4 | 10.5 | 7.4 | 5.6 |
Italy | Rome | 7.5 | 8.2 | 10.2 | 12.6 | 17.2 | 21.1 | 24.1 | 24.5 | 20.8 | 16.4 | 11.4 | 8.4 |
Latvia | Riga | −4.7 | −4.2 | 0.5 | 5.1 | 11.4 | 15.5 | 16.9 | 16.2 | 12.0 | 7.4 | 2.1 | −2.3 |
Liechtenstein | Vaduz | 0.8 | 2.1 | 6.3 | 9.9 | 14.4 | 17.1 | 19.0 | 18.4 | 14.9 | 10.9 | 5.2 | 1.9 |
Lithuania | Vilnius | −3.9 | −3.1 | 0.9 | 7.6 | 13.0 | 16.4 | 18.7 | 17.9 | 13.0 | 7.0 | 1.8 | −2.2 |
Luxembourg | Luxembourg | 0.8 | 1.6 | 5.2 | 8.7 | 13.0 | 15.9 | 18.2 | 17.7 | 13.9 | 9.5 | 4.7 | 1.8 |
Malta | Valletta | 12.8 | 12.8 | 13.3 | 15.6 | 18.9 | 22.8 | 26.1 | 26.7 | 23.9 | 21.1 | 17.2 | 13.9 |
Moldova | Chișinău | −1.9 | −0.8 | 3.7 | 10.4 | 16.5 | 19.9 | 22.1 | 21.7 | 16.3 | 10.5 | 4.1 | −0.6 |
Monaco | Monaco | 10.2 | 10.2 | 12.0 | 13.8 | 17.5 | 20.9 | 23.8 | 24.2 | 21.1 | 17.9 | 13.8 | 11.2 |
Montenegro | Podgorica | 5.0 | 6.8 | 10.0 | 13.9 | 19.0 | 22.8 | 26.0 | 25.6 | 21.4 | 15.9 | 10.5 | 6.5 |
Netherlands | Amsterdam | 3.4 | 3.5 | 6.1 | 9.1 | 12.9 | 15.4 | 17.6 | 17.5 | 14.7 | 11.0 | 7.1 | 4.0 |
North Macedonia | Skopje | 0.1 | 2.6 | 7.6 | 12.1 | 17.3 | 21.5 | 23.8 | 23.8 | 18.8 | 13.1 | 6.5 | 1.7 |
Norway | Oslo | −4.3 | −4.0 | −0.2 | 4.5 | 10.8 | 15.2 | 16.4 | 15.2 | 10.8 | 6.3 | 0.7 | −3.1 |
Poland | Warsaw | −1.8 | −0.6 | 2.8 | 8.7 | 14.2 | 17.0 | 19.2 | 18.3 | 13.5 | 8.5 | 3.3 | −0.7 |
Portugal | Lisbon | 11.6 | 12.7 | 14.9 | 15.9 | 18.0 | 21.2 | 23.1 | 23.5 | 22.1 | 18.8 | 15.0 | 12.4 |
Romania | Bucharest | −1.3 | 0.4 | 5.4 | 11.2 | 16.8 | 20.6 | 22.5 | 22.0 | 16.9 | 11.0 | 4.7 | 0.2 |
Russia | Moscow | −6.5 | −6.7 | −1.0 | 6.7 | 13.2 | 17.0 | 19.2 | 17.0 | 11.3 | 5.6 | −1.2 | −5.2 |
San Marino | San Marino | 2.7 | 4.2 | 6.4 | 10.1 | 14.6 | 18.5 | 21.3 | 21.4 | 17.8 | 12.8 | 8.0 | 4.2 |
Serbia | Belgrade | 1.4 | 3.1 | 7.6 | 12.9 | 18.1 | 21.0 | 23.0 | 22.7 | 18.0 | 12.9 | 7.1 | 2.7 |
Slovakia | Bratislava | 0.3 | 1.9 | 6.1 | 11.7 | 16.2 | 20.2 | 22.0 | 21.5 | 16.2 | 10.7 | 5.7 | 1.1 |
Slovenia | Ljubljana | 0.3 | 1.9 | 6.5 | 10.8 | 15.8 | 19.1 | 21.3 | 20.6 | 16.0 | 11.2 | 5.6 | 1.2 |
Spain | Barcelona | 11.3 | 11.3 | 13.1 | 15.1 | 18.1 | 21.9 | 24.7 | 25.2 | 22.4 | 19.1 | 14.4 | 11.9 |
Sweden | Stockholm | −2.8 | −3.0 | 0.1 | 4.6 | 10.7 | 15.6 | 17.2 | 16.2 | 11.9 | 7.5 | 2.6 | −1.0 |
Switzerland | Zürich | 0.3 | 1.3 | 5.3 | 8.8 | 13.3 | 16.4 | 18.6 | 18.0 | 14.1 | 9.9 | 4.4 | 1.4 |
Turkey | Istanbul | 5.7 | 5.7 | 7.0 | 11.1 | 15.7 | 20.4 | 22.9 | 23.1 | 19.8 | 15.6 | 11.5 | 8.0 |
Ukraine | Kyiv | −3.5 | −3.0 | 1.8 | 9.3 | 15.5 | 18.5 | 20.5 | 19.7 | 14.2 | 8.4 | 1.9 | −2.3 |
United Kingdom | London | 5.2 | 5.3 | 7.6 | 9.9 | 13.3 | 16.5 | 18.7 | 18.5 | 15.7 | 12.0 | 8.0 | 5.5 |
Country | Estimated Production (Million m3/Year) | Confidence | Notes | References |
---|---|---|---|---|
Austria | 300–700 | High | Mature farm & upgrading sector. | [65,66] |
Belgium | 200–500 | Medium | Regional variation (Flanders strong). | [65,66] |
Bulgaria | 5–50 | Low | Small sector, agricultural potential. | [65,67] |
Croatia | 20–80 | Low–Medium | Growing farm/industrial AD. | [65] |
Cyprus | <5 | Low | Very small/pilot scale. | [65] |
Czechia | 50–200 | Medium | Mixed farm & industrial plants. | [65] |
Denmark | 400–900 | High | Strong AD + upgrading (manure + crops). | [65,66] |
Estonia | 5–30 | Low | Small but some industrial sites. | [65,67] |
Finland | 70–250 | Medium | Biogas + growing biomethane. | [65,66] |
France | 600–1800 | High | Rapid growth; many farm & industrial plants. | [65,66] |
Germany | 1500–3500 | High | Historically the largest EU biogas producer. | [65,66] |
Greece | 10–80 | Low–Medium | Growing projects, food waste potential. | [65,67] |
Hungary | 20–100 | Medium | Expanding AD capacity. | [65,67] |
Ireland | 30–120 | Medium | Slurry-based AD + emerging upgrading. | [65,66] |
Italy | 500–1200 | High | Long tradition of agricultural AD. | [65,66] |
Latvia | 5–30 | Low | Small sector, some food industry plants. | [65,67] |
Lithuania | 10–70 | Low–Medium | Growing number of sites. | [65] |
Luxembourg | <5 | Low | Very small national activity. | [65] |
Malta | <1 | Low | Negligible/pilot only. | [65] |
Netherlands | 300–800 | High | Strong co-digestion & upgrading cluster. | [65,66] |
Poland | 150–600 | Medium | Rapid growth potential; figures variable by source. | [65,67] |
Portugal | 10–80 | Low–Medium | Increasing interest in OFMSW and agriculture. | [65,67] |
Romania | 5–50 | Low | Underdeveloped despite agricultural base. | [65,67] |
Slovakia | 10–60 | Low–Medium | Several medium sites. | [65] |
Slovenia | 10–50 | Low–Medium | Small country but active small AD. | [65] |
Spain | 150–500 | Medium | Increasing projects; historically modest. | [65] |
Sweden | 400–900 | High | Large biomethane upgrading for transport. | [65] |
Pollutant | Min | Max | References |
---|---|---|---|
Water | 2% v/v | 10% v/v | [76,77,78,79] |
Hydrogen sulfide | 20 ppm (v/v) | 55,000 ppm (v/v) | [78,80,81,82,83,84,85,86,87] |
Parameter | Maximum Limit | Notes |
---|---|---|
Total sulfur (excluding odorant) | 11 mg/m3 (up to 20 mg/m3 in exceptions) | Reference at 15 °C; prevents SO2 emissions and corrosion |
H2S + COS (as sulfur) | 5 mg/m3 | Protects against toxic gas and corrosion |
Mercaptan sulfur (excluding odorant) | 6 mg/m3 | Avoids excessive odorant interference and corrosion |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Holewa-Rataj, J.; Rataj, M.; Król, A.; Kukulska-Zając, E. Technical and Legal Challenges in the Energetic Utilization of Household-Produced Biogas in the European Market. Energies 2025, 18, 4842. https://doi.org/10.3390/en18184842
Holewa-Rataj J, Rataj M, Król A, Kukulska-Zając E. Technical and Legal Challenges in the Energetic Utilization of Household-Produced Biogas in the European Market. Energies. 2025; 18(18):4842. https://doi.org/10.3390/en18184842
Chicago/Turabian StyleHolewa-Rataj, Jadwiga, Mateusz Rataj, Anna Król, and Ewa Kukulska-Zając. 2025. "Technical and Legal Challenges in the Energetic Utilization of Household-Produced Biogas in the European Market" Energies 18, no. 18: 4842. https://doi.org/10.3390/en18184842
APA StyleHolewa-Rataj, J., Rataj, M., Król, A., & Kukulska-Zając, E. (2025). Technical and Legal Challenges in the Energetic Utilization of Household-Produced Biogas in the European Market. Energies, 18(18), 4842. https://doi.org/10.3390/en18184842