Renewable Energy Transitions in the EU: A Comparative Panel Data Perspective
Abstract
1. Introduction
- Do OMSs and NMSs exhibit comparable patterns in the shift towards renewable energy?
- Are there variations in the adoption of renewable energy based on regions? Is that the case, and does it impact the efficacy of the policy framework adopted by the EU?
- How significantly do economic, social, and environmental elements influence the adoption of renewable energy?
2. Literature Review
3. Materials and Methods
4. Results
4.1. Correlation Matrix
4.2. VIF
4.3. Slope Homogeneity
4.4. Panel-Stationary Test
4.5. Cross-Dependence
4.6. Cointegration Test
4.7. DOLS, FMOLS, CCR
4.8. MMQR and QREG
4.9. Panel Causality
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| AMG | Augmented Mean Group |
| CCEMG | Common Correlated Effects Estimation for Dynamic Heterogeneous Panels |
| CCR | Canonical Cointegration Regression |
| CS-ARDL | Cross-Sectionally Augmented Autoregressive Distributed Lag model |
| DOLS | Dynamic Ordinary Least Squares |
| EU | European Union |
| FMOLS | Fully Modified Ordinary Least Squares |
| MMQR | Method of Moments Quantile Regression |
| NMS | New Member States |
| OMS | Old Member States |
| QREG | Quantile Regression |
| VIF | Variance Inflation Factor |
Appendix A
| RE | FE | G | GHG | GDP | GF | FD | |
|---|---|---|---|---|---|---|---|
| RE | 1.0000 | ||||||
| FE | −0.8075 *** | 1.0000 | |||||
| G | 0.2112 *** | −0.1562 *** | 1.0000 | ||||
| GHG | −0.2506 *** | 0.3108 *** | −0.1157 * | 1.0000 | |||
| GDP | −0.0319 | 0.0555 | 0.0332 | 0.1068 | 1.0000 | ||
| GF | 0.4764 *** | −0.4656 *** | −0.0122 | −0.3138 *** | −0.0354 | 1.0000 | |
| FD | 0.3523 *** | −0.2781 *** | 0.2806 *** | −0.0592 | −0.2374 *** | 0.5378 *** | 1.0000 |
| RE | FE | G | GHG | GDP | GF | FD | |
|---|---|---|---|---|---|---|---|
| RE | 1.0000 | ||||||
| FE | −0.5932 *** | 1.0000 | |||||
| G | 0.3251 *** | −0.1029 | 1.0000 | ||||
| GHG | −0.5007 *** | 0.5720 *** | −0.3209 *** | 1.0000 | |||
| GDP | 0.0079 | 0.0422 | 0.2103 *** | −0.0893 | 1.0000 | ||
| GF | 0.6083 *** | −0.4980 *** | 0.4623 *** | −0.6201 *** | 0.0798 | 1.0000 | |
| FD | −0.3781 *** | 0.5363 *** | −0.1810 *** | 0.7191 *** | −0.2138 *** | −0.4233 *** | 1.0000 |
| OMS | NMS | |||
|---|---|---|---|---|
| Variable | VIF | 1/VIF | VIF | 1/VIF |
| FE | 1.37 | 0.7324 | 2.03 | 0.4930 |
| G | 1.23 | 0.8112 | 1.38 | 0.7268 |
| GHG | 1.24 | 0.8057 | 1.76 | 0.5691 |
| GDP | 1.13 | 0.8871 | 1.14 | 0.8806 |
| GF | 2.00 | 0.5010 | 2.91 | 0.3431 |
| FD | 1.84 | 0.5445 | 2.36 | 0.4238 |
| Mean VIF | 1.47 | 1.93 | ||
| OMS | NMS | |||
|---|---|---|---|---|
| Pesaran and Yamagata [85] | Pesaran and Yamagata [85] | |||
| Delta | 3.028 | 0.002 | 3.328 | 0.001 |
| Delta adj | 4.625 | 0.000 | 5.084 | 0.000 |
| Blomquist and Westerlund [86] | ||||
| Delta | 3.767 | 0.000 | 2.483 | 0.013 |
| Delta adj | 5.754 | 0.000 | 3.793 | 0.000 |
| OMS | NMS | |||||||
|---|---|---|---|---|---|---|---|---|
| IPS Unit Root Test | Fisher-Type Unit Root Test | IPS Unit Root Test | Fisher-Type Unit Root Test | |||||
| Level | Difference | Level | Difference | Level | Difference | Level | Difference | |
| RE | 0.0344 | −4.2660 *** | −2.3188 | 9.2728 *** | −0.8107 | −3.0394 *** | −0.7732 | 4.1009 *** |
| FE | −1.0090 | −3.5905 *** | −0.8179 | 11.5456 *** | −1.1423 | −3.2440 *** | −0.0845 | 9.7627 *** |
| G | −1.8480 | −3.8563 *** | −0.3080 | 9.3629 *** | −1.2963 | −4.2632 *** | −1.3254 | 5.9394 *** |
| GHG | −1.2200 | −4.0243 *** | −2.6692 | 9.7567 *** | −1.4294 | −3.1690 *** | 1.5012 ** | 8.5414 *** |
| GDP | −3.9926 *** | −5.3735 *** | 13.9716 *** | 23.4364 *** | −3.8871 *** | −5.6563 *** | 7.2314 *** | 24.9255 *** |
| GF | −2.1742 ** | −3.5976 *** | −3.3924 *** | 12.4979 *** | −1.8445 ** | −4.0404 *** | 0.8765 | 13.5678 *** |
| FD | −0.8855 | −2.5307 *** | −1.3972 | 1.8294 *** | −2.2191 | −2.6824 *** | 1.3013 * | 3.6165 *** |
| OMS | NMS | |||||||
|---|---|---|---|---|---|---|---|---|
| CD-Test | p-Value | corr | Abs(corr) | CD-Test | p-Value | corr | Abs(corr) | |
| RE | 32.62 | 0.000 | 0.914 | 0.914 | 23.47 | 0.000 | 0.710 | 0.710 |
| FE | 26.28 | 0.000 | 0.736 | 0.736 | 23.94 | 0.000 | 0.724 | 0.724 |
| G | 5.70 | 0.000 | 0.160 | 0.391 | 9.93 | 0.000 | 0.300 | 0.528 |
| GHG | 25.74 | 0.000 | 0.721 | 0.752 | 11.03 | 0.000 | 0.334 | 0.549 |
| GDP | 22.94 | 0.000 | 0.643 | 0.643 | 20.33 | 0.000 | 0.615 | 0.615 |
| GF | 1.30 | 0.735 | 0.036 | 0.380 | 5.51 | 0.000 | 0.167 | 0.371 |
| FD | 1.28 | 0.202 | 0.036 | 0.662 | 12.51 | 0.000 | 0.379 | 0.742 |
| OMS | NMS | |||
|---|---|---|---|---|
| Kao Test | Statistic | p-Value | Statistic | p-Value |
| MDFt | 0.8593 | 0.1951 | 0.6172 | 0.2686 |
| DFt | 0.5874 | 0.2785 | 0.8405 | 0.2003 |
| ADFt | −0.3793 | 0.3522 | 2.5081 | 0.0061 |
| UMDFt | −1.2602 | 0.1038 | −2.1802 | 0.0146 |
| ADFt | −1.0472 | 0.1475 | −1.1146 | 0.1325 |
| Pedroni Test | ||||
| MPPt | 4.7850 | 0.0000 | 5.0072 | 0.0000 |
| PPt | −3.9009 | 0.0000 | −3.0026 | 0.0013 |
| ADFt | −3.0846 | 0.0010 | −2.8041 | 0.0025 |
| Westerlund Test | ||||
| Variance ratio | 1.6118 | 0.0535 | 1.2491 | 0.1058 |
| OMS | NMS | |||||||
|---|---|---|---|---|---|---|---|---|
| Quantile 0.25 | Quantile 0.50 | Quantile 0.75 | Quantile 0.95 | Quantile 0.25 | Quantile 0.50 | Quantile 0.75 | Quantile 0.95 | |
| FE | −0.5647 *** (0.0903 | −0.6598 *** (0.0374) | −0.7053 *** (0.0414) | −0.8722 *** (0.0335) | −0.2567 *** (0.0626) | −0.3679 *** (0.0710) | −0.3093 *** (0.1161) | −0.2963 *** (0.0867) |
| G | 0.4582 (0.3545) | 0.3417 *** (0.1468) | 0.5015 *** (0.1626) | 0.4051 *** (0.1317) | 0.5857 *** (0.1602) | 0.4126 * (0.1818) | 0.1098 (0.2971) | −0.9185 *** (0.2218) |
| GHG | −0.1045 (0.0924) | 0.0637 * (0.0383) | 0.0990 *** (0.0424) | 0.0376 (0.0343) | 0.0165 (0.0295) | 0.0594 ** (0.0334) | 0.0263 (0.0546) | −0.0357 (0.0408) |
| GDP | 0.4367 (0.3807) | −0.1031 (0.1577) | −0.0683 (0.1747) | −0.0834 (0.1414) | −0.3184 * (0.1756) | −0.1434 (0.1992) | −0.0701 (0.3257) | 0.2001 (0.2431) |
| GF | 0.1055 ** (0.0573) | −0.0334 (0.0237) | −0.0589 *** 0.0263 | −0.0372 * 0.0213 | −0.0080 0.0206 | −0.0293 0.0234 | −0.0223 0.0383 | −0.0150 0.0286 |
| FD | −0.3814 (4.2586) | 6.1759 *** (1.7642) | 7.9674 *** (1.9542) | 3.5629 *** (1.5827) | 5.3830 *** (1.8483) | 6.3585 *** (2.0963) | 10.9273 *** (3.4266) | 9.5699 *** (2.5582) |
| _cons | 23.2399 (19.4621) | 54.3714 *** (8.0627) | 55.1135 *** (8.9307) | 75.2533 *** (7.2332) | 4.8608 (7.8844) | 26.4035 *** (8.9426) | 36.6066 *** (14.6172) | 87.5718 *** (10.9126) |
| OMS | NMS | |||
|---|---|---|---|---|
| W-stat | Z-stat | W-stat | Z-stat | |
| RE = FE | 2.4016 ** | 1.9903 | 1.3262 | 0.1369 |
| FE = RE | 2.5102 ** | 2.1779 | 2.4273 ** | 1.9606 |
| RE = G | 2.3626 ** | 1.9228 | 2.0192 | 1.2810 |
| G = RE | 2.6393 *** | 2.4010 | 2.2430 * | 1.6536 |
| RE = GHG | 2.3351 ** | 0.0608 | 2.7867 *** | 2.5592 |
| GHG = RE | 2.8154 *** | 2.7054 | 2.8677 *** | 2.6940 |
| RE = GDP | 1.7644 | 0.8890 | 1.5560 | 0.5096 |
| GDP = RE | 1.5044 | 0.4397 | 2.9949 *** | 2.9058 |
| RE = GF | 1.3207 | 0.1222 | 1.3614 | 0.1856 |
| GF = RE | 1.9723 | 1.2483 | 3.2724 *** | 3.3680 |
| RE = FD | 3.4744 *** | 3.8442 | 1.1583 | −0.1527 |
| FD = RE | 2.8589 *** | 2.7806 | 2.5033 ** | 2.0872 |
References
- European Commission. The European Green Deal. Available online: https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/european-green-deal_en (accessed on 20 August 2025).
- European Commission. In Focus: EU Leading the Global Energy Transition. Directorate-General for Energy. 2024. Available online: https://energy.ec.europa.eu/news/focus-eu-leading-global-energy-transition-2024-11-18_en (accessed on 24 August 2025).
- Solar Power Europe; L.U.T University. 100% Renewable Europe Study. 2025. Available online: https://www.solarpowereurope.org/insights/market-outlooks/100-renewable-europe-study (accessed on 21 August 2025).
- European Environment Agency (EEA). Renewable Energy. European Environment Agency. Last Modified 26 June 2025. Available online: https://www.eea.europa.eu/en/topics/in-depth/renewable-energy (accessed on 24 August 2025).
- International Energy Agency. World Energy Investment 2024: European Union. 2024. Available online: https://www.iea.org/reports/world-energy-investment-2024 (accessed on 20 August 2025).
- International Energy Agency. World Energy Investment 2025; Section on European Union; IEA: Paris, France, 2025; Available online: https://www.iea.org/reports/world-energy-investment-2025 (accessed on 20 August 2025).
- European Commission. REPowerEU: Affordable, Secure and Sustainable Energy for Europe. Available online: https://commission.europa.eu/topics/energy/repowereu_en (accessed on 20 August 2025).
- European Environment Agency (EEA). Share of Energy Consumption from Renewable Sources in Europe; European Environment Agency: Copenhagen, Denmark, 2025; Available online: https://www.eea.europa.eu/en/analysis/indicators/share-of-energy-consumption-from (accessed on 20 August 2025).
- Bousso, R. The Path to Cheap Power Will Be Very Expensive. Reuters. 2025. Available online: https://www.reuters.com/business/energy/path-cheap-power-will-be-very-expensive-2025-06-09/ (accessed on 20 August 2025).
- Ray, S.; Roush, T. Spain and Portugal Power Outages: Electricity Restored in Some Regions (Live Updates). Forbes. 2025. Available online: https://www.forbes.com/sites/siladityaray/2025/04/28/spain-and-portugal-power-outages-electricity-restored-in-some-regions-live-updates/ (accessed on 20 August 2025).
- Chestney, N. EU Power Grid Needs Trillion-Dollar Upgrade to Avert Spain-Style Blackouts. Reuters. 2025. Available online: https://www.reuters.com/sustainability/climate-energy/eu-power-grid-needs-trillion-dollar-upgrade-avert-spain-style-blackouts-2025-05-05/ (accessed on 20 August 2025).
- De Lange, D.E. Climate Action Now: Energy Industry Restructuring to Accelerate the Renewable Energy Transition. J. Clean. Prod. 2024, 443, 141018. [Google Scholar] [CrossRef]
- Tijanić, L.; Kersan-Škabić, I. Tracking the Green Transition in the European Union within the Framework of EU Cohesion Policy: Current Results and Future Paths. Economies 2025, 13, 37. [Google Scholar] [CrossRef]
- Andersson, M.; Köhler-Ulbrich, P.; Nerlich, C. Green Investment Needs in the EU and Their Funding. European Central Bank. ECB Economic Bulletin. 2025. Available online: https://www.ecb.europa.eu/pub/economic-bulletin/articles/2025/html/ecb.ebart202501_03~90ade39a4a.en.html (accessed on 20 August 2025).
- Ollier, L.; Metz, F.; Nuñez-Jimenez, A.; Späth, L.; Lilliestam, J. The European 2030 Climate and Energy Package: Do Domestic Strategy Adaptations Precede EU Policy Change? Policy Sci. 2022, 55, 161–184. [Google Scholar] [CrossRef]
- Bocquillon, P.; Maltby, T. The More the Merrier? Assessing the Impact of Enlargement on EU Performance in Energy and Climate Change Policies. East Eur. Politics 2017, 33, 88–105. [Google Scholar] [CrossRef]
- Potrč, S.; Čuček, L.; Martin, M.; Kravanja, Z. Sustainable Renewable Energy Supply Networks Optimization—The Gradual Transition to a Renewable Energy System within the European Union by 2050. Renew. Sustain. Energy Rev. 2021, 146, 111186. [Google Scholar] [CrossRef]
- Soto, G.H.; Nghiem, X.-H.; Martinez-Cobas, X. Analyzing the Role of Main Energy Transition Policies upon Renewable Energy Penetration in the EU: An Assessment of Energy Productivity and Low Carbon Economies. Struct. Change Econ. Dyn. 2025, 25, 100573. [Google Scholar] [CrossRef]
- Aydin, M.; Degirmenci, T.; Ahmed, Z.; Apergis, N. Do the Energy Taxes, Green Technological Innovation, and Energy Productivity Enable the Green Energy Transition in EU Countries? Evidence from Novel Panel Data Estimators. Renew. Energy 2025, 249, 123236. [Google Scholar] [CrossRef]
- Śmiech, S.; Karpinska, L.; Bouzarovski, S. Impact of Energy Transitions on Energy Poverty in the European Union. Renew. Sustain. Energy Rev. 2025, 211, 115311. [Google Scholar] [CrossRef]
- Diaconescu, M.; Marinas, L.E.; Marinoiu, A.M.; Popescu, M.-F.; Diaconescu, M. Towards Renewable Energy Transition: Insights from Bibliometric Analysis on Scholar Discourse to Policy Actions. Energies 2024, 17, 4719. [Google Scholar] [CrossRef]
- Vezzoni, R. Green Growth for Whom, How and Why? The REPowerEU Plan and the Inconsistencies of European Union Energy Policy. Energy Res. Soc. Sci. 2023, 101, 103134. [Google Scholar] [CrossRef]
- Chen, J.; Huang, S.; Kamran, H.W. Empowering Sustainability Practices through Energy Transition for Sustainable Development Goal 7: The Role of Energy Patents and Natural Resources among European Union Economies through Advanced Panel. Energy Policy 2023, 176, 113499. [Google Scholar] [CrossRef]
- Amen, M.; Bosman, M.M.; Gills, B.K. Editorial:The Urgent Need for Global Action to Combat Climate Change. Globalizations 2008, 5, 49–52. [Google Scholar] [CrossRef]
- Schenck, L. Climate Change Crisis-Struggling for Worldwide Collective Action. Colo. J. Int. Environ. Law Policy 2008, 19, 319. [Google Scholar]
- Javadinejad, S.; Dara, R.; Jafary, F. Taking Urgent Actions to Combat Climate Change Im-Pacts. Ann. Geogr. Stud. 2019, 2, 1–13. [Google Scholar] [CrossRef]
- World Bank Group. Climate Change Action Plan 2021–2025: Supporting Green, Resilient, and Inclusive Development (Report No. 160888). 2021. Available online: https://openknowledge.worldbank.org/entities/publication/ee8a5cd7-ed72-542d-918b-d72e07f96c79#:~:text=The%20Climate%20Change%20Action%20Plan,prosperity%20with%20a%20sustainability%20lens (accessed on 27 August 2025).
- International Monetary Fund. Finance & Development: The Climate Issue; International Monetary Fund: Washington, DC, USA, 2021; Volume 58, Available online: https://www.imf.org/external/pubs/ft/fandd/2021/09/pdf/fd0921.pdf (accessed on 25 August 2025).
- Sahadevan, D.; Irfan, M.T.; Luo, C.; Moyer, J.D.; Mason, C.; Beynon, E. Charged for Change: The Case for Renewable Energy in Climate Action (Climate Promise Report); United Nations Development Programme: Ulaanbaatar, Mongolia; Pardee Institute for International Futures: Denver, CO, USA; Octopus Energy: London, UK, 2025; Available online: https://climatepromise.undp.org/sites/default/files/research_report_document/UNDP_Charged%20for%20Change_July%202025_Final.pdf (accessed on 27 August 2025).
- Attanayake, K.; Wickramage, I.; Samarasinghe, U.; Ranmini, Y.; Ehalapitiya, S.; Jayathilaka, R.; Yapa, S. Renewable Energy as a Solution to Climate Change: Insights from a Comprehensive Study across Na-Tions. PLoS ONE 2024, 19, 0299807. [Google Scholar] [CrossRef]
- Yu, H.; Wen, B.; Zahidi, I.; Chow, M.F.; Liang, D.; Madsen, D.Ø. The Critical Role of Energy Transi-Tion in Addressing Climate Change at COP28. Results Eng. 2024, 22, 102324. [Google Scholar] [CrossRef]
- Krey, V.; Clarke, L. Role of renewable energy in climate mitigation: A synthesis of recent scenarios. Clim. Policy 2011, 11, 1131–1158. [Google Scholar] [CrossRef]
- Fawzy, S.; Osman, A.I.; Doran, J.; Rooney, D.W. Strategies for mitigation of climate change: A review. Environ. Chem. Lett. 2020, 18, 2069–2094. [Google Scholar] [CrossRef]
- Sompolska-Rzechuła, A.; Bąk, I.; Becker, A.; Marjak, H.; Perzyńska, J. The use of renewable energy sources and environmental degradation in EU countries. Sustainability 2024, 16, 10416. [Google Scholar] [CrossRef]
- Panwar, N.L.; Kaushik, S.C.; Kothari, S. Role of Renewable Energy Sources in Environmental Protection: A Review. Renew. Sustain. Energy Rev. 2011, 15, 1513–1524. [Google Scholar] [CrossRef]
- Moriarty, P.; Honnery, D. What Is the Global Potential for Renewable Energy? Renew. Sustain. Energy Rev. 2012, 16, 244–252. [Google Scholar] [CrossRef]
- Bogdanov, D.; Ram, M.; Aghahosseini, A.; Gulagi, A.; Oyewo, A.S.; Child, M.; Breyer, C. Low-Cost Renewable Electricity as the Key Driver of the Global Energy Transition towards Sustainabil-Ity. Energy 2021, 227, 120467. [Google Scholar] [CrossRef]
- Babayomi, O.O.; Dahoro, D.A.; Zhang, Z. Affordable Clean Energy Transition in Developing Countries: Pathways and Technologies. Iscience 2022, 25, 104178. [Google Scholar] [CrossRef]
- Go, R.; Kahrl, F.; Kolster, C. Planning for Low-Cost Renewable Energy. Electr. J. 2020, 33, 106698. [Google Scholar] [CrossRef]
- Patrocínio, A.O.D.T.; Mizoguchi, S.K.; Paterno, L.G.; Garcia, C.G.; Iha, N.M. Efficient and Low Cost Devices for Solar Energy Conversion: Efficiency and Stability of Some Natural-Dye-Sensitized Solar Cells. Synth. Met. 2009, 159, 2342–2344. [Google Scholar] [CrossRef]
- Gaudiana, R. Third-Generation Photovoltaic Technology—The Potential for Low-Cost Solar Energy Conversion. J. Phys. Chem. Lett. 2010, 1, 1288–1289. [Google Scholar] [CrossRef]
- Shang, Y.; Sang, S.; Tiwari, A.K.; Khan, S.; Zhao, X. Impacts of Renewable Energy on Climate Risk: A Global Perspective for Energy Transition in a Climate Adaptation Framework. Appl. Energy 2024, 362, 122994. [Google Scholar] [CrossRef]
- Ilyas, M.; Mu, Z.; Akhtar, S.; Hassan, H.; Shahzad, K.; Aslam, B.; Maqsood, S. Renewable Energy, Economic Development, Energy Consumption and Its Impact on Environmental Quality: New Evidence from South East Asian Countries. Renew. Energy 2024, 223, 119961. [Google Scholar] [CrossRef]
- Solangi, Y.A.; Magazzino, C. Evaluating Financial Implications of Renewable Energy for Climate Action and Sustainable Development Goals. Renew. Sustain. Energy Rev. 2025, 212, 115390. [Google Scholar] [CrossRef]
- Bashir, M.F.; Pata, U.K.; Shahzad, L. Linking Climate Change, Energy Transition and Renewable Energy Investments to Combat Energy Security Risks: Evidence from Top Energy Consuming Economies. Energy 2025, 314, 134175. [Google Scholar] [CrossRef]
- Tugcu, C.T.; Menegaki, A.N. The Impact of Renewable Energy Generation on Energy Security: Evidence from the G7 Countries. Gondwana Res. 2024, 125, 253–265. [Google Scholar] [CrossRef]
- Huynh, C.M.; Phan, T.N. Climate Change and Income Inequality: Does Renewable Energy Matter? Renew. Energy 2024, 233, 121147. [Google Scholar] [CrossRef]
- Sebri, M. Use Renewables to Be Cleaner: Meta-Analysis of the Renewable Energy Consumption–Economic Growth Nexus. Renew. Sustain. Energy Rev. 2015, 42, 657–665. [Google Scholar] [CrossRef]
- Lahrech, A.; Abu-Hijleh, B.; Aldabbas, H. The Impact of Global Renewable Energy Demand on Economic Growth–Evidence from GCC Countries. Arab Gulf J. Sci. Res. 2024, 42, 498–511. [Google Scholar] [CrossRef]
- Dirma, V.; Neverauskienė, L.O.; Tvaronavičienė, M.; Danilevičienė, I.; Tamošiūnienė, R. The impact of renewable energy development on economic growth. Energies 2024, 17, 6328. [Google Scholar] [CrossRef]
- Dilanchiev, A.; Umair, M.; Haroon, M. How Causality Impacts the Renewable Energy, Carbon Emissions, and Economic Growth Nexus in the South Caucasus Countries? Environ. Sci. Pollut. Res. 2024, 31, 33069–33085. [Google Scholar] [CrossRef]
- Ritchie, H.; Roser, M.; Rosado, P. Renewable Energy; Our World in Data: Oxford, UK, 2020; Available online: https://ourworldindata.org/renewable-energy (accessed on 29 July 2025).
- Energy Institute. Statistical Review of World Energy 2025; Our World in Data, Ed.; Our World in Data: Oxford, UK, 2025; Available online: https://www.energyinst.org/statistical-review/ (accessed on 29 July 2025).
- Eurostat. Renewable Energy Statistics. In Statistics Explained; European Commission: Luxembourg, 2025; Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Renewable_energy_statistics (accessed on 29 July 2025).
- Bourcet, C. Empirical Determinants of Renewable Energy Deployment: A Systematic Literature Review. Energy Econ. 2020, 85, 104563. [Google Scholar] [CrossRef]
- Papież, M.; Śmiech, S.; Frodyma, K. Determinants of Renewable Energy Development in the EU Countries. A 20-Year Perspective. Renew. Sustain. Energy Rev. 2018, 91, 918–934. [Google Scholar] [CrossRef]
- Xu, C.; Gao, Y.; Qin, Z.; Li, Z.; Pan, S.; Qi, L. Historical Characteristics and Projection of Global Renewable Energy Consumption. Renew. Energy 2024, 234, 121222. [Google Scholar] [CrossRef]
- Aguirre, M.; Ibikunle, G. Determinants of Renewable Energy Growth: A Global Sample Analysis. Energy Policy 2014, 69, 374–384. [Google Scholar] [CrossRef]
- Tu, Y.X.; Kubatko, O.; Piven, V.; Sotnyk, I.; Kurbatova, T. Determinants of Renewable Energy Development: Evidence from the EU Countries. Energies 2022, 15, 7093. [Google Scholar] [CrossRef]
- Shahbaz, M.; Topcu, B.A.; Sarıgül, S.S.; Vo, X.V. The Effect of Financial Development on Renewable Energy Demand: The Case of Developing Countries. Renew. Energy 2021, 178, 1370–1380. [Google Scholar] [CrossRef]
- Anton, S.G.; Nucu, A.E.A. The Effect of Financial Development on Renewable Energy Consumption. A Panel Data Approach. Renew. Energy 2020, 147, 330–338. [Google Scholar] [CrossRef]
- Mukhtarov, S.; Yüksel, S.; Dinçer, H. The Impact of Financial Development on Renewable Energy Consumption: Evidence from Turkey. Renew. Energy 2022, 187, 169–176. [Google Scholar] [CrossRef]
- Dimnwobi, S.K.; Madichie, C.V.; Ekesiobi, C.; Asongu, S.A. Financial Development and Renewable Energy Consumption in Nigeria. Renew. Energy 2022, 192, 668–677. [Google Scholar] [CrossRef]
- Ghezelbash, A.; Khaligh, V.; Fahimifard, S.H.; Liu, J.J. A Comparative Perspective of the Effects of CO2 and Non-CO2 Greenhouse Gas Emissions on Global Solar, Wind, and Geothermal Energy Investment. Energies 2023, 16, 3025. [Google Scholar] [CrossRef]
- Idroes, G.M.; Hardi, I.; Rahman, M.H.; Afjal, M.; Noviandy, T.R.; Idroes, R. The Dynamic Impact of Non-Renewable and Renewable Energy on Carbon Dioxide Emissions and Ecological Footprint in Indonesia. Carbon Res. 2024, 3, 35. [Google Scholar] [CrossRef]
- Rasoulinezhad, E.; Taghizadeh-Hesary, F. Role of Green Finance in Improving Energy Efficiency and Renewable Energy Development. Energy Effic. 2022, 15, 14. [Google Scholar] [CrossRef]
- Li, C.; Umair, M. Does Green Finance Development Goals Affects Renewable Energy in China. Renew. Energy 2023, 203, 898–905. [Google Scholar] [CrossRef]
- Lin, C.Y.; Chau, K.Y.; Tran, T.K.; Sadiq, M.; Van, L.; Phan, T.T.H. Development of Renewable Energy Resources by Green Finance, Volatility and Risk: Empirical Evidence from China. Renew. Energy 2022, 201, 821–831. [Google Scholar] [CrossRef]
- Kurbatova, T.O. Global Trends in Renewable Energy Development. In Proceedings of the 2020 IEEE KhPI Week on Advanced Technology (KhPIWeek), Kharkiv, Ukraine, 5–10 October 2020; IEEE: Kharkiv, Ukraine, 2020; pp. 1–5. Available online: https://scispace.com/pdf/global-trends-in-renewable-energy-development-49ghf7uyxk.pdf (accessed on 26 August 2025).
- Uzar, U. Is Income Inequality a Driver for Renewable Energy Consumption? J. Clean. Prod. 2020, 255, 120287. [Google Scholar] [CrossRef]
- Mahalik, M.K.; Patel, G.; Sahoo, B.K.; Rahman, M.M. Impact of Income Inequality on Renewa-Ble Energy Demand in South Asian Economies. Energy Policy 2023, 180, 113628. [Google Scholar] [CrossRef]
- Eyuboglu, K.; Uzar, U. The Social, Economic, and Environmental Drivers of Renewable Energy: Is Income Inequality a Threat to Renewable Energy Transition? J. Clean. Prod. 2025, 490, 144780. [Google Scholar] [CrossRef]
- Churchill, S.A.; Ivanovski, K.; Munyanyi, M.E. Income Inequality and Renewable Energy Con-Sumption: Time-Varying Non-Parametric Evidence. J. Clean. Prod. 2021, 296, 126306. [Google Scholar] [CrossRef]
- Zheng, M.; Wong, C.Y. The Impact of Digital Economy on Renewable Energy Development in China. Innov. Green Dev. 2024, 3, 100094. [Google Scholar] [CrossRef]
- Tian, L.; Li, X.; Lee, C.W.; Spulbăr, C. Investigating the Asymmetric Impact of Artificial Intelligence on Renewable Energy under Climate Policy Uncertainty. Energy Econ. 2024, 137, 107809. [Google Scholar] [CrossRef]
- Pedroni, P. Fully Modified OLS for Heterogeneous Cointegrated Panels. In Advances in Econometrics; Panels, N., Cointegration, P., Panels, D., Baltagi, B.H., Fomby, T.B., Carter Hill, R., Eds.; Emerald Group Publishing Limited: Leeds, UK, 2001; Volume 15. [Google Scholar] [CrossRef]
- Ali, H.S.; Nathaniel, S.P.; Uzuner, G.; Bekun, F.V.; Sarkodie, S.A. Trivariate Modelling of the Nexus Between Electricity Consumption, Urbanization and Economic Growth in Nigeria: Fresh Insights from Maki Cointegration and Causality Tests; AGDI Working Paper 2020, WP/20/010; African Governance and Development Institute (AGDI): Yaoundé, Cameroon, 2020; Available online: https://hdl.handle.net/10419/227988 (accessed on 1 September 2025).
- Khan, M.W.A.; Panigrahi, S.K.; Almuniri, K.S.N.; Soomro, M.I.; Mirjat, N.H.; Alqaydi, E.S. Investigating the Dynamic Impact of CO2 Emissions and Economic Growth on Renewable Energy Production: Evi-Dence from FMOLS and DOLS Tests. Processes 2019, 7, 496. [Google Scholar] [CrossRef]
- Stock, J.H.; Watson, M.W. A Simple Estimator of Cointegrating Vectors in Higher Order Integrated Systems. Econometrica 1993, 61, 783–820. [Google Scholar] [CrossRef]
- Yahyaoui, I.; Bouchoucha, N. The Long-Run Relationship between ODA, Growth and Governance: An Application of FMOLS and DOLS Approaches. Afr. Dev. Rev. 2021, 33, 38–54. [Google Scholar] [CrossRef]
- Månsson, K.; Kibria, B.M.G.; Shukur, G. Some Liu Type Estimators for the dynamic OLS estimator: With an application to the carbon dioxide Kuznets curve for Turkey. Commun. Stat. Case Stud. Data Anal. Appl. 2017, 3, 55–61. [Google Scholar] [CrossRef]
- Mark, N.C.; Ogaki, M.; Sul, D. Dynamic Seemingly Unrelated Cointegrating Regression; NBER Technical Working Papers, No. 292; National Bureau of Economic Research: Cambridge, MA, USA, 2003; Available online: http://www.nber.org/papers/T0292 (accessed on 5 September 2025).
- Hardi, I.; Afjal, M.; Can, M.; Idroes, G.M.; Noviandy, T.R.; Idroes, R.S.E. Energy Con-Sumption, and Ecological Footprint in Indonesia. Sustain. Futures 2024, 8, 100343. [Google Scholar] [CrossRef]
- Hsiao, C. Panel Data Analysis—Advantages and Challenges. TEST 2007, 16, 1–22. [Google Scholar] [CrossRef]
- Pesaran, M.H.; Yamagata, T. Testing slope homogeneity in large panels. J. Econ. 2008, 142, 50–93. [Google Scholar] [CrossRef]
- Blomquist, J.; Westerlund, J. Testing Slope Homogeneity in Large Panels with Serial Correlation. Econ. Lett. 2013, 121, 374–378. [Google Scholar] [CrossRef]
- Barbieri, L. Panel Unit Root Tests: A Review (Serie Rossa: Economia–Quaderno No. 43). Quaderni del Dipartimento di Scienze Economiche e Sociali, Università Cattolica del Sacro Cuore. 2006. Available online: https://dipartimenti.unicatt.it/dicdr-dipartimenti/dises-wp_rossa_06_43.pdf (accessed on 26 August 2025).
- Westerlund, J.; Breitung, J. Myths and Facts about Panel Unit Root Tests; Working Papers in Economics, No. 380; University of Gothenburg, Department of Economics: Gothenburg, Sweden, 2009; Available online: https://gupea.ub.gu.se/handle/2077/21050 (accessed on 26 August 2025).
- Pesaran, M.H. General Diagnostic Tests for Cross Section Dependence in Panels, Cambridge Working Papers in Economics; No. 0435; University of Cambridge, Faculty of Economics: Cambridge, UK, 2004. [Google Scholar] [CrossRef]
- Kao, C. Spurious Regression and Residual-Based Tests for Cointegration in Panel Data. J. Econom. 1999, 90, 1–44. [Google Scholar] [CrossRef]
- Pedroni, P. Panel Cointegration: Asymptotic and Finite Sample Properties of Pooled Time Series Tests with an Application to the PPP Hypothesis; Department of Economics Working Papers, No. 2004-15; Department of Economics, Williams College: Williamstown, MA, USA, 2004; Available online: https://web.williams.edu/Economics/wp/pedronipanelcointegration.pdf (accessed on 26 August 2025).
- Westerlund, J. New Simple Tests for Panel Cointegration. Econom. Rev. 2005, 24, 297–316. [Google Scholar] [CrossRef]
- Dumitrescu, E.-I.; Hurlin, C. Testing for Granger non-causality in heterogeneous panels. Econ. Model 2012, 29, 1450–1460. [Google Scholar] [CrossRef]
- Eurostat. Share of Energy from Renewable Sources; Dataset Code: nrg_ind_ren. Available online: https://ec.europa.eu/eurostat/databrowser/product/view/nrg_ind_ren (accessed on 6 September 2025). [CrossRef]
- Eurostat. Share of Fossil Fuels in Gross Available Energy; Dataset Code: nrg_ind_ffgae. Available online: https://ec.europa.eu/eurostat/databrowser/product/view/nrg_ind_ffgae (accessed on 6 September 2025).
- Eurostat. Gini Coefficient of Equivalised Disposable Income by Age; Dataset Code: ilc_di12__custom_16040149. Available online: https://ec.europa.eu/eurostat/databrowser/product/view/ilc_di12__custom_16040149 (accessed on 6 September 2025).
- World Bank. Total Greenhouse Gas Emissions Excluding LULUCF (% Change from 1990); Indicator Code: EN.GHG.TOT.ZG.AR5. Data Sourced from EDGAR (Emissions Database for Global Atmospheric Research), Joint Research Centre (JRC)—European Commission. Available online: https://data.worldbank.org/indicator/EN.GHG.TOT.ZG.AR5 (accessed on 6 September 2025).
- Eurostat. Sustainable Development Indicators: Goal 8—Decent Work and Economic Growth, Real GDP per Capita; Dataset Code: sdg_08_10; Source: Eurostat (nama_10_pc). Available online: https://ec.europa.eu/eurostat/databrowser/view/sdg_08_10 (accessed on 6 September 2025). [CrossRef]
- Eurostat. Investments in Climate Change Mitigation by NACE Rev. 2 Activity; Dataset Code: env_ac_ccminv. Available online: https://ec.europa.eu/eurostat/databrowser/view/env_ac_ccminv (accessed on 6 September 2025).
- World Bank. Monetary Sector Credit to the Private Sector (% of GDP); World Development Indicators; Indicator Code: FM.AST.PRVT.GD.ZS. Last Updated 24 March 2025. Available online: https://databank.worldbank.org/source/world-development-indicators (accessed on 6 September 2025).
- Fatima, N.; Xuhua, H.; Alnafisah, H.; Akhtar, M.R. Synergy for Climate Actions in G7 Countries: Unravel-Ing the Role of Environmental Policy Stringency Between Technological Innovation and CO2 Emission Interplay with DOLS, FMOLS and MMQR Approaches. Energy Rep. 2024, 12, 1344–1359. [Google Scholar] [CrossRef]
- UNDP. What Is the Sustainable Energy Transition and Why Is It Key to Tackling Climate Change? Clim. Promise Explain. 2025. Available online: https://climatepromise.undp.org/news-and-stories/what-sustainable-energy-transition-and-why-it-key-tackling-climate-change (accessed on 8 July 2025).
- Eurostat. Shedding Light on Energy in Europe—2024 Edition. Interactive Publication. 14 March 2024. Available online: https://ec.europa.eu/eurostat/web/interactive-publications/energy-2024 (accessed on 8 July 2025).
- Bocca, R. Europe’s Record Fall in Fossil Fuels–Plus Other Top Energy Stories. World Economic Forum. Published 14 February 2024. Updated 3 June 2025. Available online: https://www.weforum.org/stories/2024/02/europe-record-fall-fossil-fuels-other-energy-stories (accessed on 8 July 2025).
- Igliński, B.; Kiełkowska, U.; Mazurek, K.; Drużyński, S.; Pietrzak, M.B.; Kumar, G.; Veeramuthu, A.; Skrzatek, M.; Zinecker, M.; Piechota, G. Renewable Energy Transition in Europe in the Context of Re-Newable Energy Transition Processes in the World. A Review. Heliyon 2024, 10, 40997. [Google Scholar] [CrossRef] [PubMed]
- SolarPower Europe. Solar Overtakes Coal in EU Power Sector. Available online: https://www.solarpowereurope.org/news/solar overtakes-coal-in-eu-power-sector (accessed on 8 July 2025).
- Kosowski, P. From Fossil Fuels to Renewables: Clustering European Primary Energy Production from 1990 to 2022. Energies 2024, 17, 5596. [Google Scholar] [CrossRef]
- Sahu, A.K.; Mahalik, M.K. The Linkage between Income Inequality, Opportunity and Renewable Energy Demand: Panel Evidence from OECD Economies. Renew. Energy 2025, 243, 122588. [Google Scholar] [CrossRef]
- Simionescu, M.; Cifuentes-Faura, J. Evaluating the Relationship between Income Inequality, Renewable Energy and Energy Poverty in the V4 Countries. Energy Res. Soc. Sci. 2024, 115, 103640. [Google Scholar] [CrossRef]
- Asongu, S.A.; Odhiambo, N.M. Inequality and Renewable Energy Consumption in Sub-Saharan Africa: Implication for High Income Countries. Int. J. Green Energy 2021, 18, 382–398. [Google Scholar] [CrossRef]
- Simionescu, M. The Impact of Income Inequality on Energy Poverty in the European Union. Int. J. Financ. Stud. 2025, 13, 54. [Google Scholar] [CrossRef]
- Zhen, Z.; Ullah, S.; Irfan, M. How Do Renewable Energy Consumption, Financial Development, and Tech-Nical Efficiency Change Cause Ecological Sustainability in European Union Countries? Sustainability 2022, 14, 12345. [Google Scholar] [CrossRef]
- Beck, T.; Demirgüç-Kunt, A.; Levine, R. A New Database on the Structure and Development of the Fi-Nancial Sector. World Bank Econ. Rev. 2000, 14, 597–605. [Google Scholar] [CrossRef]
- Caporale, G.M.; Sova, A.D.; Sova, R. The Direct and Indirect Effects of Financial Development on Inter-National Trade: Evidence from the CEEC-6. J. Int. Financ. Mark. Inst. Money 2022, 78, 101550. [Google Scholar] [CrossRef]
- Bist, J.P. Financial Development and Economic Growth: Evidence from a Panel of 16 African and Non-African Low-Income Countries. Cogent Econ. Financ. 2018, 6, 1449780. [Google Scholar] [CrossRef]
- Struthmann, P. Financial Development and Growth Volatility Revisited. Financ. Res. Lett. 2025, 78, 107175. [Google Scholar] [CrossRef]
- Ali, M.; Seraj, M.; Turuc, F.; Tursoy, T.; Uktamov, K.F. Green Finance Investment and Climate Change Mitigation in OECD-15 European Countries: RALS and QARDL Evidence. Environ. Dev. Sustain. 2024, 26, 27409–27429. [Google Scholar] [CrossRef]
- Fleming, S. What Is Green Finance and Why Is It Important? World Economic Forum. 9 November 2020. Available online: https://www.weforum.org/stories/2020/11/what-is-green-finance/ (accessed on 26 August 2025).
- UNEP. Green Financing. United Nations Environment Programme. Last Update: 23 January 2018. Available online: https://www.unep.org/regions/asia-and-pacific/regional-initiatives/supporting-resource-efficiency/green-financing (accessed on 25 August 2025).
- Spinaci, S. Green and Sustainable Finance; EPRS (BRIEFING); European Parliament: Brussels, Belgium, 2021; Available online: https://www.europarl.europa.eu/RegData/etu es/BRIE/2021/679081/EPRS_BRI%282021%29679081_EN.pdf (accessed on 8 July 2025).
- Akinwande, M.O.; Dikko, H.G.; Samson, A. Variance Inflation Factor: As a Condition for the Inclusion of Suppressor Variable(s) in Regression Analysis. Open J. Stat. 2015, 5, 754–767. [Google Scholar] [CrossRef]
- O’Brien, R.M. A Caution Regarding Rules of Thumb for Variance Inflation Factors. Qual. Quant. 2007, 41, 673–690. [Google Scholar] [CrossRef]
- Kalnins, A.; Praitis Hill, K. What Is It Good For? Absolutely Nothing. Organ. Res. Methods 2023, 28, 58–75. [Google Scholar] [CrossRef]
- Kim, J.H. Multicollinearity and Misleading Statistical Results. Korean J. Anesth. Anesthesiol. 2019, 72, 558–569. [Google Scholar] [CrossRef] [PubMed]
- Bersvendsen, T. Testing for slope heterogeneity in Stata. Stata J. 2021, 21, 51–80. [Google Scholar] [CrossRef]
- Pedroni, P. Panel Cointegration Techniques and Open Challenges; Department of Economics Working Papers; No. 2018-09; Williams College: Williamstown, MA, USA, 2018; Available online: https://web.williams.edu/Economics/wp/Pedroni_PanelCointegration.pdf (accessed on 26 August 2025).
- Pedroni, P. Critical values for cointegration tests in heterogeneous panels with multiple regressors. Oxf. Bull. Econ. Stat. 1999, 61, 653–670. [Google Scholar] [CrossRef]
- Sultana, N.; Rahman, M.M.; Khanam, R.; Kabir, Z. Environmental Quality and Its Nexus with Informal Economy, Corruption Control, Energy Use, and Socioeconomic Aspects: The Perspective of Emerging Economies. Heliyon 2022, 8, 09569. [Google Scholar] [CrossRef] [PubMed]
- Altın, H. The Impact of Energy Efficiency and Renewable Energy Consumption on Carbon Emissions in G7 Countries. Int. J. Sustain. Eng. 2024, 17, 134–142. [Google Scholar] [CrossRef]
- Vasylieva, T.; Lyulyov, O.; Bilan, Y.; Streimikiene, D. Sustainable Economic Development and Greenhouse Gas Emissions: The Dynamic Impact of Renewable Energy Consumption, GDP, and Corruption. Energies 2019, 12, 3289. [Google Scholar] [CrossRef]
- Bölük, G.; Mert, M. Fossil & Renewable Energy Consumption, GHGs (Greenhouse Gases) and Economic Growth: Evidence from a Panel of EU countries. Energy 2014, 74, 439–446. [Google Scholar] [CrossRef]
- Bilgili, F.; Koçak, E.; Bulut, Ü. The Dynamic Impact of Renewable Energy Consumption on CO2 Emis-Sions: A Revisited Environmental Kuznets Curve Approach. Renew. Sustain. Energy Rev. 2016, 54, 838–845. [Google Scholar] [CrossRef]
- Dong, K.; Dong, X.; Jiang, Q. How Renewable Energy Consumption Lower Global CO2 Emissions? Evidence from Countries with Different Income Levels. World Econ. 2020, 43, 1665–1698. [Google Scholar] [CrossRef]
- Lucas, J.N.V.; Francés, G.E.; González, E.S.M. Energy Security and Renewable Energy Deployment in the EU: Liaisons Dangereuses or Virtuous Circle? Renew. Sustain. Energy Rev. 2016, 62, 1032–1046. [Google Scholar] [CrossRef]
- Marques, A.C.; Fuinhas, J.A.; Manso, J.P. Motivations Driving Renewable Energy in European Countries: A Panel Data Approach. Energy Policy 2010, 38, 6877–6885. [Google Scholar] [CrossRef]
- Hao, F.; Shao, W. What Really Drives the Deployment of Renewable Energy? A Global Assessment of 118 Countries. Energy Res. Soc. Sci. 2021, 72, 101880. [Google Scholar] [CrossRef]
- Cui, N.; Nketiah, E.; Ma, X. Do Green Energy and Information Technology Influence Greenhouse Gas Emitting Countries to Attain Sustainable Development? Sustainability 2023, 15, 13685. [Google Scholar] [CrossRef]
- Kiesecker, J.; Baruch-Mordo, S.; Kennedy, C.M.; Oakleaf, J.R.; Baccini, A.; Griscom, B.W. Hitting the Target but Missing the Mark: Unintended Environmental Consequences of the Paris Climate Agreement. Front. Environ. Sci. 2019, 7, 151. [Google Scholar] [CrossRef]
- Silva, M.; Raadal, H.L. Life Cycle GHG Emissions of Renewable and Non-Renewable Electricity Generation Technologies; Ostfoldforskning: Krakeroy, Norway, 2019. [Google Scholar]
- Chavda, P.; Mehta, D. Assessing the Impact of Fossil Fuel Subsidies and Environmental Tax on Re-Newable Energy Consumption of OECD Countries: A Panel Quantile Approach. Next Energy 2025, 8, 100313. [Google Scholar] [CrossRef]
- İçen, N.M.E. What Are the Determinants of Renewable Energy Consumption? An Application for Variable Selection. Renew. Energy 2025, 239, 122029. [Google Scholar] [CrossRef]
- Hoa, P.X.; Xuan, V.N.; Thu, N.T.P. Determinants of the Renewable Energy Consumption: The Case of Asian Countries. Heliyon 2023, 9, e22696. [Google Scholar] [CrossRef] [PubMed]
- Asratie, T.M. Determinants of Electricity Production from Renewable Source Excluding Hydroelectricity in Selected East African Countries: Panel ARDL Approach. Cogent Econ. Financ. 2022, 10, 2080897. [Google Scholar] [CrossRef]
- Akarsu, G.; Gümüşoğlu, N.K. What Are the Main Determinants of Renewable Energy Consumption? A Panel Threshold Regression Approach. Anadolu Üniv. Sos. Bilim. Derg. 2019, 19, 1–22. [Google Scholar] [CrossRef]
- Bekun, F.V.; Alola, A.A. Determinants of renewable energy consumption in agrarian Sub-Sahara African economies. Energy Ecol. Environ. 2022, 7, 227–235. [Google Scholar] [CrossRef]
- Alharbi, S.S.; Al Mamun, M.; Boubaker, S.; Rizvi, S.K.A. Green finance and renewable energy: A worldwide evidence. Energy Energy Econ. 2023, 118, 106499. [Google Scholar] [CrossRef]
- Lyeonov, S.; Pimonenko, T.; Bilan, Y.; Štreimikienė, D.; Mentel, G. Assessment of Green Investments’ Impact on Sustainable Development: Linking Gross Domestic Product per Capita, Greenhouse Gas Emissions and Renewable Energy. Energies 2019, 12, 3891. [Google Scholar] [CrossRef]
- Xu, P.; Zhang, J.; Mehmood, U. How Do Green Investments, Foreign Direct Investment, and Renewable Energy Impact CO2 Emissions? Measuring the Role of Education in E-7 Nations. Sustainability 2023, 15, 14052. [Google Scholar] [CrossRef]
- Zahan, I.; Chuanmin, S. Towards a Green Economic Policy Framework in China: Role of Green investment in Fostering Clean Energy Consumption and Environmental Sustainability. Environ. Sci. Pollut. Res. 2021, 28, 43618–43628. [Google Scholar] [CrossRef]
- Javed, A.; Shabir, M.; Rao, F.; Uddin, M.S. Effect of Green Technological Innovation and Financial Development on Green Energy Transition in N-11 Countries: Evidence from the Novel Method of Moments Quantile Regression. Renew. Energy 2025, 242, 122435. [Google Scholar] [CrossRef]
- Muhammad, S.; Hoffmann, C. From Investment to Impact: The Role of Green Finance and Technological Innovation on German Energy Transition. Renew. Energy 2024, 237, 121665. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, A. Green Investments and Development of Renewable Energy Projects: Evidence from 15 RCEP Member Countries. Renew. Energy 2023, 211, 1045–1050. [Google Scholar] [CrossRef]
- Kim, J.; Park, K. Financial Development and Deployment of Renewable Energy Technologies. Energy Econ. 2016, 59, 238–250. [Google Scholar] [CrossRef]
- Sharma, R.; Rajpurohit, S.S. Nexus between Income Inequality and Consumption of Renewable Energy in India: A Nonlinear Examination. Econ. Change Restruct. 2022, 55, 2337–2358. [Google Scholar] [CrossRef]
- Buis, J. The Effect of Income Inequality on Renewable Energy Consumption in Europe. Master’s Thesis, Nijmegen School of Management, Radboud University, Nijmegen, The Netherlands, 2023. Available online: https://theses.ubn.ru.nl/bitstreams/7fd41140-de80-4e20-8ca9-edcc322b1cca/download (accessed on 26 August 2025).
- Dai, X.; Qian, S.; Zhang, J. Sustainable Financial Inclusion as a Source of Green Environment? Evidence from Selected Regional Comprehensive Economic Partnership Countries. Econ. Res.-Ekon. Istraž. 2022, 35, 5719–5738. [Google Scholar] [CrossRef]
- Humbatova, S.I.; Hajiyeva, N.; Fodor, M.G.; Sood, K.; Grima, S. The Impact of Economic Growth on the Ecological Environment and Renewable Energy Production: Evidence from Azerbaijan and Hungary. J. Risk Financ. Manag. 2024, 17, 275. [Google Scholar] [CrossRef]
- Wang, Z.; Pham, T.L.H.; Sun, K.; Wang, B.; Bui, Q.; Hashemizadeh, A. The Moderating Role of Financial Development in the Renewable Energy Consumption-CO2 Emissions Linkage: The Case Study of Next-11 Countries. Energy 2022, 254, 124386. [Google Scholar] [CrossRef]
- Apergis, N.; Payne, J.E. Renewable and non-renewable energy consumption-growth nexus: Evidence from a panel error correction model. Energy Econ. 2012, 34, 733–738. [Google Scholar] [CrossRef]
- Mehmood, U.; Agyekum, E.B.; Tariq, S.; Ul Haq, Z.; Uhunamure, S.E.; Edokpayi, J.N.; Azhar, A. Socio-Economic Drivers of Renewable Energy: Empirical Evidence from BRICS. Int. J. Environ. Res. Public Health 2022, 19, 4614. [Google Scholar] [CrossRef]
- Eren, B.M.; Taspinar, N.; Gokmenoglu, K.K. The Impact of Financial Development and Economic Growth on Renewable Energy Consumption: Empirical Analysis of India. Sci. Total Environ. 2019, 663, 189–197. [Google Scholar] [CrossRef]
- Vo, D.H.; Tran, Q.; Tran, T. Economic Growth, Renewable Energy and Financial Development in the CPTPP Countries. PLoS ONE 2022, 17, e0268631, Correction in PLoS ONE 2022, 17, e0314387. [Google Scholar] [CrossRef]
- Wang, K.; Costanza-van den Belt, M.; Heath, G.; Walzberg, J.; Curtis, T.; Berrie, J.; Schröder, P.; Lazer, L.; Altamirano, J. Circular Economy as a Climate Strategy: Current Knowledge and Calls-to-Action; National Renewable Energy Laboratory: Golden, CO, USA, 2022. Available online: https://www.nrel.gov/docs/fy23osti/84141.pdf (accessed on 6 September 2025).
- U.S. Department of Energy. Circularity for Secure and Sustainable Products and Materials: A Draft Strategic Framework; Office of Energy Efficiency & Renewable Energy: Washington, DC, USA, 2024. Available online: https://www.energy.gov/sites/default/files/2024-10/circularity-for-secure-sustainable-products-materials-report.pdf (accessed on 6 September 2025).
- Wang, Y.; He, Y.; Gao, X. Synergizing Renewable Energy and Circular Economy Strategies: Pioneering Pathways to Environmental Sustainability. Sustainability 2025, 17, 1801. [Google Scholar] [CrossRef]
- Liao, Z. Assessing Sustainable Impacts of Green Energy Projects for the Development of Renewable Energy Technologies: A Triple Bottom Line Approach. Processes 2023, 11, 2228. [Google Scholar] [CrossRef]

| Dependent Variable | Abbreviation | Definition | Unit | Source |
|---|---|---|---|---|
| Renewable energy share | RE | Gross final energy consumption in a country derived from renewable energy sources [94] | % Of total energy consumption | Eurostat 2010–2023 |
| Independent variables | ||||
| Fossil fuel share | FE | Gross final energy consumption in a country derived from fossil fuel energy sources [95] | % Of total energy consumption | Eurostat 2010–2023 |
| Gini Index | G | Income inequality within a population [96] | points | Eurostat 2010–2023 |
| Greenhouse gas emissions | GHG | % Change in GHG excluding LULUCF [97] | % Change from 1990 baseline | World Bank Indicator 2010–2023 |
| Real GDP per capital | GDP | Change on total output of a country adjusted for inflation and divided by its population [98] | % Chain link change | Eurostat 2010–2023 |
| Investments in climate change mitigation | GF | Financial resources targeting the reduction in climate change externalities [99] | % GDP | Eurostat 2010–2023 |
| Monetary sector credit to private sector | FD | Financial resource provided by the banks and financial institutions to households and business [100] | % GDP | World Bank Indicator 2010–2023 |
| Variables | Obs. | Mean | Std. Dev. | Min | Max |
|---|---|---|---|---|---|
| RE | 196 | 22.2589 | 14.1455 | 2.851 | 66.393 |
| FE | 196 | 71.6888 | 17.2859 | 30.3 | 95.53 |
| G | 196 | 50.6076 | 4.1847 | 44 | 61.6 |
| GHG | 196 | −11.1228 | 16.0939 | −44.8317 | 26.0324 |
| GDP | 196 | 1.0438 | 3.7260 | −11.4 | 23.5 |
| GF | 196 | 0.5829 | 0.4432 | 0.09 | 2.6 |
| FD | 196 | 100.604 | 31.5891 | 25.4313 | 192.8299 |
| Variable | Obs. | Mean | Std. Dev. | Min | Max |
|---|---|---|---|---|---|
| RE | 182 | 20.2235 | 9.0969 | 0.979 | 43.72 |
| FE | 182 | 74.9601 | 11.9216 | 52.9 | 99.79 |
| G | 182 | 47.0637 | 4.1230 | 37.2 | 55.2 |
| GHG | 182 | −27.0265 | 32.6004 | −67.6946 | 90.5840 |
| GDP | 182 | 2.8313 | 3.4173 | −7.5 | 13.4 |
| GF | 182 | 0.7587 | 0.4341 | 0.06 | 2.08 |
| FD | 182 | 62.4406 | 41.8273 | 23.0502 | 254.6681 |
| OMS | NMS | |||||
|---|---|---|---|---|---|---|
| (1) | (2) | (3) | (4) | (5) | (6) | |
| Variables | DOLS | FMOLS | CCR | DOLS | FMOLS | CCR |
| FE | 0.5343 (0.3584) | 0.5196 *** (0.0969) | 0.9334 * (0.4892) | 0.2023 (0.2228) | 0.1173 * (0.0629) | 0.0890 (0.1411) |
| G | −0.6360 *** (0.2260) | −0.6110 *** (0.0665) | −0.6743 *** (0.1706) | 0.1340 (0.3363) | 0.2740 *** (0.0956) | 0.3213 (0.2160) |
| GHG | −0.8020 *** (0.2563) | −0.8298 *** (0.0707) | −1.1410 *** (0.3537) | −0.2955 *** (0.0812) | −0.2846 *** (0.0220) | −0.2702 *** (0.0545) |
| GDP | 0.7599 ** (0.3409) | 0.7182 *** (0.0977) | 0.9183 *** (0.3011) | −0.0087 (0.1083) | −0.0368 (0.0299) | −0.0462 (0.0837) |
| GF | 5.4663 (4.7192) | 5.2505 *** (1.2453) | 3.4686 (2.3771) | 0.6730 (2.9229) | 0.7942 (0.7885) | 0.6915 (2.3724) |
| FD | 0.3528 * (0.1928) | 0.3423 *** (0.0519) | 0.2185 (0.2090) | 0.0116 (0.0486) | 0.0002 (0.0133) | −0.0001 (0.0287) |
| R-squared | 0.9396 | 0.9132 | 0.9163 | 0.7376 | 0.6843 | 0.7395 |
| OMS | NMS | |||||||
|---|---|---|---|---|---|---|---|---|
| Quantile 0.25 | Quantile 0.50 | Quantile 0.75 | Quantile 0.95 | Quantile 0.25 | Quantile 0.50 | Quantile 0.75 | Quantile 0.95 | |
| FE | −0.4758 *** (0.0698) | −0.6314 *** (0.0444) | −0.7067 *** (0.0399) | −0.7960 *** (0.0434) | −0.2788 *** (0.0436) | −0.2979 *** (0.0473) | −0.3323 *** (0.0723) | −0.3574 *** (0.0965 |
| G | 0.2664 (0.1945) | 0.2557 *** (0.1233) | 0.2506 *** (0.1091) | 0.2445 ** (0.1200) | 0.4568 *** (0.1133) | 0.3271 *** (0.1232) | 0.0942 (0.1888) | −0.0755 (0.2489) |
| GHG | −0.0349 (0.0517) | 0.0296 (0.0328) | 0.0608 ** (0.0292) | 0.0979 *** (0.0320) | −0.0081 (0.0193) | −0.0114 (0.0209) | −0.0175 (0.0320) | −0.0218 (0.0428) |
| GDP | 0.2478 (0.2207) | 0.0674 (0.1401) | −0.0197 (0.1241) | −0.1232 (0.1363) | −0.1660 (0.1250) | −0.0974 (0.1355) | 0.0257 (0.2072) | 0.1155 (0.2762) |
| GF | 0.0877 *** (0.0380) | 0.0238 (0.0242) | −0.0070 (0.0215) | −0.0437 ** (0.0236) | 0.0117 (0.0114) | 0.0080 (0.0124) | 0.0013 (0.0189) | −0.0034 (0.0253) |
| FD | 1.2114 (3.2152) | 3.6198 * (2.0404) | 4.7835 *** (1.8073) | 6.1658 *** (1.9861) | 5.7783 *** (1.4024) | 6.6914 *** (1.5208) | 8.3313 *** (2.3264) | 9.5270 *** (3.0966) |
| _cons | 27.0172 *** (12.3390) | 51.7080 *** (7.8539) | 63.6379 *** (7.0203) | 77.8096 *** (7.6768) | 9.8156 (6.3332) | 20.0963 *** (6.9153) | 38.5599 *** (10.6039) | 52.0227 *** (13.8265) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dincă, G.; Netcu, I.-C.; Ungureanu, C. Renewable Energy Transitions in the EU: A Comparative Panel Data Perspective. Energies 2025, 18, 4836. https://doi.org/10.3390/en18184836
Dincă G, Netcu I-C, Ungureanu C. Renewable Energy Transitions in the EU: A Comparative Panel Data Perspective. Energies. 2025; 18(18):4836. https://doi.org/10.3390/en18184836
Chicago/Turabian StyleDincă, Gheorghița, Ioana-Cătălina Netcu, and Camelia Ungureanu. 2025. "Renewable Energy Transitions in the EU: A Comparative Panel Data Perspective" Energies 18, no. 18: 4836. https://doi.org/10.3390/en18184836
APA StyleDincă, G., Netcu, I.-C., & Ungureanu, C. (2025). Renewable Energy Transitions in the EU: A Comparative Panel Data Perspective. Energies, 18(18), 4836. https://doi.org/10.3390/en18184836

