A Review of Offshore Renewable Energy for Advancing the Clean Energy Transition
Abstract
1. Introduction
- = levelized cost of electricity (USD/kWh);
- = capital expenditures (USD/kW), ~USD 5 k/kW Ofs fixed, ~USD 1.5 k/kW onshore;
- = fixed charge rate (amortization schedule, %/yr);
- = operational expenditures (USD/kW/yr);
- = net average energy produced (kWh/kW/yr).
Contribution and Organization of This Review
2. Offshore Wind
- = density of air (1.225 kg/m3);
- = swept area of the blades (m2);
- = wind speed (m/s);
- = conversion coefficient, to convert KE of wind into mechanical energy (Betz limit is 59.3%).
- -
- 2016 30 MW (5 × 6 MW), Block Island Wind Farm (13);
- -
- 2020 12 MW, (2 × 6 MW pilot), Coastal Virginia *;
- -
- 2023 132 MW (12 × 11 MW), South Fork Wind (12).
- -
- Revolution Wind, 704 MW (11);
- -
- Sunrise Wind, 924 MW (14);
- -
- Vineyard Wind 1, 806 MW (18);
- -
- Empire Wind 1, 810 MW *;
- -
- Coastal Virginia Offshore Wind, 2640 MW *.
Project/In Service | State(s) | Company | Start Construction | First Power | Size (MW) |
---|---|---|---|---|---|
Block Island | RI | Orsted | 2016 | 29 | |
Coastal Virginia Offshore Wind Pilot | VA | Dominion | 2020 | 12 | |
South Fork | RI, MA | Orsted (50%) and Global Infrastructure Partners (GIP) Skyborn Renewables unit (50%) | February 2022 | December 2023 | 132 |
Vineyard Wind 1 | MA | Iberdrola/Copenhagen Infrastructure Partners | November 2021 | January 2024 | 806 |
Revolution Wind | RI, MA | Orsted (50%) and Global Infrastructure Partners (GIP) Skyborn Renewables unit (50%) | 2023 | 2026 | 704 |
Coastal Virginia Offshore Wind (Commercial) | VA | Dominion (50%)/Stonepeak (50%) | November 2023 | 2026 | 2587 |
Empire Wind 1 | NY | Equinor | May 2024 | 2027 | 810 |
Sunrise Wind | RI, MA | Orsted | July 2024 | 2026 | 924 |
New England Wind 1 | MA | Iberdrola | 2025 | 2029 | 791 |
SouthCoast Wind 1 | MA | Ocean Winds (EDP/Engie) | late 2025 | 2030 | 1287 |
Community Offshore Wind 1 | NY, NJ | RWE/National Grid | 2027 | 2030 | 1314 |
MarWin | MD | US Wind owned by Toto Holding’s Renexia | 270 | ||
Atlantic Shores South 1 | NJ | EDF/Shell | 1510 | ||
Momentum Wind | MD | US Wind owned by Toto Holding’s Renexia | 809 | ||
Excelsior Wind | NY, NJ | Copenhagen Infrastructure Partners’ Vineyard Offshore | 1314 | ||
Leading Light | NY, NJ | Invenergy/energyRE | 2400 | ||
Vineyard Wind 2 | MA | Copenhagen Infrastructure Partners’ Vineyard Offshore | 1200 | ||
Community Offshore Wind 2 | NY, NJ | RWE/National Grid | 1300 | ||
New England Wind 2 | MA | Iberdrola |
2.1. Example Offshore Wind Development Process
2.2. Offshore Wind Support Structure Types
2.3. Wind Power Plant
2.4. Wind Turbine Power Converters
2.5. Offshore Wind Turbine Criticality
2.6. Offshore Wind Converter Resiliency
2.7. Offshore Wind Farms Incorporating Battery Energy Storage at Onshore Substations
- Hornsea 3 Offshore Wind Farm (2.9 GW), off England, Tesla batteries (600 MWh, 300 MW, fully operational in 2026);
- Revolution Wind Farm (704 MW), off Martha’s Vineyard, Tesla batteries (40 MWh);
- RWE (German) developing 41 MWh, 35 MW Li-ion battery storage to support offshore wind farms (Netherlands).
2.8. Offshore Wind Farm Substations
2.9. Offshore Wind Farm Wake Effects
3. Wave Energy
- = density of seawater (1025 kg/m3);
- = accel. due to gravity (9.8 m/s2);
- = period of wave (s) (average 6–8 s);
- = wave height (m) (average 1.5–3.5 m).
4. Tidal Energy
- = density of water (1025 kg/m3);
- = swept area of the turbine (m2);
- = velocity of the water flow (m/s);
- = power coefficient representing turbine’s efficiency (~35–45%, Betz limit is 59.3%).
5. Floating Solar Photovoltaics (FPVs)
6. Hybrid Energy Systems
7. Potential Environmental Impacts of Offshore Renewable Energy
- Habitat disturbances, which affect species abundance and displacement;
- Creation of new habitats, which may increase species and biodiversity;
- Changes in migratory paths and animal/mammal behaviors;
- Sea life and bird collisions, e.g., with fast-moving turbines;
- Upwelling changes, where deep, cold and nutrient-rich water rises to the surface could be reduced, reducing nutrient cycling and oxygen flows;
- Sediment transport affecting the shoreline, e.g., potential unintended erosion, as well as accumulation.
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sharma, V.K.; Monteleone, G.; Braccio, G.; Anyanwu, C.N.; Aneke, N.N. A Comprehensive Review of Green Energy Technologies: Towards Sustainable Clean Energy Transition and Global Net-Zero Carbon Emissions. Processes 2025, 13, 69. [Google Scholar] [CrossRef]
- Constant, C.; Clark, C.; Koleva, M.; Brunik, K.; Thomas, J.; Kotarbinski, M.; Niffenegger, J.; Weber, J. Energy Clusters Offshore: A Technology Feasibility Review; National Renewable Energy Laboratory (NREL): Golden, CO, USA, 2024. [Google Scholar] [CrossRef]
- International Energy Agency (IEA). Net Zero by 2050: A Roadmap for the Global Energy Sector. Available online: https://www.iea.org/reports/net-zero-by-2050 (accessed on 16 August 2025).
- Global Wind Energy Council (GWEC) Market Intelligence. Global Offshore Wind Report 2025. Available online: https://www.gwec.net/reports/globaloffshorewindreport#Download (accessed on 16 August 2025).
- International Energy Agency (IEA). World Energ1y Outlook 2024. Available online: https://www.iea.org/reports/world-energy-outlook-2024 (accessed on 16 August 2025).
- Draxl, C.; Hodge, B.M.; Clifton, A.; McCaa, J. Overview and Meteorological Validation of the Wind Integration National Dataset Toolkit; National Renewable Energy Laboratory (NREL): Golden, CO, USA, 2015. [Google Scholar] [CrossRef]
- Draxl, C.; Hodge, B.M.; Clifton, A.; McCaa, J. The Wind Integration National Dataset (WIND) Toolkit. Appl. Energy 2015, 151, 355–366. [Google Scholar] [CrossRef]
- Hodge, B.; King, J.; Clifton, A. Validation of Power Output for the WIND Toolkit; National Renewable Energy Laboratory (NREL): Golden, CO, USA, 2014. [Google Scholar] [CrossRef]
- Draxl, C.; Lieberman-Cribbin, W.; Clifton, A. Guide to Using the WIND Toolkit Validation Code; National Renewable Energy Laboratory (NREL): Golden, CO, USA, 2014. [Google Scholar] [CrossRef]
- NREL. Tribal Nation Offshore Wind Transmission Technical Assistance Program: Introduction to Technology and Tribal Nation Support. Available online: https://docs.nrel.gov/docs/fy24osti/89524.pdf (accessed on 11 August 2025).
- Rusu, E.; Onea, F. A review of the technologies for wave energy extraction. Clean Energy 2018, 2, 10–19. [Google Scholar] [CrossRef]
- Ocean Energy Council. Tidal Energy. Available online: https://www.oceanenergycouncil.com/ocean-energy/tidal-energy (accessed on 16 August 2025).
- Salialahi, D.F.; Blakers, A. Global Atlas of Marine Floating Solar PV Potential. Solar 2023, 3, 416–433. [Google Scholar] [CrossRef]
- International Energy Agency (IEA). Renewables 2024: Analysis and Forecasts to 2030. Available online: https://www.iea.org/reports/renewables-2024 (accessed on 16 August 2025).
- DNV. Floating Offshore Wind: The Next Five Years. Available online: https://www.dnv.com/focus-areas/floating-offshore-wind/floating-offshore-wind-the-next-five-years/ (accessed on 16 August 2025).
- Fuchs, R.; Zuckerman, G.; Duffy, P.; Shields, M.; Musial, W.; Beiter, P.; Cooperman, A.; Bredenkamp, S. The Cost of Offshore Wind Energy in the United States From 2025 to 2050; National Renewable Energy Laboratory (NREL): Golden, CO, USA, 2024. [Google Scholar] [CrossRef]
- Ocean Energy Europe. Ocean Energy: Stats & Trends 2024, April 2025. Available online: https://www.etipocean.eu/wp-content/uploads/2025/08/Ocean-Energy-Stats-Trends-2024.pdf (accessed on 16 August 2025).
- TNO, Floating Solar. Available online: https://www.tno.nl/en/sustainable/energy-supply/solar-applications/floating-solar-panels/ (accessed on 16 August 2025).
- IEA. Ocean Energy Systems (OES). Ocean Energy and Net Zero: An International Roadmap to Develop 300GW of Ocean Energy by 2050. Available online: https://www.ocean-energy-systems.org/publications/oes-documents/market-policy-/document/ocean-energy-and-net-zero-an-international-roadmap-to-develop-300gw-of-ocean-energy-by-2050/ (accessed on 16 August 2025).
- Mowbray, S. As Tidal Power Rides a Wave of Clean Energy Optimism, Pitfalls Persist. Available online: https://news.mongabay.com/2024/10/as-tidal-power-rides-a-wave-of-clean-energy-optimism-pitfalls-persist/ (accessed on 16 August 2025).
- Choi, D.; Park, S.; Park, N.; Hong, J. Is the Concept of ‘Grid Parity’ Defined Appropriately to Evaluate the Cost-Competitiveness of Renewable Energy Technologies? Energy Policy 2015, 86, 718–728. [Google Scholar] [CrossRef]
- Von Jouanne, A.; Brekken, T. Ocean and Geothermal Energy Systems. Proc. IEEE 2017, 105, 2147–2165. [Google Scholar] [CrossRef]
- Bru, J.; Seland, T.; Dai, J.; Jiang, Z. Life cycle cost analysis of an offshore floating photovoltaic concept in the North Sea. Renewable Energy 2025, 249, 122981. [Google Scholar] [CrossRef]
- Gadzanku, S.; Lee, N.; Dyreson, A. Enabling Floating Solar Photovoltaic (FPV) Deployment: Exploring the Operational Benefits of Floating Solar-Hydropower Hybrids; National Renewable Energy Laboratory (NREL): Golden, CO, USA, 2022. [Google Scholar] [CrossRef]
- Cazzaniga, R.; Cicu, M.; Rosa-Clot, M.; Rosa-Clot, P.; Tina, G.M.; Ventura, C. Floating photovoltaic plants: Performance analysis and design solutions. Renew. Sustain. Energy Rev. 2018, 81 Pt 2, 1730–1741. [Google Scholar] [CrossRef]
- Golroodbari, Z.; van Sark, W. Simulation of performance differences between offshore and land-based photovoltaic systems. Prog. Photovolt. Res. Appl. 2020, 28, 873–886. [Google Scholar] [CrossRef]
- Liu, G.; Guo, J.; Peng, H.; Ping, H.; Ma, Q. Review of Recent Offshore Floating Photovoltaic Systems. J. Mar. Sci. Eng. 2024, 12, 1942. [Google Scholar] [CrossRef]
- Liu, L.; Wang, Q.; Lin, H.; Li, H.; Sun, Q.; Wennersten, R. Power Generation Efficiency and Prospects of Floating Photovoltaic Systems. Energy Procedia 2017, 105, 1136–1142. [Google Scholar] [CrossRef]
- El Hammoumi, A.; Chalh, A.; Allouhi, A.; Motahhir, S.; El Ghzizal, A.; Derouich, A. Design and construction of a test bench to investigate the potential of floating PV systems. J. Clean. Prod. 2021, 278, 123917. [Google Scholar] [CrossRef]
- SolarPower Europe. Floating PV Best Practice Guidelines, Version 1.0; 2023. Available online: https://www.solarpowereurope.org/insights/thematic-reports/floating-pv-best-practice-guidelines-version-1-2 (accessed on 3 September 2025).
- Djalab, A.; Djalab, Z.; El Hammoumi, A.; Tina, G.M.; Motahhir, S.; Laouid, A.A. A comprehensive review of floating photovoltaic systems: Tech advances, marine environmental influences on offshore PV systems, and economic feasibility analysis. Sol. Energy 2024, 277, 112711. [Google Scholar] [CrossRef]
- NREL. Offshore Hybrid Energy Systems. Available online: https://docs.nrel.gov/docs/fy23osti/86200.pdf (accessed on 11 August 2025).
- U.S. Energy Information Administration. Glossary: Capacity factor. Available online: https://www.eia.gov/tools/glossary/index.php?id=Capacity_factor (accessed on 16 August 2025).
- Rehman, S.; Alhems, L.M.; Alam, M.M.; Wang, L.; Toor, Z. A review of energy extraction from wind and ocean: Technologies, merits, efficiencies, and cost. Ocean Eng. 2023, 267, 113192. [Google Scholar] [CrossRef]
- Wilk-Jakubowski, J.; Pawlik, L.; Wilk-Jakubowski, G.; Harabin, R. State-of-the-Art in the Use of Renewable Energy Sources on the Example of Wind, Wave Energy, Tidal Energy, and Energy Harvesting: A Review from 2015 to 2024. Energies 2025, 18, 1356. [Google Scholar] [CrossRef]
- Statista. Electricity Generation Worldwide from 1990 to 2024. Available online: https://www.statista.com/statistics/270281/electricity-generation-worldwide/ (accessed on 16 August 2025).
- von Krauland, A.K.; Long, Q.; Enevoldsen, P.; Jacobson, M.Z. United States offshore wind energy atlas: Availability, potential, and economic insights based on wind speeds at different altitudes and thresholds and policy-informed exclusions. Energy Convers. Manag. X 2023, 20, 100410. [Google Scholar] [CrossRef]
- McCoy, A.; Musial, W.; Hammond, R.; Mulas Hernando, D.; Duffy, P.; Beiter, P.; Perez, P.; Baranowski, R.; Reber, G.; Spitsen, P. Offshore Wind Market Report: 2024 Edition; National Renewable Energy Laboratory (NREL): Golden, CO, USA, 2024. [Google Scholar] [CrossRef]
- Offshore. Feds Shut Down Vineyard Wind Project Following Turbine Blade Failure. Available online: https://www.offshore-mag.com/renewable-energy/article/55127394/feds-shut-down-vineyard-wind-project-following-turbine-blade-failure (accessed on 16 August 2025).
- WBUR. Vineyard Wind Brings More Turbines Online, Expects to Complete Construction This Year. Available online: https://www.wbur.org/news/2025/07/25/vineyard-wind-turbines-construction (accessed on 16 August 2025).
- Reuters. US Offshore Wind Farms in Service, in Construction and Under Development. Available online: https://www.reuters.com/sustainability/climate-energy/us-offshore-wind-farms-service-construction-under-development-2025-01-24/ (accessed on 16 August 2025).
- U.S. Department of the Interior. Departmental Review Procedures for Decisions, Actions, Consultations, and Other Undertakings Related to Wind and Solar Energy Facilities. Available online: https://www.doi.gov/media/document/departmental-review-procedures-decisions-actions-consultations-and-other (accessed on 16 August 2025).
- U.S. Department of the Interior. Bureau of Safety and Environmental Enforcement. Available online: https://www.bsee.gov/about-bsee/renewable-energy (accessed on 11 August 2025).
- California Energy Commission (CEC). Wave and Tidal Energy Evaluation of Feasibility, Costs, and Benefits Senate Bill 605 Report; November 2024|CEC-700-2024-005; California Energy Commission (CEC): Sacramento, CA, USA, 2024. [Google Scholar]
- NREL. Offshore Wind Resource Assessment. Available online: https://www.nrel.gov/wind/offshore-resource (accessed on 11 August 2025).
- Nejad, A.R.; Keller, J.; Guo, Y.; Sheng, S.; Polinder, H.; Watson, S.; Dong, J.; Qin, Z.; Ebrahimi, A.; Schelenz, R.; et al. Wind turbine drivetrains: State-of-the-art technologies and future development trends. Wind Energ. Sci. 2022, 7, 387–411. [Google Scholar] [CrossRef]
- Blaabjerg, F.; Liserre, M.; Ma, K. Power electronics converters for wind turbine systems. IEEE T. Ind. Appl. 2011, 48, 708–719. [Google Scholar] [CrossRef]
- Von Jouanne, A.; Agamloh, E.; Yokochi, A. A Review of Matrix Converters in Motor Drive Applications. Energies 2025, 18, 164. [Google Scholar] [CrossRef]
- Ali, M.; Iqbal, A.; Khalid, M. A Review on Recent Advances in Matrix Converter Technology: Topologies, Control, Applications, and Future Prospects. Int. J. Energy Res. 2023, 2023, 6619262. [Google Scholar] [CrossRef]
- Bento, A.; Paraíso, G.; Costa, P.; Zhang, L.; Geury, T.; Pinto, S.F.; Silva, J.F. On the Potential Contributions of Matrix Converters for the Future Grid Operation, Sustainable Transportation and Electrical Drives Innovation. Appl. Sci. 2021, 11, 4597. [Google Scholar] [CrossRef]
- Cardenas, R.; Pena, R.; Wheeler, P.; Clare, J.; Asher, G. Control of the Reactive Power Supplied by a WECS Based on an Induction Generator Fed by a Matrix Converter. IEEE Trans. Ind. Electron. 2009, 56, 429–438. [Google Scholar] [CrossRef]
- Gili, C.; Lozano, G.D.; Péres, A.; Oliveira, S.V. Experimental study of a direct matrix converter driving an induction machine. In Proceedings of the XI Brazilian Power Electronics Conference, Natal, Brazil, 11–15 September 2011; pp. 232–237. [Google Scholar] [CrossRef]
- Abebe, R.; Vakil, G.; Lo Calzo, G.; Cox, T.; Lambert, S.; Johnson, M.; Gerada, C.; Mecrow, B. Integrated motor drives: State of the art and future trends. IET Electr. Power Appl. 2016, 10, 757–771. [Google Scholar] [CrossRef]
- Wang, J.; Li, Y.; Han, Y. Integrated Modular Motor Drive Design with GaN Power FETs. IEEE Trans. Ind. Appl. 2015, 51, 3198–3207. [Google Scholar] [CrossRef]
- Olloqui, A.; Elizondo, J.L.; Rivera, M.; Macias, M.E.; Micheloud, O.M.; Pena, R. Model-based predictive rotor current control strategy for indirect power control of a DFIM driven by an indirect matrix converter. IEEE Trans. Energy Convers. 2021, 36, 1510–1516. [Google Scholar] [CrossRef]
- von Jouanne, A.; Agamloh, E.; Yokochi, A. Power Hardware-in-the-Loop (PHIL): A Review to Advance Smart Inverter-Based Grid-Edge Solutions. Energies 2023, 16, 916. [Google Scholar] [CrossRef]
- Hernandez-Alvidrez, J.; Gurule, N.S.; Reno, M.J.; Flicker, J.D.; Summers, A.; Ellis, A. Method to Interface Grid-Forming Inverters into Power Hardware in the Loop Setups. In Proceedings of the 47th IEEE Photovoltaic Specialists Conference (PVSC), Calgary, ON, Canada, 15 June–21 August 2020; pp. 1804–1810. [Google Scholar] [CrossRef]
- Anttila, S.; Döhler, J.S.; Oliveira, J.G.; Boström, C. Grid Forming Inverters: A Review of the State of the Art of Key Elements for Microgrid Operation. Energies 2022, 15, 5517. [Google Scholar] [CrossRef]
- Vogel, S.; Nguyen, H.T.; Stevic, M.; Jensen, T.V.; Heussen, K.; Rajkumar, V.S.; Monti, A. Distributed Power Hardware-in-the-Loop Testing Using a Grid-Forming Converter as Power Interface. Energies 2020, 13, 3770. [Google Scholar] [CrossRef]
- U.S. Department of Energy. An Action Plan for Offshore Wind Transmission Development in the U.S. Atlantic Region. Available online: https://www.energy.gov/sites/default/files/2024-04/Atlantic_Offshore_Wind_Transmission_Plan_Report_v16_RELEASE_508C.pdf (accessed on 11 August 2025).
- DEME Installs Vineyard Wind 1 Offshore Substation, First in US. Available online: https://www.offshorewind.biz/2023/07/26/deme-installs-vineyard-wind-1-offshore-substation-first-in-us/ (accessed on 11 August 2025).
- European Academy of Wind Energy (EAWE). Wind Energy Science, Seasonal variability of wake impacts on US mid-Atlantic offshore wind plant power production. Wind. Energy Sci. 2024, 9, 555–583. Available online: https://wes.copernicus.org/articles/9/555/2024/ (accessed on 16 August 2025). [CrossRef]
- Wind Turbine ‘Wake Effect’ Could Reduce Arrays’ Power Output by 30%, Photo via NOAA. Available online: https://www.workboat.com/wind/wind-turbine-wake-effect-could-reduce-arrays-power-output-by-30 (accessed on 16 August 2025).
- Robertson, B.; Dunkle, G.; Mundon, T.; Kilcher, L. Wave resource spatial and temporal variability dependence on WEC size. Int. Mar. Energy J. 2022, 5, 113–121. [Google Scholar] [CrossRef]
- Eco Wave Power. EWP EDF One Pi|Isreal. Available online: https://www.ecowavepower.com/israel/ (accessed on 16 August 2025).
- Eco Wave Power. Portugal Project. Available online: https://www.ecowavepower.com/portugal-project/ (accessed on 16 August 2025).
- Eco Wave Power. Available online: https://www.ecowavepower.com/eco-wave-power-is-featured-in-a-new-report-by-the-international-renewable-energy-agency-irena-saying-future-projections-point-towards-point-absorbers-being-the-technology-to-dominate-the-market/ (accessed on 16 August 2025).
- International Renewable Energy Agency, (IRENA). Innovation Outlook, Ocean Energy Technologies. Available online: https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2020/Dec/IRENA_Innovation_Outlook_Ocean_Energy_2020.pdf (accessed on 16 August 2025).
- Eco Wave Power, How It Works. Available online: https://www.ecowavepower.com/our-technology/how-it-works/ (accessed on 16 August 2025).
- Rourke, O.F.; Boyle, F.; Reynolds, A. Tidal Energy Update 2009. J. Appl. Energy 2010, 87, 398–409. [Google Scholar] [CrossRef]
- Ocean Energy. Technology Readiness, Patents, Deployment Status and Outlook; International Renewable Energy Agency: Abu Dhabi, United Arab Emirates, 2014. [Google Scholar]
- Ocean Energy Systems (OES) International Energy Agency. Ocean Energy Systems; Ocean Energy Systems (OES) International Energy Agency: Paris, France, 2015. [Google Scholar]
- Ji, R.; Zheng, J.; Xue, M.; Sun, K.; Ye, Y.; Zhu, R.; Fernandez-Rodriguez, E.; Zhang, Y. Investigations on the performance and wake dynamics of a tidal stream turbine under different yaw-offset conditions. Phys. Fluids 2025, 37, 015192. [Google Scholar] [CrossRef]
- Qin, Z.; Tang, X.; Wu, Y.-T.; Lyu, S.-K. Advancement of Tidal Current Generation Technology in Recent Years: A Review. Energies 2022, 15, 8042. [Google Scholar] [CrossRef]
- Ray, R. TOPEX/Poseidon: Revealing Hidden Tidal Energy GSFC, NASA. Figure credit: R. Ray, NASA-GSFC, NASA-JPL, Scientific Visualization Studio, and Television Production NASA-TV/GSFC. Available online: https://svs.gsfc.nasa.gov/stories/topex/index.html (accessed on 8 September 2025).
- SAE, MeyGen. Available online: https://saerenewables.com/tidal-stream/meygen/ (accessed on 16 August 2025).
- Enerdata. China’s Jiangsu Province Unveils 27.3 GW Offshore Solar Development Plan. Available online: https://www.enerdata.net/publications/daily-energy-news/chinas-jiangsu-province-unveils-273-gw-offshore-solar-development-plan.html (accessed on 16 August 2025).
- Fan, S.; Ma, Z.; Liu, T.; Zhen, C.; Wang, H. Innovations and development trends in offshore floating photovoltaic systems: A comprehensive review. Energy Rep. 2025, 13, 1950–1958. [Google Scholar] [CrossRef]
- Panda, S.; Panda, B.; Kumar, R.; Sharma, K.; Pradhan, R.; Ranjan Kabat, S. Analyzing and evaluating floating PV systems in relation to traditional PV systems. Mater. Today Proc. 2023, 103, 162–167. [Google Scholar] [CrossRef]
- Ziar, H. Floating solar stations. In 10 Breakthrough Ideas Energy Next 10 Years; Delft University of Technology: Delft, The Netherlands, 2021; Volume 2, pp. 30–43. Available online: https://www.researchgate.net/publication/352172929_Floating_Solar_Stations (accessed on 8 September 2025).
- Ghigo, A.; Faraggiana, E.; Sirigu, M.; Mattiazzo, G.; Bracco, G. Design and Analysis of a Floating Photovoltaic System for Offshore Installation: The Case Study of Lampedusa. Energies 2022, 15, 8804. [Google Scholar] [CrossRef]
- Poulek, V.; Ales, Z.; Finsterle, T.; Libra, M.; Beránek, V.; Severová, L.; Belza, R.; Mrázek, J.; Kozelka, M.; Svoboda, R. Reliability characteristics of first-tier photovoltaic panels for agrivoltaic systems—Practical consequences. Int. Agrophys. 2024, 38, 383–391. [Google Scholar] [CrossRef]
- PV Magazine. Sinopec Launches China’s First Commercial Offshore Floating PV Project. Available online: https://www.pv-magazine.com/2025/07/04/sinopec-launches-chinas-first-commercial-offshore-floating-pv-project/ (accessed on 16 August 2025).
- Sustainability News. China Launches World’s Largest Open-Sea Solar Farm, Marking New Era for Offshore Solar. Available online: https://sustainability-news.net/sustainability-news/china-launches-worlds-largest-open-sea-solar-farm-marking-new-era-for-offshore-solar/ (accessed on 16 August 2025).
- CHN Energy. World’s Largest Open-Sea Offshore PV Project Begins Power Generation. Available online: https://www.ceic.com/gjnyjtwwEn/xwzx/202411/c315e1982ebc4a68844a7473a2734d18.shtml (accessed on 16 August 2025).
- Manolache, A.I.; Andrei, G. A Comprehensive Review of Multi-Use Platforms for Renewable Energy and Aquaculture Integration. Energies 2024, 17, 4816. [Google Scholar] [CrossRef]
- Murphy, C.A.; Schleifer, A.; Eurek, K. A taxonomy of systems that combine utility-scale renewable energy and energy storage technologies. Renew. Sustain. Energy Rev. 2021, 139, 110711. [Google Scholar] [CrossRef]
- Clark, C.; Barker, A.; King, J.; Reilly, J. Wind and Solar Hybrid Power Plants for Energy Resilience; National Renewable Energy Laboratory (NREL): Golden, CO, USA, 2022. [Google Scholar] [CrossRef]
- FCW, CrossWind’s Offshore Baseload Power Hub Begins Hydrogen Production for Grid Stability. Available online: https://fuelcellsworks.com/2025/05/14/hydrogen/crosswind-s-offshore-baseload-power-hub-begins-hydrogen-production-for-grid-stability (accessed on 16 August 2025).
- NREL. Considerations for Offshore-Wind-to-Hydrogen Systems in the United States, Kaitlin Brunik. Available online: https://docs.nrel.gov/docs/fy25osti/91273.pdf (accessed on 11 August 2025).
- Oceans of Energy. Hollandse Kust Noord Offshore Solar Project (HKN1). Available online: https://oceansofenergy.blue/hollandse-kust-noord-1-project/ (accessed on 16 August 2025).
- U.S. Offshore Wind Synthesis of Environmental Effects Research. Electromagnetic Field Effects on Marine Life. Report by National Renewable Energy Laboratory and Pacific Northwest National Laboratory for the U.S. Department of Energy, Wind Energy Technologies Office; 2022. Available online: https://research-hub.nrel.gov/en/publications/electromagnetic-field-effects-on-marine-life (accessed on 8 September 2025).
Offshore Power Generation Technology | LCOE [2] (USD/kWh) | TRL [2] 6—Technology Demo 7—Prototype Demo 8—Qualified System 9—Proven System | Capacity Factor (CF, %) | Global Power Generation (GW) | ||
---|---|---|---|---|---|---|
Installed | 2030 | 2050 | ||||
Wind (fixed) | 0.06–0.11 | 7–9 (high) | 45–50 [16] | 83 [4] | 210 [4,14] | 1600 [4] |
Wind (floating) | 0.07–0.17 | 7–8 (medium–high) | 40–46 [16] | 0.278 [4] | 2.6 [4,14] | 264 [15] |
Wave | 0.30–0.55 | 6 (medium) | 10–40 [11] | 0.028 [17] | 0.05 [17] | 180 [19] |
Tidal stream | 0.20–0.46 | 6 (medium) | 20–35 [12] | 0.040 [17] | 0.18 [17] | 120 [19] |
Floating PV (FPV) | 0.05–0.10 | 6–8 (medium–high) | 15–20 [13] | 0.010 [13] | 30 [13] | 45 [18] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
von Jouanne, A.; Agamloh, E.; Yokochi, A. A Review of Offshore Renewable Energy for Advancing the Clean Energy Transition. Energies 2025, 18, 4798. https://doi.org/10.3390/en18184798
von Jouanne A, Agamloh E, Yokochi A. A Review of Offshore Renewable Energy for Advancing the Clean Energy Transition. Energies. 2025; 18(18):4798. https://doi.org/10.3390/en18184798
Chicago/Turabian Stylevon Jouanne, Annette, Emmanuel Agamloh, and Alex Yokochi. 2025. "A Review of Offshore Renewable Energy for Advancing the Clean Energy Transition" Energies 18, no. 18: 4798. https://doi.org/10.3390/en18184798
APA Stylevon Jouanne, A., Agamloh, E., & Yokochi, A. (2025). A Review of Offshore Renewable Energy for Advancing the Clean Energy Transition. Energies, 18(18), 4798. https://doi.org/10.3390/en18184798