An Improved Sampling-Based Impedance Bridge
Abstract
1. Introduction
2. The 4TP Sampling-Based Bridge
2.1. Principle and Implementation
2.2. New Procedure—Analysis
- (1)
- Applying simultaneous sampling by both digitizers (ADC3 and ADC4) in forward (F) CROSS-MUX configuration: IN1 → OUT1, IN2 → OUT2);
- (2)
- Applying simultaneous sampling by both digitizers (ADC3 and ADC4) in reversed (R) CROSS-MUX configuration: IN1 → OUT2, IN2 → OUT1).
- 1—using only digitizer ADC3 with successive sampling (VH1 is measured in forward mode, VH2 in reversed mode);
- 2—using only digitizer ADC4 with successive sampling (VH2 is measured in forward mode, VH1 in reversed mode);
- 3—using both digitizers with simultaneous sampling in forward mode;
- 4—using both digitizers with simultaneous sampling in reversed mode.
2.3. New Procedure—Implementation
3. Methods
3.1. Digitizer Nonlinearity
3.2. Validation Test
4. Results
4.1. Digitizer Nonlinearity
4.2. Validation Test
- (1)
- Voltage ratio instability (type B), estimated at 1.5 × 10−7 (see [18]);
- (2)
- Balance threshold (type B), estimated at 0.8 × 10−6;
- (3)
- Digitizer’s nonlinearity (type B), results given in Section 4.1;
- (4)
- Measured voltage ratio value (type A), typically below 1 × 10−6.
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
SUT | Silesian University of Technology, Gliwice, Poland |
UZG | University of Zielona Góra, Zielona Góra, Poland |
GUM | Central Office of Measures, Warsaw, Poland |
INRIM | Istituto Nazionale di Ricerca Metrologica, Torino, Italy |
METAS | Federal Institute of Metrology, Bern, Switzerland |
NMI | National Metrology Institute |
4TP | Four-terminal pair, type of terminals |
ADC | Analog to digital converter |
DAC | Digital to analog converter |
PXI | PCI Extensions for Instrumentation |
SMD | Surface mount device |
CROSS-MUX | Cross-multiplexer |
DFT | Discrete Fourier Transform |
NI | National Instruments, producer of automated test equipment, Austin, USA |
References
- Mašlán, S.; He, H.; Bergsten, T.; Seitz, S.; Heins, T.P. Interlaboratory comparison of battery impedance analyzers calibration. Measurement 2023, 218, 113176. [Google Scholar] [CrossRef]
- Barsoukov, E.; Macdonald, J.R. Impedance Spectroscopy: Theory, Experiment, and Applications; Wiley: Hoboken, NJ, USA, 2018. [Google Scholar]
- Xiao, Y.; Huang, X.; Meng, J.; Zhang, Y.; Knap, V.; Stroe, D.-I. Electrochemical Impedance Spectroscopy-Based Characterization and Modeling of Lithium-Ion Batteries Based on Frequency Selection. Batteries 2025, 11, 11. [Google Scholar] [CrossRef]
- Kanoun, O. (Ed.) Impedance Spectroscopy/Advanced Applications: Battery Research, Bioimpedance, System Design; Springer: Berlin/Heidelberg, Germany, 2021. [Google Scholar]
- Pandey, L.; Kumar, D.; Parkash, O.; Pandey, S. Analytical Impedance Spectroscopy; CRC Press: Boca Raton, FL, USA, 2024. [Google Scholar]
- Overney, F.; Jeanneret, B. Impedance bridges: From Wheatstone to Josephson. Metrologia 2018, 55, 119–134. [Google Scholar] [CrossRef]
- Ortolano, M.; Marzano, M.; Overney, F.; Eichenberger, A.L.; Kucera, J.; D’Elia, V. An International Trilateral Comparison Among the Newest Generations of Digital and Josephson Impedance Bridges. IEEE Trans. Instrum. Meas. 2025, 74, 1501009. [Google Scholar] [CrossRef]
- Ortolano, M.; Palafox, L.; Kučera, J.; Callegaro, L.; D’Elia, V.; Marzano, M.; Overney, F.; Gülmez, G. An international comparison of phase angle standards between the novel impedance bridges of CMI, INRIM and METAS. Metrologia 2018, 55, 499–512. [Google Scholar] [CrossRef]
- Mašláň, S.; Šíra, M.; Skalická, T.; Bergsten, T. Four-Terminal Pair Digital Sampling Impedance Bridge up to 1MHz. IEEE Trans. on Instr. Meas. 2019, 68, 1860–1869. [Google Scholar] [CrossRef]
- Overney, F.; Jeanneret, B. RLC Bridge Based on an Automated Synchronous Sampling System. IEEE Trans. Instr. Meas. 2011, 60, 2393–2398. [Google Scholar] [CrossRef]
- Pimsut, Y.; Bauer, S.; Karus, M.; Behr, R.; Kruskopf, M.; Kieler, O.; Palafox, L. Development and implementation of an automated four terminal-pair Josephson impedance bridge. Metrologia 2024, 61, 025007. [Google Scholar] [CrossRef]
- Overney, F.; Flowers-Jacobs, N.E.; Jeanneret, B.; Rufenacht, A.; Fox, A.E.; Underwood, J.M.; Koffman, A.D.; Benz, S.P. Josephson-based full digital bridge for high-accuracy impedance comparison. Metrologia 2016, 53, 1045–1053. [Google Scholar] [CrossRef]
- Bauer, S.; Behr, R.; Hagen, T.; Kieler, O.; Lee, J.; Palafox, L.; Schurr, J. A novel two-terminal-pair pulse-driven Josephson impedance bridge linking a 10 nF capacitance standard to the quantized Hall resistance. Metrologia 2017, 54, 152–160. [Google Scholar] [CrossRef]
- Bauer, S.; Behr, R.; Elmquist, R.E.; Götz, M.; Herick, J.; Kieler, O.; Kruskop, M.; Lee, J.; Palafox, L.; Pimsut, Y. A Four-terminal-pair Josephson impedance bridge combined with a graphene-quantized Hall resistance. Meas. Sci. Technol. 2021, 32, 065007. [Google Scholar] [CrossRef]
- Kibble, B.P. Four terminal-pair to anything else! In Proceedings of the IEE Colloquium on Interconnections from DC to Microwaves (Ref. No. 1999/019), London, UK, 18 February 1999; pp. 6/1–6/6. [Google Scholar]
- Awan, S.; Kibble, B.; Schurr, J. Coaxial Electrical Circuits for Interference-Free Measurements (Electrical Measurement); IET: Edison, NJ, USA, 2010. [Google Scholar]
- Musioł, K.; Kampik, M.; Ziółek, A.; Jursza, J. Experiences with a new sampling-based four-terminal-pair digital impedance bridge. Measurement 2022, 205, 112159. [Google Scholar] [CrossRef]
- Kampik, M.; Musioł, K. Investigations of the high-performance source of digitally synthesized sinusoidal voltage for primary impedance metrology. Measurement 2021, 168, 108308. [Google Scholar] [CrossRef]
- Musioł, K.; Kampik, M. Development of four-terminal sampling-based digital impedance bridge. Metrol. Meas. Syst. 2025, 32, 1–9. [Google Scholar] [CrossRef]
- Augustyn, J.; Kampik, M.; Musioł, K. Investigation of Selected Reconstruction Algorithms Used for Determination of Complex Ratio of AC Voltages. IEEE Trans. Instrum. Meas. 2021, 70, 1503209. [Google Scholar] [CrossRef]
- Callegaro, L. On strategies for automatic bridge balancing. IEEE Trans. Instrum. Meas. 2005, 54, 529–532. [Google Scholar] [CrossRef]
- Ortolano, M.; Marzano, M.; D’Elia, V.; Tran, N.T.M.; Rybski, R.; Kaczmarek, J.; Kozioł, M.; Musioł, K.; Christensen, A.E.; Callegaro, L.; et al. A Comprehensive Analysis of Error Sources in Electronic Fully Digital Impedance Bridges. IEEE Trans. Instrum. Meas. 2021, 70, 1500914. [Google Scholar] [CrossRef]
- Kampik, M.; Kubiczek, K.; Musioł, K.; Zawadzki, P.; Ziółek, A.; Jursza, J.; Koszarny, M. Linearity measurement of digitizers used in sampling-based digital impedance bridges by the method of permuting capacitors. Metrol. Hallmark 2024, 1, 1–9. [Google Scholar]
- Shin, S.S.; Kim, W.-S.; Kim, D.B. Characterization of an automated permuting capacitive device for AC voltage ratio calibration. IEEE Trans. Instrum. Meas. 2025, 74, 1013207. [Google Scholar] [CrossRef]
- Hsu, J.C.; Gong, J.; Huang, C.-F. An automated permuting capacitor device for calibration of IVDs. IEEE Trans. Instrum. Meas. 2014, 63, 2271–2278. [Google Scholar] [CrossRef]
- Cutkosky, R.D.; Shields, J.Q. The precision measurement of transformer ratios. NBS Spec. Publ. 1968, 300–303, 349. [Google Scholar] [CrossRef]
- Kampik, M.; Musioł, K.; Rybski, R.; Kaczmarek, J.; Kozioł, M.; Koszarny, M.; Ziółek, A.; Jursza, J.; Zawadzki, P. Temperature Dependence of the New Calibration Infrastructure for Impedance Metrology. Energies 2025, 18, 3018. [Google Scholar] [CrossRef]
Standards Compared | Reference Impedance Ratio ΓR | Measured Impedance Ratio ΓM | |||
---|---|---|---|---|---|
Real [ΓR] | Imag [ΓR] | U (Real [ΓR]) = U (Imag [ΓR]) × 10−6 | Real [ΓM] | Imag [ΓM] | |
100 kΩ vs. 1 nF | 0.0003021 | 0.6296467 | 8 | 0.0003040 | 0.6296461 |
10 kΩ vs. 10 nF | 0.0000313 | 0.6295612 | 6 | 0.0000313 | 0.6295647 |
1 kΩ vs. 100 nF | 0.0000094 | 0.6295605 | 6 | 0.0000074 | 0.6295629 |
100 Ω vs. 1 μF | 0.0000051 | 0.6295839 | 6 | 0.0000036 | 0.6295878 |
10 Ω vs. 10 μF | 0.0000732 | 0.6295696 | 8 | 0.0000682 | 0.6295685 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kampik, M.; Musioł, K.; Rybski, R.; Kaczmarek, J.; Kozioł, M.; Augustyn, J.; Ziółek, A.; Jursza, J.; Koszarny, M. An Improved Sampling-Based Impedance Bridge. Energies 2025, 18, 4733. https://doi.org/10.3390/en18174733
Kampik M, Musioł K, Rybski R, Kaczmarek J, Kozioł M, Augustyn J, Ziółek A, Jursza J, Koszarny M. An Improved Sampling-Based Impedance Bridge. Energies. 2025; 18(17):4733. https://doi.org/10.3390/en18174733
Chicago/Turabian StyleKampik, Marian, Krzysztof Musioł, Ryszard Rybski, Janusz Kaczmarek, Mirosław Kozioł, Jerzy Augustyn, Adam Ziółek, Jolanta Jursza, and Maciej Koszarny. 2025. "An Improved Sampling-Based Impedance Bridge" Energies 18, no. 17: 4733. https://doi.org/10.3390/en18174733
APA StyleKampik, M., Musioł, K., Rybski, R., Kaczmarek, J., Kozioł, M., Augustyn, J., Ziółek, A., Jursza, J., & Koszarny, M. (2025). An Improved Sampling-Based Impedance Bridge. Energies, 18(17), 4733. https://doi.org/10.3390/en18174733