Torrefaction of Hazelnut Shells: The Effects of Temperature and Retention Time on Energy Yield and Fuel Characteristics
Abstract
1. Introduction
2. Torrefaction and Its Key Process Parameters
2.1. Torrefaction Process
2.2. Key Process Parameters
2.3. Torrefaction of Hazelnut Shells
3. Materials and Methods
3.1. Torrefaction System
3.2. Biomass Feedstock
3.3. Analytical Methods
3.4. Calculation of Performance Indicators
3.5. Selection of Experimental Parameters
3.6. Experimental Procedure
4. Results and Discussions
4.1. Feedstock Characteristics
4.2. Characteristics of Produced Biofuels
4.3. Effect of Process Parameters on Torrefied Biomass Properties
4.4. Discussion and Comparison with Literature
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kung, C.-C.; Lee, T.-J.; Chen, L.-J. Economic Growth and Environmental Sustainability from Renewable Energy Applications. Energy Explor. Exploit. 2021, 39, 531–535. [Google Scholar] [CrossRef]
- Ogoshi, R.; Turano, B.; Uehara, G.; Yanagida, J.; Illukpitiya, P.; Brewbaker, J.; Carpenter, J. Evaluation of Cellulosic Feedstocks for Biofuel Production. In Bioenergy and Biofuel from Biowastes and Biomass; American Society of Civil Engineers: Washington, DC, USA, 2013; pp. 130–157. [Google Scholar] [CrossRef]
- Arias, B.; Pevida, C.; Fermoso, J.; Plaza, M.G.; Rubiera, F.; Pis, J.J. Influence of Torrefaction on the Grindability and Reactivity of Woody Biomass. Fuel Process. Technol. 2008, 89, 169–175. [Google Scholar] [CrossRef]
- Kutlu, O.; Aydin-Kandemir, F.; Sarptas, H. Assessing Primary Areas for a Sustainable Biochar Application in Soil by Using GIS-Based Multi-Criteria Evaluation. Clean Technol. Environ. Policy 2021, 23, 2443–2455. [Google Scholar] [CrossRef]
- Cotana, F.; Coccia, V.; Cavalaglio, G.; Barbanera, M.; Petrozzi, A. Chapter 5—Biomass-Based Systems. In Polygeneration Systems; Calise, F., Dentice D’Accadia, M., Vanoli, L., Vicidomini, M., Eds.; Academic Press: New York, NY, USA, 2022; pp. 137–192. ISBN 978-0-12-820625-6. [Google Scholar]
- Umakanth, A.V.; Datta, A.; Reddy, B.S.; Bardhan, S. Chapter 3—Biomass Feedstocks for Advanced Biofuels: Sustainability and Supply Chain Management. In Advanced Biofuel Technologies; Tuli, D., Kasture, S., Kuila, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 39–72. ISBN 978-0-323-88427-3. [Google Scholar]
- Hanif, M.A.; Nadeem, F.; Tariq, R.; Rashid, U. Chapter 9—Renewable Energy from Biomass. In Renewable and Alternative Energy Resources; Hanif, M.A., Nadeem, F., Tariq, R., Rashid, U., Eds.; Academic Press: New York, NY, USA, 2022; pp. 555–603. ISBN 978-0-12-818150-8. [Google Scholar]
- Shankar Tumuluru, J.; Sokhansanj, S.; Hess, J.R.; Wright, C.T.; Boardman, R.D. A Review on Biomass Torrefaction Process and Product Properties for Energy Applications. Ind. Biotechnol. 2011, 7, 384–401. [Google Scholar] [CrossRef]
- Maibam, P.D.; Goyal, A. Pretreatment Methods for Overcoming Biomass Recalcitrance. In Enzymes in the Valorization of Waste; CRC Press: Boca Raton, FL, USA, 2022; ISBN 978-1-003-18771-4. [Google Scholar]
- Sahay, S. Impact of Pretreatment Technologies for Biomass to Biofuel Production. In Substrate Analysis for Effective Biofuels Production; Srivastava, N., Srivastava, M., Mishra, P.K., Gupta, V.K., Eds.; Springer: Singapore, 2020; pp. 173–216. ISBN 978-981-329-607-7. [Google Scholar]
- Shah, A.A.; Seehar, T.H.; Sharma, K.; Toor, S.S. Chapter 7—Biomass Pretreatment Technologies. In Hydrocarbon Biorefinery; Maity, S.K., Gayen, K., Bhowmick, T.K., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 203–228. ISBN 978-0-12-823306-1. [Google Scholar]
- Javanmard, A.; Abdul Patah, M.F.; Zulhelmi, A.; Daud, W.M.A.W. A Comprehensive Overview of the Continuous Torrefaction Method: Operational Characteristics, Applications, and Challenges. J. Energy Inst. 2023, 108, 101199. [Google Scholar] [CrossRef]
- Keivani, B.; Gultekin, S.; Olgun, H.; Atimtay, A.T. Torrefaction of Pine Wood in a Continuous System and Optimization of Torrefaction Conditions. Int. J. Energy Res. 2018, 42, 4597–4609. [Google Scholar] [CrossRef]
- Cahyanti, M.N.; Doddapaneni, T.R.K.C.; Madissoo, M.; Pärn, L.; Virro, I.; Kikas, T. Torrefaction of Agricultural and Wood Waste: Comparative Analysis of Selected Fuel Characteristics. Energies 2021, 14, 2774. [Google Scholar] [CrossRef]
- Doddapaneni, T.R.K.C.; Pärn, L.; Kikas, T. Torrefaction of Pulp Industry Sludge to Enhance Its Fuel Characteristics. Energies 2022, 15, 6175. [Google Scholar] [CrossRef]
- Iroba, K.L.; Baik, O.-D.; Tabil, L.G. Torrefaction of Biomass from Municipal Solid Waste Fractions II: Grindability Characteristics, Higher Heating Value, Pelletability and Moisture Adsorption. Biomass Bioenergy 2017, 106, 8–20. [Google Scholar] [CrossRef]
- Lee, B.-H.; Sh, L.; Lee, D.-G.; Jeon, C.-H. Effect of Torrefaction and Ashless Process on Combustion and NOx Emission Behaviors of Woody and Herbaceous Biomass. Biomass Bioenergy 2021, 151, 106133. [Google Scholar] [CrossRef]
- Majamo, S.L.; Amibo, T.A. Modeling and Optimization of Chemical-Treated Torrefaction of Wheat Straw to Improve Energy Density by Response Surface Methodology. Biomass Conv. Bioref. 2023, 14, 21213–21227. [Google Scholar] [CrossRef]
- Niu, Y.; Lv, Y.; Lei, Y.; Liu, S.; Liang, Y.; Wang, D.; Hui, S. Biomass Torrefaction: Properties, Applications, Challenges, and Economy. Renew. Sustain. Energy Rev. 2019, 115, 109395. [Google Scholar] [CrossRef]
- Ramakrishna, V.; Singh, A.K.; Bayen, G.K.; Masto, R.E.; Meena, R.K.; Singh, P.K.; Arya, M.; Jyoti, S.; Usham, A.L. Torrefaction of Agro-Wastes (Palmyra Palm Shell and Redgram Stalk): Characterization of the Physicochemical Properties and Mechanical Strength of Binderless Pellets. Biomass Conv. Bioref. 2023, 13, 6953–6971. [Google Scholar] [CrossRef]
- Yu, Y.; Zhu, Z.; Wang, L.; Wang, G.; Bai, X. Effect of Torrefaction Treatment on Physical and Fuel Properties of Caragana (Caragana Korshinskii) Pellets. Bioenerg. Res. 2021, 14, 1277–1288. [Google Scholar] [CrossRef]
- FAO FAOSTAT—Crops and Livestock Products. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 11 June 2024).
- TEPGE. Hazelnut Crop Report 2022; Turkish Agricultural Economic and Policy Development Institıte: Ankara, Turkey, 2022. [Google Scholar]
- Chen, W.-H.; Peng, J.; Bi, X.T. A State-of-the-Art Review of Biomass Torrefaction, Densification and Applications. Renew. Sustain. Energy Rev. 2015, 44, 847–866. [Google Scholar] [CrossRef]
- Cruz-Lopes, L.; Duarte, J.; Dulyanska, Y.; Guiné, R.P.F.; Esteves, B. Enhancing Liquefaction Efficiency: Exploring the Impact of Pre-Hydrolysis on Hazelnut Shell (Corylus avellana L.). Materials 2024, 17, 2667. [Google Scholar] [CrossRef]
- Haykiri-Acma, H.; Yaman, S.; Kucukbayrak, S. Effects of Torrefaction on Lignin-Rich Biomass (Hazelnut Shell): Structural Variations. J. Renew. Sustain. Energy 2017, 9, 063102. [Google Scholar] [CrossRef]
- Manterola-Barroso, C.; Padilla Contreras, D.; Ondrasek, G.; Horvatinec, J.; Gavilán CuiCui, G.; Meriño-Gergichevich, C. Hazelnut and Walnut Nutshell Features as Emerging Added-Value Byproducts of the Nut Industry: A Review. Plants 2024, 13, 1034. [Google Scholar] [CrossRef]
- Bergman, P.C.; Boersma, A.R.; Zwart, R.W.; Kiel, J.H. Torrefaction for Biomass Co-Firing in Existing Coal-Fired Power Station; Energy Research Centre of the Netherlands (ECN): Petten, The Netherlands, 2005. [Google Scholar]
- Devekiran, G. Investigation of Biochar Production Process and Determination of Optimum Process Parameters: Pine Shavings and Nut Shells. Ph.D. Thesis, Ege University, Bornova, Turkey, 2019. [Google Scholar]
- Wang, L.; Barta-Rajnai, E.; Skreiberg, Ø.; Khalil, R.; Czégény, Z.; Jakab, E.; Barta, Z.; Grønli, M. Impact of Torrefaction on Woody Biomass Properties. Energy Procedia 2017, 105, 1149–1154. [Google Scholar] [CrossRef]
- Yue, Y.; Singh, H.; Singh, B.; Mani, S. Torrefaction of Sorghum Biomass to Improve Fuel Properties. Bioresour. Technol. 2017, 232, 372–379. [Google Scholar] [CrossRef]
- Anukam, A.; Berghel, J.; Anukam, A.; Berghel, J. Biomass Pretreatment and Characterization: A Review. In Biotechnological Applications of Biomass; IntechOpen: London, UK, 2020; ISBN 978-1-83881-182-2. [Google Scholar]
- Pach, M.; Zanzi, R.; Björnbom, E. Torrefied Biomass a Substitute for Wood and Charcoal. In Proceedings of the 6th Asia-Pacific International Symposium on Combustion and Energy Utilization, Kuala Lumpur, Malaysia, 20–22 May 2002. [Google Scholar]
- Acharya, B.; Sule, I.; Dutta, A. A Review on Advances of Torrefaction Technologies for Biomass Processing. Biomass Convers. Biorefinery 2012, 2, 349–369. [Google Scholar] [CrossRef]
- Pentananunt, R.; Rahman, A.N.M.M.; Bhattacharya, S.C. Upgrading of Biomass by Means of Torrefaction. Energy 1990, 15, 1175–1179. [Google Scholar] [CrossRef]
- Phanphanich, M.; Mani, S. Impact of Torrefaction on the Grindability and Fuel Characteristics of Forest Biomass. Bioresour. Technol. 2011, 102, 1246–1253. [Google Scholar] [CrossRef]
- Hakkou, M.; Pétrissans, M.; Gérardin, P.; Zoulalian, A. Investigations of the Reasons for Fungal Durability of Heat-Treated Beech Wood. Polym. Degrad. Stab. 2006, 91, 393–397. [Google Scholar] [CrossRef]
- Kleinhans, U.; Wieland, C.; Frandsen, F.J.; Spliethoff, H. Ash Formation and Deposition in Coal and Biomass Fired Combustion Systems: Progress and Challenges in the Field of Ash Particle Sticking and Rebound Behavior. Prog. Energy Combust. Sci. 2018, 68, 65–168. [Google Scholar] [CrossRef]
- Waheed, A.; Naqvi, S.R.; Ali, I. Co-Torrefaction Progress of Biomass Residue/Waste Obtained for High-Value Bio-Solid Products. Energies 2022, 15, 8297. [Google Scholar] [CrossRef]
- Prasongthum, N.; Duangwongsa, N.; Khowattana, P.; Suemanotham, A.; Wongharn, P.; Thanmongkhon, Y.; Reubroycharoen, P.; Attanatho, L. Influence of Torrefaction on Yields and Characteristics of Densified Solid Biofuel. J. Phys. Conf. Ser. 2022, 2175, 012027. [Google Scholar] [CrossRef]
- Iglesias Canabal, A.; Proupín Castiñeiras, J.; Rodríguez Añón, J.A.; Eimil Fraga, C.; Rodríguez Soalleiro, R. Predicting the Energy Properties of Torrefied Debarked Pine Pellets from Torrefaction Temperature and Residence Time. Renew. Energy 2023, 218, 119346. [Google Scholar] [CrossRef]
- Ivanovski, M.; Goričanec, D.; Urbancl, D. The Thermochemical Conversion of Municipal Solid Waste by Torrefaction Process. Thermo 2023, 3, 277–288. [Google Scholar] [CrossRef]
- Dirgantara, M.; Karelius, K.; Rumbang, N. Significance of Torrefaction Effect on Energy Properties Palm Kernel Shell. JPSE (J. Phys. Sci. Eng.) 2023, 8, 119–129. [Google Scholar] [CrossRef]
- Molenda, J.; Zacharski, P.; Swat, M. Torrefaction of Flax Shives as a Process of Preparation Waste Vegetable Biomass for Energy Purposes. Environ. Prot. Nat. Resour. 2023, 34, 147–153. [Google Scholar] [CrossRef]
- Saadon, S.Z.A.H.; Osman, N.B.; Damodaran, M.; Liew, S.E. Torrefaction of Napier Grass and Oil Palm Petiole Waste Using Drop-Type Fixed-Bed Pyrolysis Reactor. Materials 2022, 15, 2890. [Google Scholar] [CrossRef]
- Molenda, J. Badanie właściwości energetycznych biowęgli z odpadowej biomasy roślinnej za pomocą różnicowej kalorymetrii skaningowej. Chem. Rev. 2024, 1, 95–98. [Google Scholar] [CrossRef]
- Mahmood, M.A.; Ceylan, S. Insights into Reaction Modeling and Product Characterization of Hazelnut Shell Pyrolysis. Bioenerg. Res. 2022, 15, 1281–1291. [Google Scholar] [CrossRef]
- Zhao, C.; Liu, X.; Chen, A.; Chen, J.; Lv, W.; Liu, X. Characteristics Evaluation of Bio-Char Produced by Pyrolysis from Waste Hazelnut Shell at Various Temperatures. Energy Sources Part A Recovery Util. Environ. Eff. 2020, 46, 7403–7413. [Google Scholar] [CrossRef]
- Yang, X.; Zhao, Y.; Zhang, L.; Wang, Z.; Zhao, Z.; Zhu, W.; Ma, J.; Shen, B. Effects of Torrefaction Pretreatment on the Structural Features and Combustion Characteristics of Biomass-Based Fuel. Molecules 2023, 28, 4732. [Google Scholar] [CrossRef]
- ASTM 7582-15; Standard Test Methods for Proximate Analysis of Coal and Coke by Macro Thermogravimetric Analysis. ASTM International: West Conshohocken, PA, USA, 2015.
- ASTM D5373-14e2; Standard Test Methods for Determination of Carbon, Hydrogen and Nitrogen in Analysis Samples of Coal and Carbon in Analysis Samples of Coal and Coke. ASTM International: West Conshohocken, PA, USA, 2016.
- ASTM E1755-01; Standard Test Method for Ash in Biomass. ASTM International: West Conshohocken, PA, USA, 2001.
- ASTM D7582-15; Standard Practice for Proximate Analysis of Coal and Coke. ASTM International: West Conshohocken, PA, USA, 2013.
- ASTM D4239-14e2; Standard Test Methods for Sulfur in the Analysis Sample of Coal and Coke Using High-Temperature Tube Furnace Combustion. ASTM International: West Conshohocken, PA, USA, 2014.
- ATSTM D3176-09; Standard Practice for Ultimate Analysis of Coal and Coke. ASTM International: West Conshohocken, PA, USA, 2009.
- ASTM D5865-13; Standard Test Method for Gross Calorific Value of Coal and Coke. ASTM International: West Conshohocken, PA, USA, 2013.
- ISO 1928:2009; Solid Mineral Fuels—Determination of Gross Calorific Value by the Bomb Calorimetric Method and Calculation of Net Calorific Value. ISO: Geneva, Switzerland, 2009.
- McCaffrey, Z.; Torres, L.; Chiou, B.-S.; Ferreira, S.R.; Silva, L.E.; Wood, D.F.; Orts, W.J. Torrefaction of Almond and Walnut Byproducts. Front. Energy Res. 2021, 9, 643306. [Google Scholar] [CrossRef]
- Noszczyk, T.; Dyjakon, A.; Koziel, J.A. Kinetic Parameters of Nut Shells Pyrolysis. Energies 2021, 14, 682. [Google Scholar] [CrossRef]
- Brachi, P.; Miccio, F.; Ruoppolo, G.; Miccio, M. Pressurized Steam Torrefaction of Biomass: Focus on Solid, Liquid, and Gas Phase Distributions. Ind. Eng. Chem. Res. 2017, 56, 12163–12173. [Google Scholar] [CrossRef]
- Zheng, A.; Jiang, L.; Zhao, Z.; Huang, Z.; Zhao, K.; Wei, G.; Wang, X.; He, F.; Li, H. Impact of Torrefaction on the Chemical Structure and Catalytic Fast Pyrolysis Behavior of Hemicellulose, Lignin, and Cellulose. Energy Fuels 2015, 29, 8027–8034. [Google Scholar] [CrossRef]
- Klimek, K.E.; Kordali, S.; Borkowska, A.; Yilmaz, F.; Maj, G. Energy Assessment of Hazelnut Shells (Corylus avellana L.) of Selected Turkish Varieties. Energies 2025, 18, 3612. [Google Scholar] [CrossRef]
- Mukherjee, A.; Okolie, J.A.; Niu, C.; Dalai, A.K. Experimental and Modeling Studies of Torrefaction of Spent Coffee Grounds and Coffee Husk: Effects on Surface Chemistry and Carbon Dioxide Capture Performance. ACS Omega 2022, 7, 638–653. [Google Scholar] [CrossRef] [PubMed]
Analysis | Standard Used | Analysis | Standard Used |
---|---|---|---|
Proximate analysis | Ultimate analysis | ||
Moisture | ASTM 7582-15 [50] | C | ASTM D 5373-14e2 [51] |
Volatile matter | ASTM 7582-15 | H | ASTM D 5373-14e2 |
Ash | ASTM E 1755-01 [52] | N | ASTM D 5373-14e2 |
Fixed carbon | ASTM D 3172-13 [53] | S | ASTM D 4239-14e2 [54] |
O | ASTM D 3176-09 [55] | ||
Heating value | |||
Higher HV (HHV) | ASTM D 5865-13 [56] | ||
Lower HV (LHV) | ISO 1928-09 [57] |
Parameter | Weight (%) | Parameter | Original Basis | Dry Basis |
---|---|---|---|---|
C | 56.34 | Content (% by weight) | ||
H | 5.35 | Moisture | 11.72 | - |
N | 0.51 | Volatile Matters | 70.24 | 74.49 |
S | 0.07 | Ash | 1.43 | 1.51 |
O | 36.06 | Fixed Carbon | 22.61 | 24.00 |
Heating Value (MJ/kg) | ||||
LHV | 18.10 | 19.34 | ||
HHV | 19.36 | 20.54 |
Temp. (°C) | Ret. Time (min) | Moisture (%) | Volatile Matter (%) | Ash (%) | Fixed Carbon (%) | |
---|---|---|---|---|---|---|
Feedstock (original) | - | - | 11.72 | 70.24 | 1.43 | 22.61 |
Feedstock (dry) | - | - | - | 74.49 | 1.51 | 24.00 |
Torrefied biomass | 260 | 30 | 0.77 | 70.46 | 1.48 | 27.29 |
260 | 60 | 0.54 | 66.36 | 1.38 | 31.72 | |
280 | 30 | 0.63 | 68.41 | 1.40 | 29.56 | |
280 | 60 | 0.54 | 58.40 | 1.60 | 39.46 | |
300 | 30 | 0.58 | 62.44 | 2.15 | 34.83 | |
300 | 60 | 0.53 | 49.38 | 2.29 | 47.80 |
Temp. (°C) | Ret. Time (min) | LHV (MJ/kg) | HHV (MJ/kg) | |||
---|---|---|---|---|---|---|
Original | Dry | Original | Dry | |||
Feedstock | - | - | 18.10 | 19.34 | 19.36 | 20.54 |
Torrefied biomass | 260 | 30 | 20.39 | 20.57 | 21.44 | 21.60 |
260 | 60 | 21.71 | 21.83 | 22.72 | 22.83 | |
280 | 30 | 20.22 | 20.43 | 22.25 | 22.95 | |
280 | 60 | 22.87 | 23.00 | 23.88 | 23.93 | |
300 | 30 | 22.64 | 22.78 | 23.70 | 23.84 | |
300 | 60 | 26.04 | 26.28 | 26.85 | 27.08 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Devekıran, G.; Sarptaş, H. Torrefaction of Hazelnut Shells: The Effects of Temperature and Retention Time on Energy Yield and Fuel Characteristics. Energies 2025, 18, 4710. https://doi.org/10.3390/en18174710
Devekıran G, Sarptaş H. Torrefaction of Hazelnut Shells: The Effects of Temperature and Retention Time on Energy Yield and Fuel Characteristics. Energies. 2025; 18(17):4710. https://doi.org/10.3390/en18174710
Chicago/Turabian StyleDevekıran, Gökhan, and Hasan Sarptaş. 2025. "Torrefaction of Hazelnut Shells: The Effects of Temperature and Retention Time on Energy Yield and Fuel Characteristics" Energies 18, no. 17: 4710. https://doi.org/10.3390/en18174710
APA StyleDevekıran, G., & Sarptaş, H. (2025). Torrefaction of Hazelnut Shells: The Effects of Temperature and Retention Time on Energy Yield and Fuel Characteristics. Energies, 18(17), 4710. https://doi.org/10.3390/en18174710