Performance of Double Pipe Heat Exchanger—Partially Occupied by Metal Foam—Is Better Enhanced Using Robust Adaptive Barrier Function-Based Sliding Mode Control
Abstract
1. Introduction
- The double-pipe heat exchanger mathematical model has been derived from the first principles in the presence of metal foam insertion at the outer perimeter of the inner pipe (tube side). This also includes the derivation of overall thermal conductance;
- A robust barrier function-based sliding mode controller has been designed to enforce the outlet cold water temperature to follow a desired value;
- The insertion of metal foam on the outer periphery of double-pipe heat exchanger tube side could reduce both the settling time and hot water volume flow and hence improve the performance of the system;
- Improvement of the sustainability metric in terms of energy and consumed water, where both the volume and temperature of hot water have been decreased. By virtue of adding metal foam and fusing the proposed robust BF-based adaptive SMC, one can keep low consumption of hot water flow and, simultaneously, maintain lower temperature of the outlet hot water.
2. Double-Pipe Heat Exchanger Mathematical Model
- The thermophysical properties of both cold and hot fluids under consideration are constant;
- The variation in fluid velocity and temperature radially is negligible, and thus the kinetic and potential energy changes are negligible;
- The outer surface of the heat exchanger is assumed to be perfectly insulated, so that there is no heat loss to the surrounding medium, and any heat transfer occurs between the two fluids only;
- Axial heat conduction along the tube is usually insignificant and can be considered negligible.
2.1. Overall Thermal Conductance
2.2. Calculation of Heat Transfer Coefficients
- 1.
- 2.
2.3. Thermally Steady Outlet Temperature
2.4. State Space Model
3. Barrier Function-Based Sliding Mode Control Law
- ;
- has a unique minimum at zero and .
- The first controller uses the maximum hot water flow-rate as the control input when the state lies in the following region:
- 2.
- The second controller utilizes the barrier function as the adaptive gain law for the sliding mode controller. The control law for this controller is given by the following:
- 3.
- The third controller is simply justifying the positive control input nature of the system. If , where , then the controller is given by the following:
4. Results and Discussions
4.1. Effect of Metal Foam Insertion on Outlet Cold Water Temperature for Fixed Cold and Hot Water Flow Rates
4.2. Testing the SMC Performance
4.3. Testing the Enhancement of Adding Porous Material to the Heat Exchanger
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alam, T.; Kim, M.-H. A Comprehensive Review on Single Phase Heat Transfer Enhancement Techniques in Heat Exchanger Applications. Renew. Sustain. Energy Rev. 2018, 81, 813–839. [Google Scholar] [CrossRef]
- Bejan, A.; Kraus, A.D. Heat Transfer Handbook; John Wiley: Hoboken, NJ, USA, 2003. [Google Scholar]
- Omidi, M.; Farhadi, M.; Jafari, M. A Comprehensive Review on Double Pipe Heat Exchangers. Appl. Therm. Eng. 2017, 110, 1075–1090. [Google Scholar] [CrossRef]
- Li, W.; Zhang, W.; Li, Z.; Yao, H.; Cui, P.; Zhang, F. Investigation of the Heat Transfer Performance of Multi-Borehole Double-Pipe Heat Exchangers in Medium-Shallow Strata. Energies 2022, 15, 4798. [Google Scholar] [CrossRef]
- Thulukkanam, K. Heat Exchanger Design Handbook; CRC Press: Boca Raton, FL, USA, 2013. [Google Scholar] [CrossRef]
- Sekulić, D.P.; Shah, R.K. Fundamentals of Heat Exchanger Design; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2023. [Google Scholar] [CrossRef]
- Liu, J.; Guo, W.; Yin, M.; Xi, W.; Sunden, B. Flow and Heat Transfer Characteristic of Regenerative Cooling Channels Using Supercritical CO2 with Circular Tetrahedral Lattice Structures. Case Stud. Therm. Eng. 2025, 71, 106204. [Google Scholar] [CrossRef]
- Zachi, F.J.; Ali, L.F. Experimental Study of Natural Convection Heat Transfer on an Enclosure Partially Filled Porous Medium Heated from below by Constant Heat Flux. AIP Conf. Proc. 2023, 2651, 050002. [Google Scholar] [CrossRef]
- Mahmoudi, Y.; Hooman, K.; Vafai, K. Convective Heat Transfer in Porous Media; CRC Press: Boca Raton, FL, USA, 2019. [Google Scholar] [CrossRef]
- Nield, D.A.; Bejan, A. Convection in Porous Media; Springer International Publishing: Cham, Switzerland, 2017. [Google Scholar] [CrossRef]
- Kaviany, M. Principles of Heat Transfer in Porous Media; Springer: New York, NY, USA, 1995. [Google Scholar] [CrossRef]
- Fiedler, T.; Movahedi, N. Compact Aluminium Foam Heat Exchangers. Metals 2023, 13, 1440. [Google Scholar] [CrossRef]
- Alkinani, I.H.; Ali, L.F. Natural Convection in Annulus between Two Concentric Cylinders Partially Filled with Metal Foam Distributed with New Suggested Design. IOP Conf. Ser. Earth Environ. Sci. 2022, 961, 012032. [Google Scholar] [CrossRef]
- Kuruneru, S.T.W.; Vafai, K.; Sauret, E.; Gu, Y. Application of Porous Metal Foam Heat Exchangers and the Implications of Particulate Fouling for Energy-Intensive Industries. Chem. Eng. Sci. 2020, 228, 115968. [Google Scholar] [CrossRef]
- Chen, X.; Sun, C.; Xia, X.; Liu, R.; Wang, F. Conjugated Heat Transfer Analysis of a Foam Filled Double-Pipe Heat Exchanger for High-Temperature Application. Int. J. Heat Mass Transf. 2019, 134, 1003–1013. [Google Scholar] [CrossRef]
- Lu, W.; Zhao, C.; Tassou, S. Thermal Analysis on Metal-Foam Filled Heat Exchangers. Part I: Metal-Foam Filled Pipes. Int. J. Heat Mass Transf. 2006, 49, 2751–2761. [Google Scholar] [CrossRef]
- Alomar, O.R.; Hamdoon, O.M.; Salim, B.M. Analysis of Two-Phase Flow in a Double-Pipe Heat Exchanger Filled with Porous Media. Int. J. Heat Mass Transf. 2020, 156, 119799. [Google Scholar] [CrossRef]
- Arasteh, H.; Salimpour, M.R.; Tavakoli, M.R. Optimal Distribution of Metal Foam Inserts in a Double-Pipe Heat Exchanger. Int. J. Numer. Methods Heat Fluid Flow 2019, 29, 1322–3142. [Google Scholar] [CrossRef]
- Abdulwahed, A.S.; Ali, L.F. Numerical Investigation of Natural Convection in a Square Enclosure Partially Filled with Horizontal Layers of a Porous Medium. Heat Transf. 2023, 52, 874–889. [Google Scholar] [CrossRef]
- Ali, L.F.; Humaidi, A.J. Offset Temperature and Amplitude–Frequency Effect on Convection Heat Transfer in Partially Gradient Porous Cavity with Different Outlet Port Locations. Processes 2025, 13, 2279. [Google Scholar] [CrossRef]
- Hamzah, J.A.; Nima, M.A. Experimental Study of Heat Transfer Enhancement in Double-Pipe Heat Exchanger Integrated with Metal Foam Fins. Arab. J. Sci. Eng. 2020, 45, 5153–5167. [Google Scholar] [CrossRef]
- Buonomo, B.; di Pasqua, A.; Manca, O.; Nappo, S. Entropy Generation Analysis on Heat Exchanger in Aluminum Foam. Tec. Ital. J. Eng. Sci. 2021, 65, 166–173. [Google Scholar] [CrossRef]
- Shirvan, K.M.; Mirzakhanlari, S.; Kalogirou, S.A.; Öztop, H.F.; Mamourian, M. Heat Transfer and Sensitivity Analysis in a Double Pipe Heat Exchanger Filled with Porous Medium. Int. J. Therm. Sci. 2017, 121, 124–137. [Google Scholar] [CrossRef]
- Tian, H.; Zhao, T.; Shi, L.; Chen, T.; Ma, X.; Zhang, H.; Shu, G. Assessment and Optimization of Exhaust Gas Heat Exchanger with Porous Baffles and Porous Fins. Appl. Therm. Eng. 2020, 178, 115446. [Google Scholar] [CrossRef]
- Fiedler, T.; Moore, R.; Movahedi, N. Manufacturing and Characterization of Tube-Filled ZA27 Metal Foam Heat Exchangers. Metals 2021, 11, 1277. [Google Scholar] [CrossRef]
- Alhusseny, A.; Turan, A.; Nasser, A. Rotating Metal Foam Structures for Performance Enhancement of Double-Pipe Heat Exchangers. Int. J. Heat Mass Transf. 2017, 105, 124–139. [Google Scholar] [CrossRef]
- Abadi, G.B.; Kim, K.C. Experimental Heat Transfer and Pressure Drop in a Metal-Foam-Filled Tube Heat Exchanger. Exp. Therm. Fluid Sci. 2017, 82, 42–49. [Google Scholar] [CrossRef]
- Ahmad, F.; Al-Kayiem, H.H.; Soon, W.P.K. ICPER 2020, Proceedings of the 7th International Conference on Production, Energy and Reliability; Springer: Berlin/Heidelberg, Germany, 2022. [Google Scholar] [CrossRef]
- Alsop, A.W.; Edgar, T.F. Nonlinear Heat Exchanger Control through the Use of Partially Linearized Control Variables. Chem. Eng. Commun. 1989, 75, 155–170. [Google Scholar] [CrossRef]
- Reddy, V.S.; Subhadra, H.; Prananvanand, S.; Juliet, A.V.; Ramesh, G.; Lakshmi, G.S.; Reddy, C.L.; Reddy, K.S. Controller Design for Temperature Regulation in a Nonlinear Industrial Heat Exchanger System. E3S Web Conf. 2025, 616, 10. [Google Scholar] [CrossRef]
- Pallavi, P.; Vankunavath, P.; Ilaiah, S.; Reddy, G.P.; Bandi, A.; Hossain, M.; Jin, Y. Real-Time Temperature Control of a Shell and Tube Heat Exchanger by IMC Based PID Controller. Epic. Ser. Comput. 2023, 91, 155–163. [Google Scholar]
- Markowski, M.; Trafczynski, M.; Pavlovičová, E.; Oravec, J.; Alabrudzinski, S.; Kisielewski, P.; Urbaniec, K.; Elwertowski, K.; Gostynski, D. Impact of Industrial Constraints on the Dynamic Performance of a PID-Controlled Hybrid Heat-Integrated Distillation System with a Plate Heat and Mass Exchanger. Int. J. Heat Mass Transf. 2025, 252, 127445. [Google Scholar] [CrossRef]
- A.A.EMhemed, A.; Alsseid, A.; Hanafi, D. Modelling and Controller Design for Temperature Control of Power Plant Heat Exchanger. Univers. J. Control. Autom. 2017, 5, 49–53. [Google Scholar] [CrossRef]
- Rahman, M.H.R.F.; Devanathan, R. Modelling and Dynamic Feedback Linearisation of a Heat Exchanger Model. In Proceedings of the IEEE Conference on Control Applications, Glasgow, UK, 24–26 August 1994; IEEE: New York, NY, USA; pp. 1801–1806. [Google Scholar] [CrossRef]
- Vasičkaninová, A.; Bakošová, M.; Čirka, L.; Kalúz, M. Robust Controller Design for a Heat Exchanger. Chem. Eng. Trans. 2016, 52, 247–252. [Google Scholar] [CrossRef]
- Pirela, M.P.; Sandoval, J.P.G.; Camacho, O. Discontinuous Feedback Control Strategies for a Heat Exchanger. NOVASINERGIA REVISTA DIGITAL DE CIENCIA, INGENIERÍA Y TECNOLOGÍA. Novasinergia 2019, 2, 80–87. [Google Scholar] [CrossRef]
- Boonyaprapasorn, A.; Kuntanapreeda, S.; Ngiamsunthorn, P.S.; Kumsaen, T.; Sethaput, T. Time-Varying Sliding Mode Controller for Heat Exchanger with Dragonfly Algorithm. Int. J. Electr. Comput. Eng. 2023, 13, 3958–3968. [Google Scholar] [CrossRef]
- Sun, H.-X.; Zhang, J.-T. Application of Adaptive Fuzzy Sliding-Mode Controller for Heat Exchanger System in District Heating. In Proceedings of the Proceedings-International Conference on Intelligent Computation Technology and Automation, ICICTA 2008, Changsha, China, 20–22 October 2008; pp. 850–854. [Google Scholar] [CrossRef]
- Almutairi, N.B.; Zribi, M. Control of a Plate Heat Exchanger Using the Terminal Sliding Mode Technique. Ind. Eng. Chem. Res. 2012, 51, 4610–4623. [Google Scholar] [CrossRef]
- Khimani, D.; Patil, M.; Godse, P.; Barai, R. A Super-Twisting Control Design for Shell and Tube Heat Exchanger. J. Electr. Syst. 2024, 20, 8191–8200. [Google Scholar]
- Boonyaprapasorn, A.; Simatrang, S.; Kuntanapreeda, S.; Ngiamsunthorn, P.S.; Kumsaen, T.; Sethaput, T. Terminal Synergetic Control for Plate Heat Exchanger. J. Adv. Res. Fluid Mech. Therm. Sci. 2024, 117, 189–202. [Google Scholar] [CrossRef]
- Shah, D.; Shah, A.; Mehta, A. Higher Order Networked Sliding Mode Controller for Heat Exchanger Connected via Data Communication Network. Eur. J. Control. 2021, 58, 301–314. [Google Scholar] [CrossRef]
- Dyrska, R.; Horváthová, M.; Bakaráč, P.; Mönnigmann, M.; Oravec, J. Heat Exchanger Control Using Model Predictive Control with Constraint Removal. Appl. Therm. Eng. 2023, 227, 120366. [Google Scholar] [CrossRef]
- Seban, L.; Boruah, N.; Roy, B. Modified Single Layer Economic Model Predictive Control and Application to Shell and Tube Heat Exchanger. IFAC-PapersOnLine 2016, 49, 754–759. [Google Scholar] [CrossRef]
- Siza, J.; Llanos, J.; Velasco, P.; Moya, A.P.; Sumba, H. Model Predictive Control (MPC) of a Countercurrent Flow Plate Heat Exchanger in a Virtual Environment. Sensors 2024, 24, 4511. [Google Scholar] [CrossRef] [PubMed]
- Al-Samarrai, S.A.; Al-Nadawi, Y.K.; Hama, T.G.; Al-Gadery, T.A. Robust Adaptive Sliding Mode Controllers Design for a Non-Holonomic Mobile Robot. In Studies in Computational Intelligence; Springer Science and Business Media Deutschland GmbH: Berlin/Heidelberg, Germany, 2023; pp. 489–556. [Google Scholar] [CrossRef]
- Al-Samarraie, S.A.; Gorial, I.I.; Mshari, M.H. An Integral Sliding Mode Control for the Magnetic Levitation System Based on Backstepping Approach. IOP Conf. Ser. Mater. Sci. Eng. 2020, 881, 012136. [Google Scholar] [CrossRef]
- Utkin, V.; Guldner, J.; Shi, J. Sliding Mode Control in Electro-Mechanical Systems; CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar] [CrossRef]
- Obeid, H.; Fridman, L.M.; Laghrouche, S.; Harmouche, M. Barrier Function-Based Adaptive Sliding Mode Control. Automatica 2018, 93, 540–544. [Google Scholar] [CrossRef]
- Abd, A.F.; Al-Samarraie, S.A. Integral Sliding Mode Control Based on Barrier Function for Servo Actuator with Friction. Eng. Technol. J. 2021, 39, 248–259. [Google Scholar] [CrossRef]
- MohammadRidha, T.; Al-Samarraie, S.A. A Barrier Function-Based Integral Sliding Mode Control of Heart Rate During Treadmill Exercise. Math. Model. Eng. Probl. 2023, 10, 179–188. [Google Scholar] [CrossRef]
- Hassan, M.R.; Al-Samarraie, S.A. Optimal Feedback Control for HVAC Systems: An Integral Sliding Mode Control Approach Based on Barrier Function. Math. Model. Eng. Probl. 2023, 10, 1053–1062. [Google Scholar] [CrossRef]
- Mohammad, A.M.; Al-Samarraie, S.A.; Jaber, A.A. Barrier Function-Based Integral Sliding Mode Controller Design for a Single-Link Rotary Flexible Joint Robot. Int. J. Smart Sens. Intell. Syst. 2024, 17, 1–16. [Google Scholar] [CrossRef]
- Cengel, Y.; Ghajar, A. Heat and Mass Transfer: Fundamentals and Applications; McGraw-Hill Science/Engineering/Math: Columbus, OH, USA, 2015. [Google Scholar]
- Bergman, T.L.; Lavine, A.S.; Incropera, F.P.; DeWitt, D.P. Fundamentals of Heat and Mass Transfer; Wiley-Interscience: Hoboken, NJ, USA, 2011. [Google Scholar]
- Eduardo, C. Heat Transfer in Process Engineering; McGraw-Hill Education: Columbus, OH, USA, 2010. [Google Scholar]
- Khalil, H.K. Nonlinear Systems; Prentice Hall: Hoboken, NJ, USA, 2001. [Google Scholar]
- Calmidi, V.V.; Mahajan, R.L. The Effective Thermal Conductivity of High Porosity Fibrous Metal Foams. J. Heat Transf. 1999, 121, 466–471. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, L.F.; AL-Samarraie, S.A.; Humaidi, A.J. Performance of Double Pipe Heat Exchanger—Partially Occupied by Metal Foam—Is Better Enhanced Using Robust Adaptive Barrier Function-Based Sliding Mode Control. Energies 2025, 18, 4671. https://doi.org/10.3390/en18174671
Ali LF, AL-Samarraie SA, Humaidi AJ. Performance of Double Pipe Heat Exchanger—Partially Occupied by Metal Foam—Is Better Enhanced Using Robust Adaptive Barrier Function-Based Sliding Mode Control. Energies. 2025; 18(17):4671. https://doi.org/10.3390/en18174671
Chicago/Turabian StyleAli, Luma F., Shibly A. AL-Samarraie, and Amjad J. Humaidi. 2025. "Performance of Double Pipe Heat Exchanger—Partially Occupied by Metal Foam—Is Better Enhanced Using Robust Adaptive Barrier Function-Based Sliding Mode Control" Energies 18, no. 17: 4671. https://doi.org/10.3390/en18174671
APA StyleAli, L. F., AL-Samarraie, S. A., & Humaidi, A. J. (2025). Performance of Double Pipe Heat Exchanger—Partially Occupied by Metal Foam—Is Better Enhanced Using Robust Adaptive Barrier Function-Based Sliding Mode Control. Energies, 18(17), 4671. https://doi.org/10.3390/en18174671