Threshold Effects on South Africa’s Renewable Energy–Economic Growth–Carbon Dioxide Emissions Nexus: A Nonlinear Analysis Using Threshold-Switching Dynamic Models
Abstract
1. Introduction
2. Theoretical and Empirical Literature Review
2.1. Environmental Kuznets Curve (EKC) Theory
2.2. Energy Transition Theory
2.3. Green Growth Theory
2.4. Empirical Studies Specific to South Africa
2.5. Empirical Regional and Comparative Studies
3. Methodology
3.1. Theoretical Motivation for the Methodological Approach
3.2. Structural Unit Root Testing
3.2.1. Zivot–Andrews (ZA) Structural Unit Root Test
3.2.2. Narayan–Popp Structural Unit Root Test
3.2.3. Lee–Strazicich Structural Unit Root Test
3.3. Structural Break Tests
3.4. Applied Empirical Approach
3.4.1. Threshold-Switching Dynamic Model Applied
Threshold-Switching Dynamic Model Estimation Procedure
- where:
3.4.2. NARDL Model Applied
3.4.3. Threshold Granger Causality Test Applied
3.5. Diagnostic Test Applied
4. Results and Discussion
4.1. Structural Unit Root Test Results
4.2. Structural Break Assessment Outcome
4.3. Model Selection Criteria
4.4. Empirical Assessment Outcomes
4.4.1. Threshold-Switching Dynamic Model Results
4.4.2. NARDL Model Analysis
NARDL Bounds Test and Asymmetric Analysis
NARDL Short- and Long-Run Effects
4.4.3. Diagnostics Tests
4.4.4. Threshold Granger Causality Test Results
5. Conclusions and Policy Recommendations
5.1. Key Research Findings
5.2. Policy Recommendations
5.3. Limitations and Future Research Directions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ukoba, K.; Jen, T.-C.; Yusuf, A.A. South Africa’s Energy Sector Transformation: Policy Implications, Renewable Energy Adoption, and Fourth Industrial Revolution Technologies. Energy Strategy Rev. 2025, 51, 101752. [Google Scholar] [CrossRef]
- Mapuru, M.; Olusola, A.; Adelabu, S. From Fossil-Dependent Energy to a Clean, Non-Polluting Energy: Wind Farms in Maluti-A-Phofung Municipality, South Africa. Dev. S. Afr. 2022, 39, 973–989. [Google Scholar] [CrossRef]
- CSIR. CSIR Releases Statistics on Power Generation in South Africa for 2024. 2025. Available online: https://www.csir.co.za/csir-releases-statistics-on-power-generation-south-africa-2024 (accessed on 29 May 2025).
- Eberhard, A.; Naude, R. The South African Renewable Energy Independent Power Producer Procurement Programme: A Review and Lessons Learned. J. Energy S. Afr. 2016, 27, 1. [Google Scholar] [CrossRef]
- Eberhard, A.; Gratwick, K.; Morella, E.; Antmann, P. Independent Power Projects in Sub-Saharan Africa: Investment Trends and Policy Lessons. Energy Policy 2017, 108, 390–424. [Google Scholar] [CrossRef]
- Kolker, J.; Eberhard, A.; Leigland, J. South Africa’s Renewable Energy IPP Procurement Program: Success Factors and Lessons; World Bank Group: Washington, DC, USA, 2014. [Google Scholar] [CrossRef]
- Rennkamp, B. Power, Coalitions and Institutional Change in South African Climate Policy. Clim. Policy 2019, 19, 756–770. [Google Scholar] [CrossRef]
- Hlongwane, N.W.; Daw, O.D. Carbon Dioxide Emissions from Electricity Power Generation and Economic Growth in South Africa. Int. J. Energy Econ. Policy 2022, 12, 250–257. [Google Scholar] [CrossRef]
- Shickman, K. Accelerating the Deployment of Energy Efficient and Renewable Energy Technologies in South Africa; Office of Scientific and Technical Information (OSTI): Oak Ridge, TN, USA, 2017. [CrossRef]
- Walsh, K.; Rachel, T.; Ahmed, S.; Chris, R. Estimating the Economic Cost of Load Shedding in South Africa: A Report for Eskom Holdings (SOC) Ltd.; Nova Economics: Carcavelos, Portugal, 2020; Available online: https://www.nersa.org.za/files/files/2021/09/Appendix-C_Estimating-the-Economic-Cost-of-Load-Shedding-in-South-Africa-Report.pdf (accessed on 1 June 2025).
- Inglesi-Lotz, R. The Impact of Renewable Energy Consumption to Economic Growth: A Panel Data Application. Energy Econ. 2016, 53, 58–63. [Google Scholar] [CrossRef]
- Eskom Holdings SOC Ltd. State of the System—Summer 2024/2025 Outlook Briefing. 2024. Available online: https://www.eskom.co.za/wp-content/uploads/2024/09/20240826_State-of-the-system_Summer-Outlook.pdf (accessed on 25 May 2025).
- Ateba, B.B.; Prinsloo, J.J.; Gawlik, R. The Significance of Electricity Supply Sustainability to Industrial Growth in South Africa. Energy Rep. 2019, 5, 1324–1338. [Google Scholar] [CrossRef]
- Mirzania, P.; Gordon, J.A.; Balta-Ozkan, N.; Sayan, R.C.; Marais, L. Barriers to Powering Past Coal: Implications for a Just Energy Transition in South Africa. Energy Res. Soc. Sci. 2023, 101, 103122. [Google Scholar] [CrossRef]
- Cohen, B.; Winkler, H. Greenhouse Gas Emissions from Shale Gas and Coal for Electricity Generation in South Africa. S. Afr. J. Sci. 2014, 110, 1–5. [Google Scholar] [CrossRef]
- Chou, C.-H.; Ngo, S.L.; Tran, P.P. Renewable Energy Integration for Sustainable Economic Growth: Insights and Challenges via Bibliometric Analysis. Sustainability 2023, 15, 15030. [Google Scholar] [CrossRef]
- Yasmeen, R.; Shah, W.U.H. Energy Uncertainty, Geopolitical Conflict, and Militarization Matters for Renewable and Non-Renewable Energy Development: Perspectives from G7 Economies. Energy 2024, 306, 132480. [Google Scholar] [CrossRef]
- Grossman, G.M.; Krueger, A.B. Economic growth and the environment. Q. J. Econ. 1995, 110, 353–377. [Google Scholar] [CrossRef]
- Copeland, B.R.; Taylor, M.S. Trade, growth, and the environment. J. Econ. Lit. 2004, 42, 7–71. [Google Scholar] [CrossRef]
- Omay, T.; Yildirim, J.; Balta-Ozkan, N. Historical Environmental Kuznets Curve for the USA and the UK: Cyclical Environmental Kuznets Curve Evidence. Environ. Dev. Sustain. 2024, 1–26. [Google Scholar] [CrossRef]
- Zhang, F.; Wang, F.; Yao, S. High-Speed Rail Accessibility and Haze Pollution in China: A Spatial Econometrics Perspective. Transp. Res. Part D Transp. Environ. 2021, 94, 102802. [Google Scholar] [CrossRef]
- Niu, G.; Yang, Y. Research on the Carbon Reduction Effect of Regional Industrial Transfer in China—Based on the Perspective of Factor Flow. Heliyon 2024, 10, e33771. [Google Scholar] [CrossRef]
- He, Y.; Lin, B. Investigating Environmental Kuznets Curve from an Energy Intensity Perspective: Empirical Evidence from China. J. Clean. Prod. 2019, 234, 1013–1022. [Google Scholar] [CrossRef]
- Holtz-Eakin, D.; Selden, T.M. Selden. Stoking the Fires? CO2 Emissions and Economic Growth. J. Public Econ. 1995, 57, 85–101. [Google Scholar] [CrossRef]
- Bertinelli, L.; Strobl, E. The Environmental Kuznets Curve Semi-Parametrically Revisited. Econ. Lett. 2005, 88, 350–357. [Google Scholar] [CrossRef]
- Udeagha, M.C.; Breitenbach, M.C. Exploring the Moderating Role of Financial Development in Environmental Kuznets Curve for South Africa: Fresh Evidence from the Novel Dynamic ARDL Simulations Approach. Financ. Innov. 2023, 2023, 9. [Google Scholar] [CrossRef]
- Jahanger, A.; Hossain, M.R.; Onwe, J.C.; Ogwu, S.O.; Awan, A.; Balsalobre-Lorente, D. Analyzing the N-Shaped EKC among Top Nuclear Energy Generating Nations: A Novel Dynamic Common Correlated Effects Approach. Gondwana Res. 2023, 116, 73–88. [Google Scholar] [CrossRef]
- Usman, M.; Jahanger, A.; Makhdum, M.S.A.; Balsalobre-Lorente, D.; Bashir, A. Are impacts of renewable energy and globalization on carbon neutrality targets asymmetric in South Africa? A reconsideration using nonlinear ARDL approach. Environ. Sci. Pollut. Res. 2022, 29, 81107–81127. [Google Scholar]
- Lin, Y.; Mahmood, M.A.; Meng, W.; Ali, Q. Green Economy Transition in Asia Pacific: A Holistic Assessment of Renewable Energy Production. J. Clean. Prod. 2024, 437, 140648. [Google Scholar] [CrossRef]
- Fisch-Romito, V.; Jaxa-Rozen, M.; Wen, X.; Trutnevyte, E. Multi-Country Evidence on Societal Factors to Include in Energy Transition Modelling. Nat. Energy 2025, 10, 460–469. [Google Scholar] [CrossRef]
- Akaev, A.A.; Davydova, O.I. Davydova. Mathematical Description of Energy Transition Scenarios Based on the Latest Technologies and Trends. Energies 2021, 14, 8360. [Google Scholar] [CrossRef]
- Cherp, A.; Vinichenko, V.; Jewell, J.; Brutschin, E.; Sovacool, B. Integrating Techno-Economic, Socio-Technical and Political Perspectives on National Energy Transitions: A Meta-Theoretical Framework. Energy Res. Soc. Sci. 2018, 37, 175–190. [Google Scholar] [CrossRef]
- Izadpanahi, E.; Downward, A.; Arthanari, T.; Liu, Y. Robust Optimization for Energy Transition Planning in Manufacturing Firms: An Integrated Model Addressing Economic and Environmental Issues. J. Clean. Prod. 2022, 334, 130237. [Google Scholar] [CrossRef]
- Ghazala, A.; Sarwar, S.; Waheed, R.; Anwar, H.; Khan, M.S. Relevance of Fintech and Energy Transition to Green Growth: Empirical Evidence from China. Heliyon 2024, 10, e33315. [Google Scholar] [CrossRef]
- Megan, D.; Swilling, M.; Wlokas, H.L. Towards New Configurations of Urban Energy Governance in South Africa’s Renewable Energy Procurement Programme. Energy Res. Soc. Sci. 2018, 36, 61–69. [Google Scholar] [CrossRef]
- Tabrizian, H.; Amiri, B.; Abdolhamid, M. Navigating the Landscape of Energy Governance: A Bibliometric Analysis of Research Trends and Future Directions. Energy Rep. 2024, 12, 2653–2675. [Google Scholar] [CrossRef]
- Tao, W.; Weng, S.; Chen, X.; Alhussan, F.B.; Song, M. Artificial Intelligence-Driven Transformations in Low-Carbon Energy Structure: Evidence from China. Energy Econ. 2024, 136, 107719. [Google Scholar] [CrossRef]
- Schneider, F. The Jevons Paradox and the Myth of Resource Efficiency Improvements. J. Clean. Prod. 2010, 18, 600–602. [Google Scholar] [CrossRef]
- Guesmi, K.; Mohammed, K.S.; Tiwari, S. Green Horizons: Enabling the Energy Transition through Climate Change Policies. Int. Rev. Econ. Financ. 2024, 94, 103409. [Google Scholar] [CrossRef]
- Sinha, A.; Bekiros, S.; Hussain, N.; Nguyen, D.K.; Khan, S.A. How Social Imbalance and Governance Quality Shape Policy Directives for Energy Transition in the OECD Countries? Energy Econ. 2023, 120, 106642. [Google Scholar] [CrossRef]
- Huang, J. Resources, Innovation, Globalization, and Green Growth: The BRICS Financial Development Strategy. Geosci. Front. 2023, 15, 101741. [Google Scholar] [CrossRef]
- Lu, M.; Zhao, Y. Mineral Resource Extraction and Environmental Sustainability for Green Recovery. Resour. Policy 2024, 90, 104616. [Google Scholar] [CrossRef]
- Monawwar, H.; Abedrabboh, K.; Almarri, O.; Ahmad, F.; Al-Fagih, L. Analysis of Qatar’s Electricity Landscape: Insights from Load Profiling, Clustering, and Policy Recommendations. Energy Rep. 2024, 12, 259–276. [Google Scholar] [CrossRef]
- Zeng, C.; Ma, R.; Chen, P. Impact of Mineral Resource Rents and Fin-Tech on Green Growth: Exploring the Mediating Role of Environmental Governance in Developed Economies. Resour. Policy 2024, 89, 104547. [Google Scholar] [CrossRef]
- Fan, L.; Wang, D. Natural Resource Efficiency and Green Economy: Key Takeaways on Clean Energy, Globalization, and Innovations in BRICS Countries. Resour. Policy 2024, 88, 104382. [Google Scholar] [CrossRef]
- Guo, L.L.; Qu, Y.; Tseng, M.-L. The Interaction Effects of Environmental Regulation and Technological Innovation on Regional Green Growth Performance. J. Clean. Prod. 2017, 162, 894–902. [Google Scholar] [CrossRef]
- Gazheli, A.; Bergh, J.v.D.; Antal, M. How Realistic Is Green Growth? Sectoral-Level Carbon Intensity versus Productivity. J. Clean. Prod. 2016, 129, 449–467. [Google Scholar] [CrossRef]
- Mandelli, M. 17 Implementing Just Transition Efforts across the EU: From Decarbonisation to Eco-Social Policies. In The Eco-Social Polity? Policy Press: Bristol, UK, 2025; Volume 2025, pp. 240–254. [Google Scholar] [CrossRef]
- Gómez-Baggethun, E. More Is More: Scaling Political Ecology within Limits to Growth. Political Geogr. 2020, 76, 102095. [Google Scholar] [CrossRef]
- Ndlovu, V.; Inglesi-Lotz, R. The Causal Relationship between Energy and Economic Growth through Research and Development (R&D): The Case of BRICS and Lessons for South Africa. Energy 2020, 199, 117428. [Google Scholar] [CrossRef]
- Saba, C.S. Nexus between CO2 Emissions, Renewable Energy Consumption, Militarisation, and Economic Growth in South Africa: Evidence from Using Novel Dynamic ARDL Simulations. Renew. Energy 2023, 205, 349–365. [Google Scholar] [CrossRef]
- Shikwambana, L.; Mhangara, P.; Kganyago, M. Assessing the Relationship between Economic Growth and Emissions Levels in South Africa between 1994 and 2019. Sustainability 2021, 13, 2645. [Google Scholar] [CrossRef]
- Aslan, A.; Destek, M.A.; Okumus, I. Bootstrap Rolling Window Estimation Approach to Analysis of the Environment Kuznets Curve Hypothesis: Evidence from the USA. Environ. Sci. Pollut. Res. 2017, 25, 2402–2408. [Google Scholar] [CrossRef]
- Tagwi, A. The Impacts of Climate Change, Carbon Dioxide Emissions (CO2) and Renewable Energy Consumption on Agricultural Economic Growth in South Africa: ARDL Approach. Sustainability 2022, 14, 16468. [Google Scholar] [CrossRef]
- Nathaniel, S.P.; Iheonu, C.O. Carbon Dioxide Abatement in Africa: The Role of Renewable and Non-Renewable Energy Consumption. Sci. Total Environ. 2019, 679, 337–345. [Google Scholar] [CrossRef]
- Inglesi-Lotz, R.; Dogan, E. The Role of Renewable versus Non-Renewable Energy to the Level of CO2 Emissions a Panel Analysis of Sub- Saharan Africa’s Βig 10 Electricity Generators. Renew. Energy 2018, 123, 36–43. [Google Scholar] [CrossRef]
- Zoundi, Z. CO2 Emissions, Renewable Energy and the Environmental Kuznets Curve, a Panel Cointegration Approach. Renew. Sustain. Energy Rev. 2017, 72, 1067–1075. [Google Scholar] [CrossRef]
- Saidi, K.; Omri, A. The Impact of Renewable Energy on Carbon Emissions and Economic Growth in 15 Major Renewable Energy-Consuming Countries. Environ. Res. 2020, 186, 109567. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, Z.; Zhong, Z. CO2 Emissions, Economic Growth, Renewable and Non-Renewable Energy Production and Foreign Trade in China. Renew. Energy 2019, 131, 208–216. [Google Scholar] [CrossRef]
- Danish; Zhang, B.; Wang, B.; Wang, Z. Role of Renewable Energy and Non-Renewable Energy Consumption on EKC: Evidence from Pakistan. J. Clean. Prod. 2017, 156, 855–864. [Google Scholar] [CrossRef]
- Hansen, B.E. Threshold autoregression in economics. Stat. Its Interface 2011, 4, 123–127. [Google Scholar] [CrossRef]
- Shin, Y.; Yu, B.; Greenwood-Nimmo, M. Modelling asymmetric cointegration and dynamic multipliers in a nonlinear ARDL framework. In Festschrift in Honor of Peter Schmidt; Sickles, R.C., Horrace, W.C., Eds.; Springer: New York, NY, USA, 2014; pp. 281–314. [Google Scholar] [CrossRef]
- Bai, J.; Perron, P. Computation and analysis of multiple structural change models. J. Appl. Econom. 2003, 18, 1–22. [Google Scholar] [CrossRef]
- Baker, L.; Newell, P.; Phillips, J. The political economy of energy transitions: The case of South Africa. New Political Econ. 2014, 19, 791–818. [Google Scholar] [CrossRef]
- Dinda, S. Environmental Kuznets curve hypothesis: A survey. Ecol. Econ. 2004, 49, 431–455. [Google Scholar] [CrossRef]
- Leonardo, D.; Maulana, M.; Hartanto, J. Impact of Economic Growth and FDI on Indonesia Environmental Degradation: EKC and Pollution Hypothesis Testing. J. Ekon. Pembang. 2023, 21, 15–30. [Google Scholar] [CrossRef]
- Azam Khan, M.; Khan, H.; Rehman, Z. Analyzing the Threshold Effect in the Relationship Between Income and Environmental Degradation in the Middle East and North Africa Region. J. Knowl. Econ. 2023, 15, 6057–6078. [Google Scholar] [CrossRef]
- Jóźwik, B.; Tiwari, A.K.; Gavryshkiv, A.V.; Galewska, K.; Ta¸s, B. Energy–Growth Nexus in European Union Countries During the Green Transition. Sustainability 2024, 16, 10990. [Google Scholar] [CrossRef]
- Mensah, I.A.; Abdul-Mumuni, A. Asymmetric effects of renewable energy consumption, trade openness and economic growth on environmental quality in Nigeria and South Africa. Environ. Sci. Pollut. Res. 2022, 29, 34834–34851. [Google Scholar]
- Alper, A.; Oguz, O. The Role of Renewable Energy Consumption in Economic Growth: Evidence from Asymmetric Causality. Renew. Sustain. Energy Rev. 2016, 60, 953–959. [Google Scholar] [CrossRef]
- Hossain, M.R.; Rej, S.; Awan, A.; Bandyopadhyay, A.; Islam, S.; Das, N.; Hossain, E. Natural Resource Dependency and Environmental Sustainability under N-Shaped EKC: The Curious Case of India. Resour. Policy 2023, 80, 103150. [Google Scholar] [CrossRef]
- Wang, A.; Rauf, A.; Ozturk, I.; Wu, J.; Zhao, X.; Du, H. The Key to Sustainability: In-Depth Investigation of Environmental Quality in G20 Countries through the Lens of Renewable Energy, Economic Complexity and Geopolitical Risk Resilience. J. Environ. Manag. 2024, 352, 120045. [Google Scholar] [CrossRef] [PubMed]
- Tiba, S.; Omri, A. Literature survey on the relationships between energy, environment and economic growth. Renew. Sustain. Energy Rev. 2017, 69, 1129–1146. [Google Scholar] [CrossRef]
- Phiri, A. Sustainable Economic Growth in South Africa Will Come from Renewables, Not Coal: What Our Model Shows. The Conversation, 13 April. 2024. Available online: https://theconversation.com/sustainable-economic-growth-in-south-africa-will-come-from-renewables-not-coal-what-our-model-shows-239339 (accessed on 2 June 2025).
- Nelson, C.R.; Plosser, C.R. Trends and random walks in macroeconomic time series: Some evidence and implications. J. Monet. Econ. 1982, 10, 139–162. [Google Scholar] [CrossRef]
- Perron, P. The great crash, the oil price shock, and the unit root hypothesis. Econometrica 1989, 57, 1361–1401. [Google Scholar] [CrossRef]
- Zhang, L. Performance of Unit-Root Tests for Non Linear Unit-Root and Partial Unit-Root Processes. Commun. Stat. Theory Methods 2015, 45, 4528–4536. [Google Scholar] [CrossRef]
- Banerjee, A.; Lumsdaine, R.L.; Stock, J.H. Recursive and sequential tests of the unit-root and trend-break hypotheses: Theory and international evidence. J. Bus. Econ. Stat. 1992, 10, 271–287. [Google Scholar] [CrossRef]
- Zivot, E.; Andrews, D.W.K. Further evidence on the great crash, the oil-price shock, and the unit-root hypothesis. J. Bus. Econ. Stat. 1992, 10, 251–270. [Google Scholar] [CrossRef]
- Hamilton, J.D. Understanding crude oil prices. Energy J. 2009, 30, 179–206. [Google Scholar] [CrossRef]
- Vogelsang, T.J.; Perron, P. Additional tests for a unit root allowing for a break in the trend function at an unknown time. Int. Econ. Rev. 1998, 39, 1073–1100. [Google Scholar] [CrossRef]
- Narayan, P.K.; Popp, S. A new unit root test with two structural breaks in level and slope at unknown time. J. Appl. Stat. 2010, 37, 1425–1438. [Google Scholar] [CrossRef]
- Lee, J.; Strazicich, M.C. Minimum Lagrange multiplier unit root test with two structural breaks. Rev. Econ. Stat. 2003, 85, 1082–1089. [Google Scholar] [CrossRef]
- Sen, A. On unit-root tests when the alternative is a trend-break stationary process. J. Bus. Econ. Stat. 2003, 21, 174–184. [Google Scholar] [CrossRef]
- Dar, M.H.; Nain, Z. Stochastic Conditional Convergence of Financial Development: New Insights Based on RALS-LM and LM Unit Root Tests with Breaks. J. Financ. Econ. Policy 2025. [Google Scholar] [CrossRef]
- Rappoport, P.; Reichlin, L. Segmented trends and non-stationary time series. Econ. J. 1989, 99, 168–177. [Google Scholar] [CrossRef]
- Perron, P. Dealing with structural breaks. Palgrave Handb. Econom. 2006, 1, 278–352. [Google Scholar]
- Eke, F.A.; Eke, I.C.; Inyang, O.G. Interest Rate and Commercial Banks’ Lending Operations in Nigeria: A Structural Break Analysis Using Chow Test. Glob. J. Soc. Sci. 2016, 14, 9. [Google Scholar] [CrossRef]
- Andrews, D.W.K. Tests for parameter instability and structural change with unknown change point. Econometrica 1993, 61, 821–856. [Google Scholar] [CrossRef]
- Garcia, R.; Perron, P. An analysis of the real interest rate under regime shifts. Rev. Econ. Stat. 1996, 78, 111–125. [Google Scholar] [CrossRef]
- Kurozumi, E. Testing for stationarity with a break. J. Econom. 2002, 108, 63–99. [Google Scholar] [CrossRef]
- Hellman, J.S.; Jones, G.; Kaufmann, D. Seize the State, Seize the Day: State Capture, Corruption, and Influence in Transition; World Bank: Washington, DC, USA, 2000. [Google Scholar] [CrossRef]
- Edwards, L.; Lawrence, R.Z. South African trade policy matters: Trade performance and trade policy. Natl. Bur. Econ. Res. 2006, 16, 585–608. [Google Scholar] [CrossRef]
- Aron, J.; Muellbauer, J. Review of monetary policy in South Africa since 1994. J. Afr. Econ. 2007, 16, 705–744. [Google Scholar] [CrossRef]
- Padayachee, V. Global economic recession: Effects and implications for South Africa at a time of political challenges. Claves Econ. Mund. 2012, 2010, 341–350. [Google Scholar]
- Majenge, L.; Mpungose, S.; Msomi, S. Econometric Analysis of South Africa’s Fiscal and Monetary Policy Effects on Economic Growth from 1980 to 2022. Economies 2024, 12, 227. [Google Scholar] [CrossRef]
- Franses, P. The Econometric Modelling of Financial Time Series. Int. J. Forecast. 2000, 16, 426–427. [Google Scholar] [CrossRef]
- de Jong, R.M. Logarithmic Spurious Regressions. Econ. Lett. 2003, 81, 13–21. [Google Scholar] [CrossRef]
- Mayr, J.; Ulbricht, D. Log versus Level in VAR Forecasting: 42 Million Empirical Answers—Expect the Unexpected. SSRN Electron. Econ. Lett. 2014, 126, 40–42. [Google Scholar] [CrossRef]
- Ariño, M.A.; Franses, P.H. Forecasting the Levels of Vector Autoregressive Log-Transformed Time Series. Int. J. Forecast. 2000, 16, 111–116. [Google Scholar] [CrossRef]
- Sovacool, B.K. How long will it take? Conceptualizing the temporal dynamics of energy transitions. Energy Res. Soc. Sci. 2016, 13, 202–215. [Google Scholar] [CrossRef]
- Stern, D.I. The rise and fall of the environmental Kuznets curve. World Dev. 2004, 32, 1419–1439. [Google Scholar] [CrossRef]
- Van der Ploeg, F. Natural resources: Curse or blessing? J. Econ. Lit. 2011, 49, 366–420. [Google Scholar] [CrossRef]
- Popp, D.; Hascic, I.; Medhi, N. Technology and the diffusion of renewable energy. Energy Econ. 2011, 33, 648–662. [Google Scholar] [CrossRef]
- Sioshansi, F.P. (Ed.) Smart Grid: Integrating Renewable, Distributed and Efficient Energy; Academic Press: Cambridge, MA, USA, 2011. [Google Scholar]
- Tapio, P. Towards a theory of decoupling: Degrees of decoupling in the EU and the case of road traffic in Finland between 1970 and 2001. Transp. Policy 2005, 12, 137–151. [Google Scholar] [CrossRef]
- Papageorgiou, C.; Saam, M.; Schulte, P. Substitution between clean and dirty energy inputs: A macroeconomic perspective. Rev. Econ. Stat. 2017, 99, 281–290. [Google Scholar] [CrossRef]
- Dogan, E.; Seker, F. The influence of real output, renewable and non-renewable energy, trade and financial development on carbon emissions in the top renewable energy countries. Renew. Sustain. Energy Rev. 2016, 60, 1074–1085. [Google Scholar] [CrossRef]
- Wacziarg, R.; Welch, K.H. Trade liberalization and growth: New evidence. World Bank Econ. Rev. 2008, 22, 187–231. [Google Scholar] [CrossRef]
- Hansen, B.E. Sample splitting and threshold estimation. Econometrica 2000, 68, 575–603. [Google Scholar] [CrossRef]
- Hansen, B.E. Threshold effects in non-dynamic panels: Estimation, testing, and inference. J. Econom. 1999, 93, 345–368. [Google Scholar] [CrossRef]
- Hansen, B.E. Inference when a nuisance parameter is not identified under the null hypothesis. Econometrica 1996, 64, 413–430. [Google Scholar] [CrossRef]
- Caner, M.; Hansen, B.E. Threshold autoregression with a unit root. Econometrica 2001, 69, 1555–1596. [Google Scholar] [CrossRef]
- Granger, C.W.; Yoon, G. Hidden Cointegration; Working Paper; University of California: San Diego, CA, USA, 2002. [Google Scholar]
- Pesaran, M.H.; Shin, Y.; Smith, R.J. Bounds Testing Approaches to the Analysis of Level Relationships. J. Appl. Econom. 2001, 16, 289–326. [Google Scholar] [CrossRef]
- Schorderet, Y. Asymmetric Cointegration; Working Paper; University of Geneva: Geneva, Switzerland, 2003. [Google Scholar]
- The Korea International Trade Research Institute; Uprasen, U.; Zolin, M.B.; Cavapozzi, D. Asymmetric Effects of Renewable and Non-Renewable Energy Consumption on Economic Development in Indonesia. Korea Int. Trade Res. Inst. 2025, 21, 87–108. [Google Scholar] [CrossRef]
- Lee, W.H.; Husaini, D.H.; Lean, H.H. Beyond the Threshold: Understanding the Asymmetric Effects of Renewable Energy on CO2 Emissions. Energy Environ. 2024, 0958305X241293729. [Google Scholar] [CrossRef]
- Borozan, D. Asymmetric Effects of Policy Uncertainty on Renewable Energy Consumption in G7 Countries. Renew. Energy 2022, 189, 412–420. [Google Scholar] [CrossRef]
- Hansen, B.E.; Seo, B. Testing for two-regime threshold cointegration in vector error-correction models. J. Econom. 2002, 110, 293–318. [Google Scholar] [CrossRef]
- Li, J. Testing Granger Causality in the Presence of Threshold Effects. Int. J. Forecast. 2006, 22, 771–780. [Google Scholar] [CrossRef]
- Granger, C.W.J. Investigating Causal Relations by Econometric Models and Cross-Spectral Methods. Econometrica 1969, 37, 424–438. [Google Scholar] [CrossRef]
- Tong, H. Threshold Models in Non-Linear Time Series Analysis; Springer: New York, NY, USA, 1983. [Google Scholar]
- Gallagher, K.S. The Globalization of Clean Energy Technology: Lessons from China; MIT Press: Cambridge, MA, USA, 2014. [Google Scholar]
- Koop, G.; Pesaran, M.; Potter, S.M. Impulse response analysis in nonlinear multivariate models. J. Econ. 1996, 74, 119–147. [Google Scholar] [CrossRef]
- Godfrey, L.G. Misspecification Tests in Econometrics: The Lagrange Multiplier Principle and Other Approaches; Cambridge University Press: Cambridge, MA, USA, 1988. [Google Scholar]
- Jarque, C.M.; Bera, A.K. A test for normality of observations and regression residuals. Int. Stat. Rev. 1987, 55, 163–172. [Google Scholar] [CrossRef]
- Breusch, T.S. Testing for autocorrelation in dynamic linear models. Aust. Econ. Pap. 1978, 17, 334–355. [Google Scholar] [CrossRef]
- Godfrey, L.G. Testing against general autoregressive and moving average error models when the regressors include lagged dependent variables. Econometrica 1978, 46, 1293–1301. [Google Scholar] [CrossRef]
- Torchiano, M.; Di Penta, M.; Ricca, F.; De Lucia, A.; Lanubile, F. Migration of Information Systems in the Italian Industry: A State of the Practice Survey. Inf. Softw. Technol. 2011, 53, 71–86. [Google Scholar] [CrossRef]
- Silva, A.; de Brito, J.; Gaspar, P. Application of the Factor Method to Maintenance Decision Support for Stone Cladding. Autom. Constr. 2012, 22, 165–174. [Google Scholar] [CrossRef]
- Lyons, M.; Smuts, C.; Stephens, A. The Changing Role of the State in Participatory Development: From the Reconstruction and Development Programme to Growth, Employment and Redistribution. Community Dev. Community Dev. J. 2001, 36, 273–288. [Google Scholar] [CrossRef]
- Greshnev, D.N.; Smit, E.V. Seasonal and Public Holiday Effects in the Commercial Rand/Dollar Exchange Rate during the Period 1984–1995. S. Afr. J. Bus. Manag. 1997, 28, 6–14. [Google Scholar] [CrossRef]
- Mosala, S.J.; Venter, J.C.M.; Bain, E.G. South Africa’s Economic Transformation since 1994: What Influence Has the National Democratic Revolution (NDR) Had? Rev. Black Political Econ. 2017, 44, 327–340. [Google Scholar] [CrossRef]
- Venter, J.C.M. The National Democratic Revolution (NDR) in A Post-1994 South Africa: A Reconstruction, Interpretation and Evaluation of This Revolutionary Ideology. Ph.D. Thesis, Northwest University, North West, South Africa, 2012. Available online: http://dspace.nwu.ac.za/handle/10394/8665?show=full (accessed on 3 June 2025).
- Monyela, K.G.; Saba, C.S. Trade openness and economic growth nexus in South Africa: A comparative analysis of pre-and post-BRICS membership era. S. Afr. J. Econ. 2024, 92, 178–195. [Google Scholar]
- Manwa, F.; Wijeweera, A. Trade Liberalisation and Economic Growth Link: The Case of Southern African Custom Union Countries. Econ. Anal. Policy 2016, 51, 12–21. [Google Scholar] [CrossRef]
- Kabundi, A.; Rapapali, M. The Transmission of Monetary Policy in South Africa Before and After the Global Financial Crisis. S. Afr. J. Econ. 2019, 87, 464–489. [Google Scholar] [CrossRef]
- Ndou, E.; Gumata, N. Synopsis of Fiscal Policy in South Africa: 1994–2020. Fisc. Policy Shock. Macroecon. Growth S. Afr. 2023, 2023, 11–22. [Google Scholar] [CrossRef]
- Meyer, D.F.; Habanabakize, T. Analysis of Relationships and Causality between Consumer Price Index (CPI), the Producer Price Index (PPI) and Purchasing Manager’s Index (PMI) in South Africa. J. Econ. Behav. Stud. 2018, 10, 25. [Google Scholar] [CrossRef]
- Ndubuisi, G.; Avenyo, E.K. Jobs, Investments, and Exporting: The Real effects of Electricity Crises in South Africa, WIDER Working Paper, No. 2024/89; The United Nations University World Institute for Development Economics Research (UNU-WIDER): Helsinki, Finland, 2024; ISBN 978-92-9267-554-7. [Google Scholar] [CrossRef]
- Todd, I.; McCauley, D. Assessing Policy Barriers to the Energy Transition in South Africa. Energy Policy 2021, 158, 112529. [Google Scholar] [CrossRef]
- Chetty, K.; Davids, Y.D.; Kanyane, M.; Madzivhandila, T.; Moosa, T.; Ndaba, L. Fostering a Just Energy Transition: Lessons from South Africa’s Renewable Energy Independent Power Producer Procurement Programme. S. Afr. J. Int. Aff. 2023, 30, 225–244. [Google Scholar] [CrossRef]
- Weideman, J.; Inglesi-Lotz, R.; Van Heerden, J. Structural Breaks in Renewable Energy in South Africa: A Bai & Perron Break Test Application. Renew. Sustain. Energy Rev. 2017, 78, 945–954. [Google Scholar] [CrossRef]
- Espoir, D.K.; Sunge, R.; Mduduzi, B.; Bannor, F.; Matsvai, S. Analysing the Response of CO2 Emissions to Business Cycle in a Developing Economy: Evidence for South Africa Post-Apartheid Era. Front. Environ. Sci. 2024, 11, 1321335. [Google Scholar] [CrossRef]
- Budhram, T. Political Corruption and State Capture in South Africa. In Political Corruption in Africa; Edward Elgar Publishing: Northampton, UK, 2019; pp. 155–174. [Google Scholar] [CrossRef]
- Foley, R. State Capture, the Racket and Predatory Power. In State Capture in South Africa: How and Why It Happened; Wits University Press: Johannesburg, South Africa, 2023; Volume 1, pp. 39–64. [Google Scholar] [CrossRef]
- Climate Action Tracker. South Africa: Policies & Action. 2024. Available online: https://climateactiontracker.org/countries/south-africa/policies-action/ (accessed on 4 August 2025).
- Chen, C.; Pinar, M.; Stengos, T. Renewable Energy Consumption and Economic Growth Nexus: Evidence from a Threshold Model. Energy Policy 2020, 139, 111295. [Google Scholar] [CrossRef]
- Ben, J.; Hmamou, L.; Bakhouya, M. Testing for environmental Kuznets curves within a developing country. Energy Policy 2015, 78, 155–165. [Google Scholar]
- Ganda, F. Carbon emissions, diverse energy usage and economic growth in South Africa: Investigating existence of the environmental Kuznets curve (EKC). Environ. Prog. Sustain. Energy 2019, 38, 30–46. [Google Scholar] [CrossRef]
- Shahbaz, M.; Tiwari, A.K.; Nasir, M. The Effects of Financial Development, Economic Growth, Coal Consumption and Trade Openness on CO2 Emissions in South Africa. Energy Policy 2013, 61, 1452–1459. [Google Scholar] [CrossRef]
- Kovak, B.K. Regional effects of trade reform: What is the correct measure of liberalization? Am. Econ. Rev. 2013, 103, 1960–1976. [Google Scholar] [CrossRef]
- van Huyssteen, T.; Thiam, D.; Nonhebel, S. The Water, Land, and Carbon Intensity of Electricity Production: The Case of South Africa. J. Clean. Prod. 2023, 411, 136945. [Google Scholar] [CrossRef]
- Winkler, H.; Jooste, M.; Marquard, A. Structuring Approaches to Pricing Carbon Energy- and Trade-Intensive Sectors in South Africa. In Putting A Price on Carbon in South Africa and Other Developing Countries; Routledge: Oxford, UK, 2020; pp. 527–542. [Google Scholar] [CrossRef]
- Ali, M.; Alam, K.; Taylor, B. Do renewable energy technologies reduce environmental degradation? Evidence from a panel NARDL analysis for 25 developing countries. J. Environ. Manag. 2022, 306, 114467. [Google Scholar]
- Fine, B.; Rustomjee, Z. The Political Economy of South Africa: From Minerals-Energy Complex to Industrialisation; Hurst & Company: London, UK, 1996. [Google Scholar]
- Udeagha, M.C.; Ngepah, N. Dynamic ARDL simulations effects of fiscal decentralization, green technological innovation, trade openness, and institutional quality on environmental sustainability: Evidence from South Africa. Sustainability 2022, 14, 10268. [Google Scholar] [CrossRef]
- Aghion, P.; Dechezleprêtre, A.; Hemous, D.; Martin, R.; Van Reenen, J. Carbon taxes, path dependency, and directed technical change: Evidence from the auto industry. J. Political Econ. 2016, 124, 1–51. [Google Scholar] [CrossRef]
- Rahman, M.M.; Rana, R.H.; Barua, S. The Asymmetric Impact of Renewable Energy Consumption on the Economic Growth of Emerging South and East Asian Countries: A NARDL Approach. PLoS ONE 2023, 18, e0288740. [Google Scholar] [CrossRef]
- Joskow, P.L. Challenges for wholesale electricity markets with intermittent renewable generation at scale: The US experience. Oxf. Rev. Econ. Policy 2019, 35, 291–331. [Google Scholar] [CrossRef]
- Rodríguez, F.; Rodrik, D. Trade Policy and Economic Growth: A Skeptic’s Guide to the Cross-National Evidence; Bernanke, B.S., Rogoff, K., Eds.; NBER Macroeconomics Annual 2000; MIT Press: Cambridge, MA, USA, 2001; Volume 15, pp. 261–338. [Google Scholar]
- Krueger, A.O. Why Trade Liberalisation Is Good for Growth. Econ. J. 1998, 108, 1513–1522. [Google Scholar] [CrossRef]
- Baldwin, R.E. The case against infant-industry tariff protection. J. Political Econ. 1969, 77, 295–305. [Google Scholar] [CrossRef]
- Heckscher, E.F.; Ohlin, B. Heckscher-Ohlin Trade Theory; MIT Press: Cambridge, MA, USA, 1991. [Google Scholar]
- Baldwin, R.E.; Krugman, P.R. Persistent trade effects of large exchange rate shocks. Q. J. Econ. 1989, 104, 635–654. [Google Scholar] [CrossRef]
- Melitz, M.J. The Impact of Trade on Intra-Industry Reallocations and Aggregate Industry Productivity. Econometrica 2003, 71, 1695–1725. [Google Scholar] [CrossRef]
- E Porter, M.; van der Linde, C. Toward a new conception of the environment-competitiveness relationship. J. Econ. Perspect. 1995, 9, 97–118. [Google Scholar] [CrossRef]
- Voigt, S.; De Cian, E.; Schymura, M.; Verdolini, E. Energy intensity developments in 40 major economies: Structural change or technology improvement? Energy Econ. 2013, 41, 47–62. [Google Scholar] [CrossRef]
- Cullen, J.A.; Mansur, E.T. Inferring carbon abatement costs in electricity markets: A revealed preference approach using the shale revolution. Am. Econ. J. Econ. Policy 2017, 9, 106–133. [Google Scholar] [CrossRef]
- Fell, H.; Kaffine, D.T. The fall of coal: Joint impacts of fuel prices and renewables on generation and emissions. Am. Econ. J. Econ. Policy 2018, 10, 90–116. [Google Scholar] [CrossRef]
- Střelec, L. Comparison of Power of Modified Jarque-Bera Normality Tests and Selected Tests of Normality. Acta Univ. Agric. Et Silvic. Mendel. Brun. 2014, 56, 137–148. [Google Scholar] [CrossRef]
- Majenge, L.; Mpungose, S.; Msomi, S. Comparative Analysis of VAR and SVAR Models in Assessing Oil Price Shocks and Exchange Rate Transmission to Consumer Prices in South Africa. Econometrics 2025, 13, 8. [Google Scholar] [CrossRef]
- Menyah, K.; Wolde-Rufael, Y. CO2 Emissions, Nuclear Energy, Renewable Energy and Economic Growth in the US. Energy Policy 2010, 38, 2911–2915. [Google Scholar] [CrossRef]
- Malefane, M.R.; Odhiambo, N.M. Impact of Trade Openness on Economic Growth: Empirical Evidence from South Africa; Working Paper; University of South Africa, Department of Economics: Pretoria, South Africa, 2018. [Google Scholar]
- Edwards, L. Globalisation and the skills bias of occupational employment in South Africa. S. Afr. J. Econ. 2001, 69, 40–71. [Google Scholar] [CrossRef]
Key Economic Principles | Motivation |
---|---|
Threshold effects in economic relationships | The EKC literature suggests a threshold relationship between economic development and environmental quality [65]. According to [66], the relationship between environmental degradation and income growth is nonlinear and varies by regime. Azam et al. [67] found mixed evidence for Environmental Kuznets Curve validity across MENA countries, with threshold income levels (turning points) varying significantly, from USD 109 per capita in the UAE to USD 458 per capita in Turkey. This had indicated that environmental improvements occur at different economic development stages across the region. Jóźwik et al. [68] found threshold effects in the energy-growth relationship among EU countries, where high levels of non-renewable energy consumption (above the identified threshold) are associated with decreased economic activity, while renewable energy shows consistent positive effects on growth across all regimes during the green transition period. |
Asymmetric adjustment mechanisms | Modern growth theory emphasises that positive and negative economic shocks can have distinct effects on long-term relationships [69]. Alper and Oguz [70] found mixed evidence for renewable energy’s impact on economic growth among new EU member countries using asymmetric causality analysis, with positive effects observed across all countries but statistical significance only in Bulgaria, Estonia, Poland, and Slovenia. This asymmetry is particularly pronounced in countries with high resource dependence and infrastructure constraints [71]. |
Regime-dependent causality patterns | Different economic regimes may have distinct causal relationships between energy consumption, economic growth, and environmental quality [72]. Tiba and Omri [73] found significant differences in the causality patterns between economic growth and renewable energy based on policy regime, institutional quality level, and stage of development. Resource curse dynamics and commodity price cycles amplify regime dependencies in resource-rich countries such as South Africa [74]. |
Type of Diagnostic Test | Description | Source |
---|---|---|
Jarque–Bera Test | Tests whether model residuals follow a normal distribution by examining skewness and kurtosis. Essential for valid statistical inference in econometric models. Non-normal residuals may indicate that positive and negative shocks have fundamentally different distributional properties, affecting the interpretation of asymmetric effects. | Jarque & Bera [127] |
Breusch–Godfrey LM Test | Detects serial correlation in model residuals using a Lagrange Multiplier approach. Tests the null hypothesis of no serial correlation against the alternative of autocorrelation up to the specified lag order. Absence of serial correlation confirms the model captures all systematic adjustment patterns. | Breusch [128]; Godfrey [129] |
Variable | ZA-A Stat | ZA-C Stat | NP-A Stat | NP-C Stat | LS-1 Stat | LS-2 Stat |
---|---|---|---|---|---|---|
Carbon Dioxide Emissions (CDE) | −1.63 | −4.31 | −2.75 | −4.43 | −229.56 *** | −226.33 *** |
Renewable Energy Generation (REC) | −2.21 | −6.78 *** | −2.48 | −4.64 | −13.30 *** | −9.61 *** |
Economic Growth (GDP_growth) | −5.91 *** | −6.57 *** | −6.56 ** | −6.50 ** | −76.22 *** | −68.89 *** |
Coal Consumption (CC) | −2.54 | −5.78 *** | −3.09 | −4.99 | 172.46 | 175.46 |
Trade Openness (TO) | −4.53 | −4.37 | −5.22 | −5.55 | −121.18 *** | −117.53 *** |
Threshold Variable | Threshold Value | Log-Likelihood | AIC | BIC | RMSE | R-Squared | Model Selected |
---|---|---|---|---|---|---|---|
Carbon Dioxide Emissions (CDE) model | |||||||
REC | 0.5644 | 129.935 | −229.869 | −203.804 | 0.010581 | 0.996 | Yes |
TO | 3.979 | 129.222 | −228.444 | −202.379 | 0.010762 | 0.996 | No |
Economic growth (GDP_growth) model | |||||||
REC | 1.4587 | −81.211 | 192.423 | 218.488 | 1.613815 | 0.549 | No |
TO | 3.979 | −76.926 | 183.852 | 209.917 | 1.457276 | 0.633 | Yes |
Coal Consumption (CC) model | |||||||
REC | 0.5644 | 121.788 | −213.577 | −187.512 | 0.012846 | 0.992 | No |
TO | 3.8532 | 122.749 | −215.498 | −189.433 | 0.012555 | 0.992 | Yes |
Model of Interest | F-Statistic | Asymptotic Critical Values * | Results | |||||
---|---|---|---|---|---|---|---|---|
10% | 5% | 1% | ||||||
I(0) | I(1) | I(0) | I(1) | I(0) | I(1) | |||
CDE-REC model | 3.4477 | 3.47 | 4.45 | 4.13 | 5.00 | 5.15 | 6.36 | No cointegration |
GDP_growth-TO model | 19.1848 | Cointegration exists | ||||||
CC-TO model | 1.4356 | No cointegration |
Model | F-Statistic | p-Value | Decision |
---|---|---|---|
CDE-REC | 3.9401 | 0.0471 ** | Asymmetric effects detected |
GDP_growth-TO | 0.323 | 0.5698 | No evidence of asymmetry |
CC-TO | 0.0535 | 0.817 | No evidence of asymmetry |
Parameter | Coefficient | t-Statistic | p-Value | Significance |
---|---|---|---|---|
REC long-run effects | ||||
Error Correction Coefficient | 0.2961 | 2.193 | 0.0354 | ** |
Long-run Positive Effect (θ+) | −0.0506 | −2.097 | 0.0437 | ** |
Long-run Negative Effect (θ−) | −0.0025 | −1.135 | 0.2647 | - |
Long-run Multiplier (Positive) | 0.1707 | - | - | - |
Long-run Multiplier (Negative) | 0.0085 | - | - | - |
REC short-run effects | ||||
REC Positive Change (π+) | −0.0049 | −1.614 | 0.1161 | - |
REC Negative Change (π−) | −0.0051 | −0.993 | 0.3281 | - |
Control variables | ||||
GDP Growth (δ2) | 0.0002 | 0.041 | 0.9672 | - |
TO (δ3) | 0.0027 | 3.529 | 0.0013 | *** |
CC (δ4) | −0.0051 | −0.271 | 0.7884 | - |
Constant | 0.7354 | 21.304 | 0 | *** |
Parameter | Coefficient | t-Statistic | p-Value | Significance |
---|---|---|---|---|
TO long-run effects | ||||
Error Correction Coefficient (ρ) | 0.6885 | 0.624 | 0.5371 | |
Long-run Positive Effect (θ+) | −0.9446 | −7.171 | 0.0001 | *** |
Long-run Negative Effect (θ−) | −0.0911 | −0.061 | 0.9518 | |
Long-run Multiplier (Positive) | 1.372 | - | - | - |
Long-run Multiplier (Negative) | 0.1324 | - | - | - |
TO short-run effects | ||||
TO Positive Change (π+) | −0.4165 | −0.199 | 0.8435 | |
TO Negative Change (π−) | 7.6633 | 1.683 | 0.1019 | |
Control variables | ||||
CDE (δ2) | −0.4471 | −0.107 | 0.9151 | |
REC (δ3) | 82.5317 | 4.821 | 0.0001 | *** |
CC (δ4) | 0.1451 | 0.52 | 0.6062 | |
Constant | −60.9463 | −4.521 | 0.0001 | *** |
Parameter | Coefficient | t-Statistic | p-Value | Significance |
---|---|---|---|---|
TO long-run effects | ||||
Error Correction Coefficient (ρ) | −0.0241 | −0.906 | 0.3713 | |
Long-run Positive Effect (θ+) | −0.0011 | −0.035 | 0.9719 | |
Long-run Negative Effect (θ−) | −0.0091 | −0.562 | 0.5776 | |
Long-run Multiplier (Positive) | −0.0451 | - | - | - |
Long-run Multiplier (Negative) | −0.3779 | - | - | - |
TO short-run effects | ||||
TO Positive Change (π+) | −0.0248 | −0.968 | 0.3399 | |
TO Negative Change (π−) | 0.0653 | 1.284 | 0.2081 | |
Control variables | ||||
GDP Growth (δ2) | −0.0669 | −1.479 | 0.1485 | |
CDE (δ3) | −0.0037 | −3.644 | 0.0009 | *** |
REC (δ4) | 1.251 | 21.366 | 0 | *** |
Constant | 0.0015 | 0.476 | 0.6373 |
Test Type | Test Statistic | p-Value | Decision |
---|---|---|---|
CDE-REC model | |||
Ljung–Box Test (Serial Correlation) | 1.8410 | 0.7650 | Accepted the null hypothesis |
Jarque–Bera Test (Normality) | 1.0950 | 0.4565 | Accepted the null hypothesis |
GDP_growth-TO model | |||
Ljung–Box Test (Serial Correlation) | 2.1329 | 0.7113 | Accepted the null hypothesis |
Jarque–Bera Test (Normality) | 229.9115 | 0.0010 | Rejected the null hypothesis |
CC-TO model | |||
Ljung–Box Test (Serial Correlation) | 1.0705 | 0.8989 | Accepted the null hypothesis |
Jarque–Bera Test (Normality) | 0.1246 | 0.5000 | Accepted the null hypothesis |
Causality Direction | Null Hypothesis | Threshold Value | T-Statistic | p-Value | Low Regime % | High Regime % | Decision |
---|---|---|---|---|---|---|---|
CDE to REC | Past CDE levels do not help predict current REC beyond what REC own past values predict | 0.60 | −8.90 | 1.00 | 51.20% | 48.80% | Accepted the null hypothesis |
REC to CDE | Past REC levels do not help predict current CDE beyond what CDE own past values predict | 5.93 | 7.80 | 0.00 | 51.20% | 48.80% | Rejected the null hypothesis |
GDP_growth to TO | Past GDP growth rates do not help predict current TO beyond what TO own past values predict | 3.87 | 6.29 | 0.00 | 51.20% | 48.80% | Rejected the null hypothesis |
TO to GDP_growth | Past TO levels do not help predict current GDP growth rates beyond what GDP_growth own past values predict | 0.87 | −8.60 | 1.00 | 51.20% | 48.80% | Accepted the null hypothesis |
CC to TO | Past CC levels do not help predict current TO beyond what TO own past values predict | 3.87 | 4.29 | 0.01 | 51.20% | 48.80% | Rejected the null hypothesis |
TO to CC | Past TO levels do not help predict current CC beyond what CC own past values predict | 0.01 | 5.94 | 0.00 | 51.20% | 48.80% | Rejected the null hypothesis |
CDE to GDP_growth | Past CDE levels do not help predict current GDP_growth beyond what GDP_growth own past values predict | 0.87 | −16.40 | 1.00 | 51.20% | 48.80% | Accepted the null hypothesis |
GDP_growth to CDE | Past GDP_growth rates do not help predict current CDE beyond what CDE own past values predict | 5.93 | 9.37 | 0.00 | 51.20% | 48.80% | Rejected the null hypothesis |
REC to GDP_growth | Past REC levels do not help predict current GDP_growth beyond what GDP_growth own past values predict | 0.87 | −6.53 | 1.00 | 51.20% | 48.80% | Accepted the null hypothesis |
GDP_growth to REC | Past GDP growth rates do not help predict current REC beyond what REC own past values predict | 0.60 | 1.96 | 0.12 | 51.20% | 48.80% | Accepted the null hypothesis |
CDE to CC | Past CDE levels do not help predict current CC beyond what CC own past values predict | 0.01 | 6.94 | 0.00 | 51.20% | 48.80% | Rejected the null hypothesis |
CC to CDE | Past CC levels do not help predict current CDE beyond what CDE own past values predict | 5.93 | 13.34 | 0.00 | 51.20% | 48.80% | Rejected the null hypothesis |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Majenge, L.; Mpungose, S.; Msomi, S. Threshold Effects on South Africa’s Renewable Energy–Economic Growth–Carbon Dioxide Emissions Nexus: A Nonlinear Analysis Using Threshold-Switching Dynamic Models. Energies 2025, 18, 4642. https://doi.org/10.3390/en18174642
Majenge L, Mpungose S, Msomi S. Threshold Effects on South Africa’s Renewable Energy–Economic Growth–Carbon Dioxide Emissions Nexus: A Nonlinear Analysis Using Threshold-Switching Dynamic Models. Energies. 2025; 18(17):4642. https://doi.org/10.3390/en18174642
Chicago/Turabian StyleMajenge, Luyanda, Sakhile Mpungose, and Simiso Msomi. 2025. "Threshold Effects on South Africa’s Renewable Energy–Economic Growth–Carbon Dioxide Emissions Nexus: A Nonlinear Analysis Using Threshold-Switching Dynamic Models" Energies 18, no. 17: 4642. https://doi.org/10.3390/en18174642
APA StyleMajenge, L., Mpungose, S., & Msomi, S. (2025). Threshold Effects on South Africa’s Renewable Energy–Economic Growth–Carbon Dioxide Emissions Nexus: A Nonlinear Analysis Using Threshold-Switching Dynamic Models. Energies, 18(17), 4642. https://doi.org/10.3390/en18174642