First Tests on the Performance and Reliability of an Experimental Bio-Based UTTO Lubricant Used in an Agricultural Tractor
Abstract
1. Introduction
2. Materials and Methods
- (1)
- Agrolube Vela B: A mineral UTTO produced by Argo Tractors S.p.A. (Fabbrico, Italy), also the tractor’s manufacturer. This fluid was in use within the tractor prior to its replacement with the bio-based UTTO. At the point of replacement, the fluid had accrued approximately 1400 operating hours and was deemed exhausted. Hereafter, this fluid is designated as CF1 (Conventional Fluid 1).
- (2)
- Matrol-Bi FUM 01A: A biofluid manufactured by Novamont S.p.A. (Novara, Italy). It is formulated with an ester base synthesized from non-food high-oleic vegetable oils and a proprietary additive package. Its selection for the tractor test was based on its favorable performance results from the Fluid Test Rig (FTR). It will be referred to as BF (Bio-Fluid).
- (3)
- Agrolube Vela C+: A mineral UTTO from Argo Tractors S.p.A. (Fabbrico, Italy). This fluid superseded Agrolube Vela B commercially and is the manufacturer’s recommended fluid for the tractor in this study. It was tested on the FTR for a direct performance comparison with the BF. This fluid is designated as CF2 (Conventional Fluid 2).
2.1. UTTO Fluids Involved in the Tests
2.2. Machinery and Equipment Involved in the Tests
2.2.1. Fluid Test Rig (FTR)
2.2.2. Tractor Used in Farm Operations
2.2.3. Dynamometric Brake
2.3. Tests
3. Results and Discussion
3.1. Tests at the Fluid Test Rig (T1)
3.2. Tests of the Tractor at the Dynamometric Brake (T2)—Comparison Between Matrol Bi (BF) and Vela B (CF1)
3.3. Test of BF on the Tractor in Operative Conditions
- −
- The substantial equivalence of BF and CF2 during the FTR tests in terms of technical performance and the evolution of their main properties.
- −
- A slight improvement in tractor performance and a minor reduction in noise emissions under high engine load after replacing the exhausted CF1 with BF.
- −
- The FTR tests represent significantly more severe working conditions for the fluid compared to typical field usage, confirming the FTR’s suitability for reliable and rapid fluid evaluation.
- −
- The BF showed overall excellent performance over 586 h of field use, with no reported problems. Visual inspections and sample analyses confirmed the absence of leaks, material damage, or wear elements. The final sample showed no signs of turbidity, sediments, or acidic odors, and the tractor driver reported no malfunctions or difficulties.
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
UTTO | Universal Tractor Transmission Oil. |
FTR | Fluid Test Rig. |
CREA | Consiglio per la ricerca in agricoltura e l’analisi dell’economia agraria. |
OECD | Organisation for Economic Co-operation and Development. |
ASTM | American Society for Testing and Materials. |
SAE | Society of Automotive Engineers. |
PTO | Power Take-Off. |
ISO | International Organisation for Standardisation. |
VI | Viscosity Index. |
RPVOT | Rotating Pressure Vessel Oxidation Test. |
TAN | Total Acid Number. |
References
- Michaelis, K.; Höhn, B.R.; Doleschel, A. Lubricant influence on gear efficiency. In Proceedings of the International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (ASME 2009), San Diego, CA, USA, 30 August–2 September 2009. [Google Scholar]
- Ales, Z. Tribological properties of transmission oils. In Proceedings of the 4th International Conference on Trends in Agricultural Engineering (TAE 2010), Prague, Czech Republik, 7–10 September 2010. [Google Scholar]
- Tulík, J.; Hujo, L.; Stančík, B.; Ševčik, P. Research of new ecological synthetic oil-based fluid. J. Cent. Eur. Agric. 2013, 14, 1401–1410. [Google Scholar] [CrossRef]
- Mercurio, P.; Burns, K.A.; Negri, A. Testing the ecotoxicology of vegetable versus mineral based lubricating oils: 1. Degradation rates using tropical marine microbes. Environ. Pollut. 2004, 129, 165–173. [Google Scholar] [CrossRef] [PubMed]
- Cecutti, C.; Agius, D. Ecotoxicity and biodegradability in soil and aqueous media of lubricants used in forestry applications. Biores. Technol. 2008, 99, 8492–8496. [Google Scholar] [CrossRef]
- Harika, E.; Jarny, S.; Monnet, P.; Bouyer, J.; Fillo, M. Effect of water pollution on rheological properties of lubricating oil. Appl. Rheol. 2011, 21, 12613. [Google Scholar] [CrossRef]
- Syahrullail, S.; Kamitani, S.; Shakirin, A. Tribological evaluation of mineral oil and vegetable oil as a lubricant. J. Teknol. Sci. Eng. 2014, 66, 37–44. [Google Scholar] [CrossRef]
- Kunz, A. Development of a universal tractor transmission oil (UTTO) based on renewable raw materials. Materialwiss. Werkstofftech. 2006, 37, 191–201. [Google Scholar] [CrossRef]
- Panchal, T.M.; Pate, A.; Chauhan, D.D.; Thomas, M.; Patel, J.V. A methodological review on bio-lubricants from vegetable oil based resources. Renew. Sust. Energ. Rev. 2017, 70, 65–70. [Google Scholar] [CrossRef]
- Lee, C.T.; Lee, M.B.; Mong, G.R.; Fong Chong, W.W. A bibliometric analysis on the tribological and physicochemical properties of vegetable oil–based bio-lubricants (2010–2021). Environ. Sci. Pollut. Res. 2022, 29, 56215–56248. [Google Scholar] [CrossRef]
- Uppar, R.; Dinesha, P.; Kumar, S. A critical review on vegetable oil-based bio-lubricants: Preparation, characterization, and challenges. Environ. Dev. Sustain. 2023, 25, 9011–9046. [Google Scholar] [CrossRef]
- Khadem, M.; Kang, W.-B.; Kim, D.-E. Green tribology: A review of biodegradable lubricants-properties, current status, and future improvement trends. Int. J. Precis. Eng. Manuf. Green Technol. 2024, 11, 565–583. [Google Scholar] [CrossRef]
- Majdan, R.; Kosiba, J.; Tulík, J.; Kročková, D.; Šinský, V. The comparison of biodegradable hydraulic fluid with mineral oil on the basis of selected parameters. Res. Agric. Eng. 2011, 57, 43–49. [Google Scholar] [CrossRef]
- Kardjilova, K.; Vozárová, V.; Valah, M. Influence of Temperature on Energetic and Rheological Characteristics of PLANTOHYD Bio Lubricants—A Study in the Laboratory. Eng. Technol. Appl. Sci. Res. 2013, 3, 424–428. [Google Scholar] [CrossRef]
- Birkavs, A.; Smigins, R. Experimental research on compatibility of mineral and biobased hydraulic fluid. Agron. Res. 2018, 16, 968–976. [Google Scholar] [CrossRef]
- Csillag, J.; Petrović, A.; Vozárová, V.; Bilčík, M.; Božiková, M.; Holota, T. Comparison of rheological properties of new and used biolubricants. In Proceedings of the 7th International Conference on Trends In Agricultural Engineering (TAE 2019), Prague, Czech Republic, 17–20 September 2019. [Google Scholar]
- Csillag, J.; Petrović, A.; Vozárová, V.; Kosiba, J.; Majdan, R. Some rheological properties of new and used mineral lubricant and biolubricant for tractors. Agron. Res. 2019, 17, 2233–2241. [Google Scholar] [CrossRef]
- Krzan, B.; Vizintin, J. Tribological properties of an environmentally adopted universal tractor transmission oil based on vegetable oil. Tribol. Int. 2003, 36, 827–833. [Google Scholar] [CrossRef]
- Peric, S.R.; Bucko, M.; Stolijkovic, M.; Nedic, B.; Trifkovic, D.R. Experimental research of the biodegradable universal tractor oil based on the vegetable oils. J. Balk. Tribol. Assoc. 2017, 23, 209–226. [Google Scholar]
- Tulik, J.; Hujo, L.; Kosiba, J.; Jablonicky, J.; Janosova, M. Evaluation of new biodegradable fluid on the basis of accelerated durability test, FTIR and ICP spectroscopy. Res. Agric. Eng. 2017, 63, 1–9. [Google Scholar] [CrossRef]
- Ashish, U.; Galhe, D.S. Review on vegetable oil as bio lubricant. Int. J. Scientif. Res. Dev. 2017, 5, 587–589. [Google Scholar]
- Mobarak, H.M.; Niza, M.E.; Masjuki, H.H.; Kalam, M.A.; Al Mahmud, K.A.H.; Habibullah, M.; Ashraful, A.M. The prospects of biolubricants as alternative in automotive applications. Renew. Sust. Energ. Rev. 2014, 33, 34–43. [Google Scholar] [CrossRef]
- Akhil, U.V.; Radhika, N.; Ravichandran, M. The modification and adoption of biolubricants as alternatives in the automotive industry. Environ. Sci. Pollut. Res. 2025, 32, 1043–1072. [Google Scholar] [CrossRef]
- Ales, Z. Field experience with transmission oil EP Gear Synth 150. Res. Agric. Eng. 2009, 55, 18–23. [Google Scholar] [CrossRef]
- Paredes, X.; Lineira del Rio, M.; Goncalves, D.E.P.; Guimarey, J.G.; Comunas, M.J.P.; Seabra, J.H.O.; Fernandez, J. Thermophysical and tribological properties of highly viscous biolubricants. Ind. Eng. Chem. Res. 2022, 61, 8346–8356. [Google Scholar] [CrossRef]
- Calcante, A.; Brambilla, M.; Bisaglia, C.; Oberti, R. Estimating the total lubricant oil consumption rate in agricultural tractors. Trans. ASABE 2019, 62, 197–204. [Google Scholar] [CrossRef]
- Cutini, M.; Brambilla, M.; Pochi, D.; Fanigliulo, R.; Bisaglia, C. A simplified approach to the evaluation of the influences on key factors on agricultural tractor fuel consumption during heavy drawbar tasks under field conditions. Agronomy 2022, 12, 1017. [Google Scholar] [CrossRef]
- Majdan, R.; Tkač, Z.; Stančik, B.; Abraham, R.; Štulajter, I.; Ševčik, P.; Rašo, M. Elimination of ecological fluids contamination in agricultural tractors. Res. Agric. Eng. 2014, 60, 9–15. [Google Scholar] [CrossRef]
- Prolic, T.C.; Feija, M.; Grahovac, R.P.; Lepušić, A. Impact of modifiers on formulation of universal gear tractor oil (UTTO) SAE 10W-30. Goriza I Maz. 2015, 54, 257–270. [Google Scholar]
- Kučera, M.; Aleš, Z.; Pexa, M. Detection and characterization of wear particles on universal tractor oil using a particle size analyzer. Agron. Res. 2016, 14, 1351–1360. [Google Scholar]
- Goncalves, D.E.P.; Lineira del Rio, J.M.; Comunas, M.J.P.; Fernandez, J.; Seabra, J.H.O. High pressure characterization of the viscous and volumetric behaviour of three transmission oils. Ind. Eng. Chem. Res. 2019, 58, 1732–1742. [Google Scholar] [CrossRef]
- Toth, F.; Rusnak, J.; Kadnar, M.; Čavojsky, P. Effect of selected ecological lubricants on the wear of defined sliding bearing. Acta Technol. Agric. 2014, 17, 13–16. [Google Scholar] [CrossRef]
- Attia, N.K.; El-Mekkawi, S.A.; Elardy, O.A.; Abdelkader, E.A. Chemical and rheological assessment of produced biolubricants from different vegetable oils. Fuel 2020, 271, 117578. [Google Scholar] [CrossRef]
- Murru, C.; Badia-Laino, R.; Diaz-Garcia, M.E. Oxidative stability of vegetal oil-based lubricants. ACS Sustain. Chem. Eng. 2021, 9, 1459–1476. [Google Scholar] [CrossRef] [PubMed]
- Schneider, M. Plant-oil-based lubricants and hydraulic fluids. J. Sci. Food. Agric. 2006, 86, 1769–1780. [Google Scholar] [CrossRef]
- Campanella, A.; Rustoy, E.; Baldessari, A.; Baltanás, M.A. Lubricants from chemically modified vegetable oils. Bioresour. Technol. 2010, 101, 245–254. [Google Scholar] [CrossRef]
- McNutt, J.; He, Q. Development of biolubricants from vegetable oils via chemical modification. J. Ind. Eng. Chem. 2016, 36, 1–12. [Google Scholar] [CrossRef]
- Marques, J.P.C.; Rios, I.C.; Parente, E.J.S.; Quintella, S.A.; Luna, F.M.T.; Cavalcante, C.L. Synthesis and characterization of potential bio-based lubricant basestocks via epoxidation process. J. Am. Oil Chem. Soc. 2019, 97, 437–446. [Google Scholar] [CrossRef]
- Joshi, J.R.; Bhanderi, K.K.; Patel, J.V. A review on bio-lubricants from non-edible oils-recent advances, chemical modifications and applications. J. Indian Chem. Soc. 2023, 100, 100849. [Google Scholar] [CrossRef]
- Ugolini, L.; Matteo, R.; Lazzeri, L.; Malaguti, L.; Folegatti, L.; Bondioli, P.; Pochi, D.; Grilli, R.; Fornaciari, L.; Benigni, S.; et al. Technical Performance and Chemical-Physical Property Assessment of Safflower Oil Tested in an Experimental Hydraulic Test Rig. Lubricants 2023, 11, 39. [Google Scholar] [CrossRef]
- Prasad, N.; Siddaramaiah, B.; Banu, M. Effect of antioxidant tertiary butyl hydroquinone on the thermal and oxidative stability of sesame oil (Sesamum indicum) by ultrasonic studies. J. Food Sci. Technol. 2015, 52, 2238–2246. [Google Scholar] [CrossRef]
- Stojilković, M.; Kolb, M. Tribological Properties of Biodegradable Universal Tractor Transmission Oil. Tribol. Ind. 2016, 38, 229–234. [Google Scholar]
- Pochi, D.; Fanigliulo, R.; Bisaglia, C.; Cutini, M.; Grilli, R.; Betto, M.; Fornaciari, L. Vegetable-based Oil as UTTO Fluid for Agricultural Tractors Application. Appl. Eng. Agric. 2020, 36, 79–88. [Google Scholar] [CrossRef]
- Shah, R.; Woydt, M.; Zhang, S. The economic and environmental significance of sustainable lubricants. Lubricants 2021, 9, 21. [Google Scholar] [CrossRef]
- Zulkifli, N.W.M.; Azman, S.S.N.; Kalam, M.A.; Masjuki, H.H.; Yunus, R.; Gulzar, M. Lubricity of bio-based lubricant derives from different chemically modified fatty acid methyl ester. Tribol. Int. 2016, 93 Pt B, 555–562. [Google Scholar] [CrossRef]
- Kučera, M.; Drmla, J.; Aleš, Z. Comparative experimental investigation of environmentally non-hazardous rapeseed oils using technical reliability indicators. Acta Technol. Agric. 2025, 28, 71–79. [Google Scholar] [CrossRef]
- Pochi, D.; Fanigliulo, R.; Bisaglia, C.; Cutini, M.; Grilli, R.; Fornaciari, L.; Betto, M.; Pari, L.; Gallucci, F.; Capuzzi, L.; et al. Test rig and method for comparative evaluation of conventional and bio-based hydraulic fluids and lubricants for agricultural transmissions. Sustainability 2020, 12, 8564. [Google Scholar] [CrossRef]
- OECD. Test No. 301: Ready Biodegradability. In OECD Guidelines for the Testing of Chemicals, Section 3; OECD: Paris, France, 1992. [Google Scholar] [CrossRef]
- ASTM D4052-18; Standard Test Method for Density, Relative Density, and API Gravity of Liquids by Digital Density Meter. ASTM International: West Conshohocken, PA, USA, 2018.
- ASTM D445-06; Standard Test Method for Kinematic Viscosity of Transparent and Opaque Liquids (and Calculation of Dynamic Viscosity). ASTM International: West Conshohocken, PA, USA, 2006.
- ASTM D2270-10e1; Standard Practice for Calculating Viscosity Index from Kinematic Viscosity at 40 °C and 100 °C. ASTM International: West Conshohocken, PA, USA, 2016.
- J300_202104; Engine Oil Viscosity Classification. Issuing Committee: Fuels and Lubricants TC 1 Engine Lubrication. SAE International: Troy, MI, USA, 2021. [CrossRef]
- ASTM D664-18e2; Standard Test Method for Acid Number of Petroleum Products by Potentiometric Titration. ASTM International: West Conshohocken, PA, USA, 2018.
- ASTM D97-17b; Standard Test Method for Pour Point of Petroleum Products. ASTM International: West Conshohocken, PA, USA, 2022.
- ASTM D92-24; Standard Test Method for Flash and Fire Points by Cleveland Open Cup Tester. ASTM International: West Conshohocken, PA, USA, 2024.
- Wan Nik, W.B.; Zulkifli, F.; Ahmad, M.F.; Sulaiman, O.; Rahman, M.M. Performance evaluation of hydraulic field test rig. Procedia Eng. 2013, 68, 613–618. [Google Scholar] [CrossRef]
- Kosiba, J.; Čorňak, S.; Glos, J.; Jablonický, J.; Vozýrový, V.; Petrović, A.; Csilllag, J. Monitoring oil degradation during operating test. Agron. Res. 2016, 14, 1626–1634. [Google Scholar]
- Pochi, D.; Fanigliulo, R.; Grilli, R.; Fornaciari, L.; Bisaglia, C.; Cutini, M.; Brambilla, M.; Sagliano, A.; Capuzzi, L.; Palmieri, F.; et al. Design and assessment of a test rig for hydrodynamic tests on hydraulic fluids. In Innovative Biosystems Engineering for Sustainable Agriculture, Forestry and Food Production; Lecture Notes in Civil Engineering; Coppola, A., Di Renzo, G.C., Altieri, G., D’Antonio, P., Eds.; Springer Nature: Cham, Switzerland, 2020; Volume 67, pp. 419–429. [Google Scholar] [CrossRef]
- Pochi, D.; Fanigliulo, R.; Pagano, M.; Grilli, R.; Fedrizzi, M.; Fornaciari, L. Dynamic-energetic balance of agricultural tractors: Active system for the measurement of the power requirements in static test and under field conditions. J. Agric. Eng. 2013, 44, 415–420. [Google Scholar] [CrossRef]
- Majdan, R.; Tkač, Z.; Abraham, R.; Szabo, M.; Halenar, M.; Raso, M.; Ševčik, P. Proposal for filtration system for biodegradable lubricants in agricultural tractors. Agron. Res. 2016, 14, 1395–1405. [Google Scholar]
- Majdan, R.; Abraham, R.; Uhrinová, D.; Nosian, J. Contamination of transmission and hydraulic oils in agricultural tractors and proposal of by-pass filtration system. Agron. Res. 2019, 17, 1107–1122. [Google Scholar] [CrossRef]
- Osinenko, P. Optimal Slip Control for Tractors with Feedback of Drive Torque. Ph.D. Thesis, Faculty of Mechanical Science and Engineering, Technische Universität Dresden, Dresden, Germany, 2014. [Google Scholar]
- Renius, K.T. Tractors. Technology and Its Application, 1st ed.; BLV Publishing Society: Munich, Germany, 1985. [Google Scholar]
- Pochi, D.; Biocca, M.; Fanigliulo, R.; Gallo, P.; Pulcini, P. Sowing of seed dressed with thiacloprid using a pneumatic drill modified for reducing abrasion dust emissions. Bull. Insectology 2015, 68, 273–279. [Google Scholar]
- Biocca, M.; Fanigliulo, R.; Gallo, P.; Pulcini, P.; Pochi, D. The assessment of dust drift from pneumatic drills using static tests and in-field validation. Crop Prot. 2015, 71, 109–115. [Google Scholar] [CrossRef]
- Fanigliulo, R.; Biocca, M.; Pochi, D. Effects of six primary tillage implements on energy inputs and residue cover in Central Italy. J. Agric. Eng. 2016, 47, 177–180. [Google Scholar] [CrossRef]
- Biocca, M.; Pochi, D.; Fanigliulo, R.; Gallo, P.; Pulcini, P.; Marcovecchio, F.; Perrino, C. Evaluating a filtering and recirculating system to reduce dust drift in simulated sowing of dressed seed and abraded dust particle characteristics. Pest Manag. Sci. 2017, 73, 1134–1142. [Google Scholar] [CrossRef]
- OECD. Standard Code for the Official Testing of Agricultural and Forestry Tractor Performance. Code 2; Organization for Economic Cooperation and Development: Paris, France, 2025; Available online: https://www.oecd.org/content/dam/oecd/en/topics/policy-sub-issues/tractors/02-Code2-EN-February-2025-final.pdf (accessed on 12 February 2025).
- ISO 1999:2013; Acoustics—Estimation of Noise-Induced Hearing Loss. International Organisation for Standardisation: Geneva, Switzerland, 2013.
- ASTM D2272-14; Standard Test Method for Oxidation Stability of Steam Turbine Oils by Rotating Pressure Vessel. ASTM International: West Conshohocken, PA, USA, 2022.
- ISO 4406:2021; Hydraulic Fluid Power. Fluids. Method for Coding the Level of Contamination by Solid Particles. ISO: Geneva, Switzerland, 2021.
- NAS 1638; Cleanliness Requirements of Parts Used in Hydraulic Systems. Aerospace Industries of America: Washington, DC, USA, 2001.
- SAE AS 4059-G; Contamination Classification for Hydraulic Fluids. SAE: Warrendale, PA, USA, 2022.
- ASTM D6595-17; Standard Test Method for Determination of Wear Metals and Contaminants in Used Lubricating Oils or Used Hydraulic Fluids by Rotating Disc Electrode Atomic Emission Spectrometry. ASTM International: West Conshohocken, PA, USA, 2022.
- Santos Oliveira, J.C.; Gouveia Souza, A. Specific heat capacity of some mineral, synthetic and semi-synthetic automotive lubricant oils after thermal degradation. Chem. Technol. Indian J. 2006, 1, 8–13. [Google Scholar]
- Rossi Motoriduttori. Available online: https://www.vansteenbv.nl/wp-content/uploads/2017/05/Rossi-Parallel-right-angle-shaft-gear-reducers-and-gearmotors-G05.pdf (accessed on 28 February 2024).
- Wolak, A. Changes in lubricant properties of used synthetic oils based on the total acid number. Meas. Control 2018, 51, 65–72. [Google Scholar] [CrossRef]
- Yan, S.; Ma, B.; Wang, X.; Chen, J.; Zheng, C. Maintenance policy for oil-lubricated systems with oil analysis data. Eksploat. I Niezawodn. Maint. Reliab. 2020, 22, 455–464. [Google Scholar] [CrossRef]
Tests | Equipment | CF1 1 | BF | CF2 | Type of Test |
---|---|---|---|---|---|
T1 | Fluid Test Rig (FTR) | - | X | X | Durability test |
T2 | Tractor at dynamometric brake | X | X | - | Engine characteristic curves |
T3 | Tractor under operative conditions | - | X | - | Normal farm operations |
Properties | Units | CF1 1 | BF 2 | CF2 1 | Method |
---|---|---|---|---|---|
Physical state at 20 °C | - | Liquid | Liquid | Liquid | Visual |
Appearance and color | - | Yellow | Yellow | Yellow | Visual |
Density at 15 °C | kg m−3 | 883 | 940 | 882 | ASTM D4052 [49] |
Kinematic viscosity at 40 °C | mm2 s−1 | 88.0 | 57.5 | 56.0 | ASTM D445 [50] |
Kinematic viscosity at 100 °C | mm2 s−1 | 11.9 | 12.1 | 9.3 | ASTM D445 [50] |
Viscosity index | - | 109 | 215 | 145 | ASTM D2270 [51] |
Viscosity grade | - | 20W-30 | 5W-30 | 10W-30 | SAE J300 [52] |
Total acid number | mg KOH g−1 | n.a. | 0.70 | n.a. | ASTM D664 [53] |
Pour point | °C | −27 | −36 | −40 | ASTM D97 [54] |
Flash point | °C | 220 | >280 | 232 | ASTM D92 [55] |
FTR’s Circuit | Main Parameters | Unit | Working Conditions |
---|---|---|---|
Main circuit (low-pressure section) | Tested volume fluid | dm3 | 20 |
Operating pressure | MPa | <0.15 | |
Fluid temperature 1 | °C | <60 | |
Hydraulic | Fluid temperature 2 | °C | ≈100 |
Flow rate | dm3 min−1 | 5.7 | |
Operating pressure | MPa | 40 | |
High-pressure pump maximum speed | min−1 | 1800 | |
Maximum hydraulic power | kW | 3.8 | |
Transmission (speed multiplier) | Fluid volume in the multiplier | dm3 | 2.6 |
Fluid temperature 3 | °C | 60 | |
Fluid temperature 4 | °C | ≈87 | |
Flow rate 5 | dm3 min−1 | 0.2 | |
Electric engine max. speed | min−1 | 660 | |
Dynamometric brake shaft max. speed | min−1 | 1900 | |
Torque applied at the dynamometric brake | daNm | 12.5 | |
Mechanical power | kW | 24.5 |
Test | Parameters Monitored | Unit | Laboratories | Ref. Standard | |
---|---|---|---|---|---|
T1 | HC 1 | Flow rate | dm3 h−1 | CREA | CREA methodology [47] |
Pressure | MPa | ||||
Hydraulic power | kW | ||||
Fluid T° at HP 3 inlet | °C | ||||
Fluid T° at HP 3 outlet | °C | ||||
TC 2 | Torque | daNm | CREA | CREA methodology [47] | |
Rotational speed | min−1 | ||||
Mechanical power | kW | ||||
Fluid T° at SM 4 inlet | °C | ||||
Fluid T° at SM 4 outlet | °C | ||||
Analyses | Kin. visc. at 40 and 100 °C | mm2 s−1 | CREA | ASTM D445 [50] | |
Viscosity Index | - | CREA | ASTM D2270 [51] | ||
Total acid number (TAN) | Mg KOH g−1 | Novamont | ASTM D664 [53] | ||
RPVOT 5 | min | Novamont | ASTM D2272 [70] | ||
Contamination particles | Code No. | MECOIL 6 | ISO 4406, NAS 1638, SAE AS 4059 [71,72,73] | ||
Wear elements | ppm | MECOIL 6 | ASTM D6595-17 [74] | ||
Additive elements | ppm | ||||
Contamination elements | ppm | ||||
T2 | - | Engine speed | min−1 | CREA | Code 2 OECD [68] |
Torque | daNm | ||||
Power | kW | ||||
Sound pressure | dB | ISO 1999 [69] | |||
T3 | Analyses | Kin. visc. at 40 and 100 °C | mm2 s−1 | CREA | ASTM D445 [50] |
Viscosity Index | - | CREA | ASTM D2270 [51] | ||
Total acid number (TAN) | Mg KOH g−1 | Novamont | ASTM D664 [53] | ||
RPVOT 5 | min | Novamont | ASTM D2272 [70] | ||
Contamination particles | Code No. | MECOIL 6 | ISO 4406, NAS 1638, SAE AS 4059 [71,72,73] | ||
Wear elements | ppm | MECOIL 6 | ASTM D6595-17 [74] | ||
Additive elements | ppm | ||||
Contamination elements | ppm |
UTTO Fluids | Statistical Descript. | Hydraulic Circuit | Transmission Circuit | Fluid Temperature | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Pressure | Flow Rate | Power | Speed 1 | Torque 1 | Power | Ta 2 | Tb 3 | Tc 4 | ||
MPa | dm3 h−1 | kW | min−1 | daNm | kW | °C | °C | °C | ||
BF | Average | 40.40 | 378.01 | 4.99 | 1885 | 12.49 | 24.66 | 62.35 | 97.77 | 84.23 |
Max | 40.76 | 394.97 | 5.21 | 1921 | 12.76 | 25.48 | 63.57 | 99.44 | 86.26 | |
Min | 40.17 | 368.62 | 4.85 | 1635 | 11.37 | 19.59 | 60.96 | 95.75 | 80.23 | |
St. Dev. | 0.12 | 7.16 | 0.09 | 74.78 | 0.20 | 1.27 | 0.64 | 0.91 | 1.44 | |
C.V. | 0.29 | 1.89 | 1.87 | 3.97 | 1.61 | 5.16 | 1.02 | 0.93 | 1.72 | |
St. Err. | 0.02 | 0.95 | 0.01 | 9.90 | 0.03 | 0.17 | 0.08 | 0.12 | 0.19 | |
CF2 | Average | 40.50 | 379.11 | 5.02 | 1900 | 12.72 | 25.31 | 61.10 | 94.27 | 82.31 |
Max | 41.37 | 387.51 | 5.20 | 1906 | 12.93 | 25.73 | 63.17 | 96.77 | 84.93 | |
Min | 39.96 | 360.03 | 4.78 | 1896 | 11.90 | 23.66 | 57.76 | 90.28 | 73.02 | |
St. Dev. | 0.30 | 5.83 | 0.08 | 1.98 | 0.15 | 0.31 | 1.50 | 1.61 | 2.58 | |
C.V. | 0.75 | 1.54 | 1.63 | 0.10 | 1.20 | 1.21 | 2.45 | 1.70 | 3.14 | |
St. Err. | 0.05 | 0.88 | 0.01 | 0.30 | 0.02 | 0.05 | 0.23 | 0.24 | 0.18 |
Fluid | FTR Circuit | Power | Time of Work | Work Energy | Spec. Work Energy | Eff. | Thermal Energy | Specific Therm. En. | T° Oper. | T° Reserv. | Mean ΔT |
---|---|---|---|---|---|---|---|---|---|---|---|
kW | h | kWh | kWh dm−3 | η | kW | kWh dm−3 | °C | °C | °C | ||
BF | Hydr. | 4.99 | 420 | 2096 | 119.8 | 0.85 | 370 | 21.14 | 97.77 | 62.35 | 35.42 |
Transm. | 24.66 | 10,355 | 591.7 | 0.94 | 661 | 37.77 | 84.23 | 21.88 | |||
Total | - | - | 12,451 | 711.5 | - | 1031 | 58.91 | - | - | - | |
CF2 | Hydr. | 5.02 | 350 | 1756 | 100.4 | 0.85 | 310 | 17.73 | 94.27 | 61.10 | 33.17 |
Transm. | 25.31 | 8860 | 506.3 | 0.94 | 566 | 32.31 | 82.31 | 21.21 | |||
Total | - | - | 10,616 | 606.7 | - | 876 | 50.04 | - | - | - |
Fluid | FTR Circuit | Mass | Passes | Add. Ther. Leap | Thermal Energy | Ther. Sp. Energy |
---|---|---|---|---|---|---|
g | No. | °C | kWh | kWh dm−3 | ||
BF | Hydraulic | 1587 | 7039 | 17.7 | 159 | 6.348 |
Transmission | 2444 | 202 | 14.2 | 6 | 0.225 | |
Total | - | - | - | 165 | 6.573 | |
CF2 | Hydraulic | 1489 | 5866 | 14.3 | 100 | 4.011 |
Transmission | 2293 | 168 | 12.3 | 4 | 0.152 | |
Total | - | - | - | 104 | 4.163 |
Fluid Operative Temperature (°C) | Time Interval (h) | |
---|---|---|
Mineral Fluids | Synthetic Fluids | |
≤65 | 8000 | 25,000 |
65–80 | 4000 | 18,000 |
85–90 | 2000 | 12,500 |
95–110 | - | 9000 |
Pearson Coeff. | p (Uncorr) | |
---|---|---|
V40 | 0.975 | 7.5528 × 10−6 |
V100 | 0.996 | 6.2194 × 10−11 |
I.V. | 0.816 | 2.0865 × 10−4 |
ΔV40 | 0.984 | 4.2421 × 10−7 |
ΔV100 | 0.993 | 2.0590 × 10−13 |
Oil Conditions | CF1 Tractor (T2) | BF-FTR (T1) | CF2 FTR (T1) | BF Tractor (T3) | ||||
---|---|---|---|---|---|---|---|---|
0 h | 1400 h | 0 h | 420 h | 0 h | 350 h | 0 h | 586 h | |
Visc. At 40 °C (mm2 s−1) | 86.50 ± 0.04 | 68.63 ± 0.04 | 56.13 ± 0.08 | 42.84 ± 0.04 | 58.55 ± 0.02 | 48.23 ± 0.02 | 58.31 ± 0.08 | 53.45 ± 0.02 |
Visc. At 100 °C (mm2 s−1) | 11.07 ± 0.00 | 9.49 ± 0.00 | 11.89 ± 0.01 | 8.74 ± 0.003 | 9.38 ± 0.01 | 8.21 ± 0.00 | 12.33 ± 0.00 | 10.78 ± 0.00 |
Viscosity Index | 115 | 117 | 214 | 189 | 142 | 144 | 215 | 198 |
TAN (mg KOH g−1) | n.a. | n.a. | 0.14 ± 0.01 | 0.24 ± 0.00 | 2.22 ± 0.02 | 2.19 ± 0.05 | 0.25 ± 0.01 | 0.39 ± 0.02 |
RPVOT (min) | 121 | 141 | n.a. | n.a. | n.a. | n.a. | 313 | 185 |
Wear elements | ||||||||
Fe | <1 | 60 | 2 | 2 | n.a. | n.a. | 2 | 14 |
Cr | <1 | <1 | <1 | <1 | n.a. | n.a. | <1 | <1 |
Ni | <1 | <1 | <1 | <1 | n.a. | n.a. | <1 | <1 |
Mn | <1 | 1 | <1 | <1 | n.a. | n.a. | <1 | <1 |
Al | <2 | 3 | <2 | <2 | n.a. | n.a. | <2 | <2 |
Pb | <2 | 27 | <2 | <2 | n.a. | n.a. | <2 | 6 |
Cu | <1 | 71 | <1 | 5 | n.a. | n.a. | <1 | 26 |
St | <3 | <3 | <3 | 9 | n.a. | n.a. | <3 | <3 |
Ag | <1 | <1 | <1 | <1 | n.a. | n.a. | <1 | <1 |
Ti | <2 | <2 | <2 | <2 | n.a. | n.a. | <2 | <2 |
Contamination elements | ||||||||
Si | 14 | 17 | 12 | 4 | n.a. | n.a. | 12 | 6 |
Na | <1 | 5 | 1 | <1 | n.a. | n.a. | 1 | 2 |
K | <1 | 2 | 4 | 2 | n.a. | n.a. | 4 | 2 |
Va | <1 | <1 | <1 | <1 | n.a. | n.a. | <1 | <1 |
Additive elements | ||||||||
Ca | 554 | 1352 | 1441 | 1152 | n.a. | n.a. | 1441 | 1363 |
Mg | 2 | 16 | 11 | 6 | n.a. | n.a. | 11 | 9 |
F | 715 | 698 | 307 | 338 | n.a. | n.a. | 307 | 402 |
Zn | 1568 | 1216 | <5 | 28 | n.a. | n.a. | <5 | 222 |
Ba | <5 | <5 | <5 | <5 | n.a. | n.a. | <5 | <5 |
Bo | 87 | 44 | <1 | <1 | n.a. | n.a. | <1 | 11 |
Mo | <2 | <2 | <2 | <2 | n.a. | n.a. | <2 | <2 |
S (Total) | 0 | 0 | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. |
Contaminating Particles | ||||||||
ISO 4406:2021 [71] | 17/15/11 | 21/18/14 | 23/21/17 | 15/14/10 | n.a. | n.a. | 23/21/17 | 20/17/14 |
NAS 1638 [72] | 7 | 10 | 12 | 6 | n.a. | n.a. | 12 | 10 |
SAE AS 4059 [73] | 8 | 11 | >12 | 6 | n.a. | n.a. | >12 | 10 |
Operations | Transmission | Hydraulic | ||||
---|---|---|---|---|---|---|
Drive Train | PTO | |||||
Power (kW) | Time (h) | Power (kW) | Time (h) | Power (kW) | Time (h) | |
Primary tillage | 45.15 | 44 | 15.8 | 23 | 12.5 | 21 |
Secondary tillage | 8.51 | 36 | 8.4 | 28 | 5.5 | 19 |
Sowing, planting hoeing, spraying, hay making, other | 10.5 | 324 | 6.3 | 212 | 5.5 | 75 |
Manuring, fertilizing, other | 8.4 | 35 | 5.5 | 35 | 3.5 | 18 |
Transport | 10.5 | 28 | 4.5 | 18 | 3.5 | 13 |
Stationary power source | - | - | 6 | 15 | - | - |
Traction tests of agricultural tires | 12 | 68 | - | - | - | - |
Stationary PTO experimental tests | - | - | 5.25 | 36 | - | - |
Total | - | 535 | - | 367 | - | 146 |
Weighted average | 13.3 | - | 6.8 | - | 6.1 | - |
Work (kWh) Total | 7099.0 | - | 2486.7 | - | - | - |
- | 9585.7 | - | - | 888.0 | - | |
Thermal energy (kWh) Total | 567.9 | - | 124.3 | - | - | - |
692.3 | - | - | 754.8 | - | ||
Specific work (kWh dm−3) Total | 81.6 | - | 28.6 | - | - | - |
- | 110.2 | - | - | 10.2 | - | |
Specific thermal energy (kWh dm−3) Total | 6.5 | - | 1.5 | - | - | - |
- | 8.0 | - | - | 8.7 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fanigliulo, R.; Grilli, R.; Fornaciari, L.; Benigni, S.; Pochi, D. First Tests on the Performance and Reliability of an Experimental Bio-Based UTTO Lubricant Used in an Agricultural Tractor. Energies 2025, 18, 4612. https://doi.org/10.3390/en18174612
Fanigliulo R, Grilli R, Fornaciari L, Benigni S, Pochi D. First Tests on the Performance and Reliability of an Experimental Bio-Based UTTO Lubricant Used in an Agricultural Tractor. Energies. 2025; 18(17):4612. https://doi.org/10.3390/en18174612
Chicago/Turabian StyleFanigliulo, Roberto, Renato Grilli, Laura Fornaciari, Stefano Benigni, and Daniele Pochi. 2025. "First Tests on the Performance and Reliability of an Experimental Bio-Based UTTO Lubricant Used in an Agricultural Tractor" Energies 18, no. 17: 4612. https://doi.org/10.3390/en18174612
APA StyleFanigliulo, R., Grilli, R., Fornaciari, L., Benigni, S., & Pochi, D. (2025). First Tests on the Performance and Reliability of an Experimental Bio-Based UTTO Lubricant Used in an Agricultural Tractor. Energies, 18(17), 4612. https://doi.org/10.3390/en18174612