Research on the Detection Method of Excessive Spark in Ship DC Motors Based on Wavelet Analysis
Abstract
1. Introduction
2. Materials and Methods
2.1. Mathematical Model of Parallel Excited DC Motor
2.2. Cassie Arc Model
2.3. Virtual Injection for the Fault of Excessive Spark in DC Motor
3. Results
Wavelet Analysis of Spark Bias in DC Motor
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
DC | Direct Current |
References
- Zhu, Q.Z.; Wu, W.L. Design and realization of test instrument of direct-current generator spark. Mod. Electron. Tech. 2006, 5, 90–91,94. [Google Scholar]
- Wu, W.D.; Ren, M.L.; Wang, G.X. Design of the brush spark online tester for K8 plane DC motor. Chin. J. Sci. Instrum. 2006, 27, 791–794. [Google Scholar]
- Sheng, J. Determ ination test and analysis of Non-Sparkling commutation area of large-sized DC electric machine by short-circuited method. Explos.-Proof Electr. Mach. 2006, 5, 40–42. [Google Scholar]
- Chen, Z.W. Analysis and treatment of larger spark caused by DC motor brushes. Hubei Electr. Power 2013, 37, 42–43,53. [Google Scholar]
- Miu, X.R.; Guo, Y.T.; Tang, J.C.; Zhang, L.P. Ioad side arc fault voltage detection and identification with morphological wavelet. Trans. China Electrotech. Soc. 2014, 29, 237–244. [Google Scholar]
- Ma, C.Z. Research on Low Voltage Series Fault Arc Diagnosis Technology; China University of Mining and Technology: Xuzhou, China, 2020. [Google Scholar]
- Gao, W.; Jiang, C.L.; Sun, P.; Gao, J.X.; Sun, J. Simulation research on ship main converter unit based on MATLAB. J. Nav. Univ. Eng. 2020, 32, 43–47. [Google Scholar]
- Jiang, C.L.; Wu, X.S.; Gao, W.; Feng, G.L.; Sun, P. Spark test analysis for ship main converter unit. J. Xi’an Jiao Tong Univ. 2019, 53, 160–167. [Google Scholar]
- Li, S.R.; Xue, Y.D.; Xu, B.Y.; Ren, W.; Yang, F. Arc modeling and overvoltage analysis innon-solidly earthed network. J. Eletr. Power Sci. Technol. 2019, 53, 160–167. [Google Scholar]
- Si, F.K. Research on Motor Fault Diagnosis Based on Wavelet Packet Analysis; Xi Dian University: Xi’an, China, 2011. [Google Scholar]
- Cui, J.; Sun, S.; Zhang, G.G.; Chen, Y.; Cui, B.Y. The very transient overvoltage simulation method based on two-temperature MHD arc simulation to improve Mayr arc model. Trans. China Electrotech. Soc. 2024, 39, 5149–5161. [Google Scholar]
- Yang, X.M.; Peng, C.; Wu, G.F.; Xue, Y. Modeling and simulation of brushless DC motor control algorithm based on MATLAB. Syst. Simul. Technol. 2019, 15, 120–125. [Google Scholar]
- Yang, X.D. Research on Extraction of ECG Signal Characteristic Parameters Based on Wavelet Transform; University of Electronic Science and Technology of China: Chengdu, China, 2020. [Google Scholar]
- Yang, X.R.; Jiang, L.; Wang, J.L.; Wang, L. Study on fault diagnosis of brushless DC motor inverter based on wavelet transform. Eletr. Meas. Instrum. 2017, 54, 113–118. [Google Scholar]
- Hu, W.G.; Wang, S.Q. Modeling and simulation of single-phase grounding arc in power distribution network based on Mayr-cassie. Electr. Eng. 2020, 9, 48–51. [Google Scholar]
- He, C.Q. Intelligent Fault Diagnosis of Brushless Direct Current Motor Research Based on Wavelet Transform; Lan Zhou University of Technology: Lanzhou, China, 2009. [Google Scholar]
- Wu, X.S.; Ma, W.M.; Wang, G.B.; Sun, J.Z.; Yang, Q. Parameter identification of synchronous machine based on wavelet transform and Prony algorithm. Autom. Electr. Power Syst. 2003, 27, 38–42. [Google Scholar]
- Hu, Y.Q. Research on Arc Fault Detection Method Based on Wavelet Transform and Deep Neural Network; Henan Polytechnic University: Jiaozuo, China, 2020. [Google Scholar]
- Li, W.Z.; Qu, N.; Zhang, S.; Zheng, T.F. Research on arc fault simulation based on Schwarz model and wavelet analysis. Fire Sci. Technol. 2020, 39, 1260–1263. [Google Scholar]
- Yang, M.B.; Long, Y.; Fan, S.J.; Ma, G.T. Simulation and analysis of arc grounding fault based on combined Mayr and Cassie arc models. Electr. Meas. Instrum. 2019, 56, 8–13. [Google Scholar]
- Jiang, C.L.; Feng, G.L.; Fang, Z.X.; Chang, L.B.; Wang, C.Y. A preliminary study on testability standard of ship electrical equipment. J. Nav. Univ. Eng. 2023, 35, 68–73. [Google Scholar]
- Guo, H.S. Research on Low Voltage Arc Signal Detection Technology; North China Electric Power University: Beijing, China, 2022. [Google Scholar]
- Bian, Q.; Jiang, C.L.; Feng, G.L.; Wang, X.N.; Tong, Y.D. Simulation research and verification of ship main converter unit. J. Nav. Univ. Eng. 2021, 33, 52–56,96. [Google Scholar]
- Du, S.Q. Research and Hardware Implementation of Discrete Wavelet Transform; Hefei University of Technology: Hefei, China, 2020. [Google Scholar]
- Zhang, B.; Zhou, S.P.; Wu, X.X.; Hou, B.W.; Hou, H.; Qiu, j.; Ding, X.Z. Establishment of intermittent reignition arc model and analysis of intermittent arcing ground faults in distribution network. Power Syst. Technol. 2024, 48, 2207–2217. [Google Scholar]
- Luo, X.L.; Fan, G.L. Modeling and simulation of BLDCM FUZZY-PI control system. Syst. Simul. Technol. 2019, 15, 137–141. [Google Scholar]
- Meng, Y.; Li, X.W.; Wu, Z.H.; Wang, C.X.; Chen, S.L. Resaerch on time-frequency characteristics and composite models of DC arc faults in photovoltaic system. High Volt. Appar. 2022, 58, 23–30,40. [Google Scholar]
- Wu, S.; Mo, Y.P.; Zhou, B.X.; Xie, L.; Jiang, W. Research and design of a new control method of series-wound DC machine. Small Spec. Electr. Mach. 2015, 43, 53–55,59. [Google Scholar]
Serial Number | Motor Parameters | Numerical Value | Unit |
---|---|---|---|
1 | supply voltage | 220 | V |
2 | Armature winding resistance | 4 | |
3 | Armature winding inductance | 0.15 | H |
4 | Excitation winding resistance | 120 | |
5 | Excitation winding inductance | 4.5 | H |
6 | Moment of inertia | 0.008 | |
7 | Damping coefficient | 0.01 | |
8 | Torque constant | 1.8 | |
9 | Electromotive force constant | 1.8 | |
10 | Magnetic flux proportionality coefficient | 0.018 | |
11 | load torque | 2 |
Serial Number | Cassie Arc Model Parameters | Numerical Value | Unit |
---|---|---|---|
1 | AC power supply voltage | 220 | V |
2 | Initial value of arc conductivity | S | |
3 | Arc voltage constant | 50 | V |
4 | load resistance | 300 | |
5 | AC power frequency | 50 | Hz |
6 | Arc time constant | s | |
7 | Simulation time | 0.06 | s |
Serial Number | Motor Parameters | Numerical Value | Unit |
---|---|---|---|
1 | Supply voltage | 220 | V |
2 | Armature winding resistance | 4 | |
3 | Armature winding inductance | 0.15 | H |
4 | Excitation winding resistance | 120 | |
5 | Excitation winding inductance | 4.5 | H |
6 | Moment of inertia | 0.008 | |
7 | Damping coefficient | 0.01 | |
8 | Torque constant | 1.8 | |
9 | Electromotive force constant | 1.8 | |
10 | Magnetic flux proportionality coefficient | 0.018 | |
11 | Load torque | 2 | |
12 | Arc voltage | 20 | V |
Signal Name | |||
---|---|---|---|
A6 | 6,998,000 | 6,575,700 | 0.966 |
D1 | 34.23 | 41.78 | 1.22 |
D2 | 308.5 | 392.57 | 1.27 |
D3 | 1634.1 | 2320.6 | 1.42 |
D4 | 23,279 | 23,302 | 1 |
D5 | 3804.2 | 3836.6 | 1 |
D6 | 1151.5 | 1180.1 | 1.02 |
Signal Name | |||
---|---|---|---|
A6 | 8395.4 | 8071.2 | 0.961 |
D1 | 0.038 | 0.046 | 1.21 |
D2 | 0.343 | 0.437 | 1.27 |
D3 | 1.80 | 2.567 | 1.43 |
D4 | 26.05 | 26.08 | 1 |
D5 | 4.284 | 4.321 | 1 |
D6 | 1.372 | 1.405 | 1.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, C.; Chang, L.; Feng, G.; Liu, Y.; Fei, W. Research on the Detection Method of Excessive Spark in Ship DC Motors Based on Wavelet Analysis. Energies 2025, 18, 4533. https://doi.org/10.3390/en18174533
Jiang C, Chang L, Feng G, Liu Y, Fei W. Research on the Detection Method of Excessive Spark in Ship DC Motors Based on Wavelet Analysis. Energies. 2025; 18(17):4533. https://doi.org/10.3390/en18174533
Chicago/Turabian StyleJiang, Chaoli, Lubin Chang, Guoli Feng, Yuanshuai Liu, and Wenli Fei. 2025. "Research on the Detection Method of Excessive Spark in Ship DC Motors Based on Wavelet Analysis" Energies 18, no. 17: 4533. https://doi.org/10.3390/en18174533
APA StyleJiang, C., Chang, L., Feng, G., Liu, Y., & Fei, W. (2025). Research on the Detection Method of Excessive Spark in Ship DC Motors Based on Wavelet Analysis. Energies, 18(17), 4533. https://doi.org/10.3390/en18174533