Green vs. Brown Energy Subsector in the Context of Carbon Emissions: Evidence from the United States Amid External Shocks
Abstract
1. Introduction
2. Review of Literature
3. Materials and Methods
3.1. Data and Basic Model
3.2. Methodology
3.2.1. VAR Spillover Method
3.2.2. Portfolio and Hedging Strategies Using DCC GARCH t-Copula
4. Main Results
4.1. Summary Statistics
4.2. Total Connectedness of the Volatility
4.3. Robustness Test
4.4. Regression Results on the TCI
4.5. Portfolio Implications
4.6. Findings Discussion
5. Conclusions
5.1. Key Research Findings
5.2. Policy Implications
5.3. Limitations and Future Research
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
VAR | Vector Autoregressive |
GFEVD | Generalized Forecast Error Variance Decomposition |
DCC-GARCH | Dynamic Conditional Correlation Generalized Autoregressive Conditional Heteroskedasticity |
BEKK | Baba, Engle, Kraft, and Kroner’s |
HE | Hedge Effectiveness |
TCI | Total Connectedness Index |
INC.OWN | Including Own Forecast Variance |
RUW | Russia–Ukraine War |
RENE | Renewable Energy |
CO2 | Carbon Dioxide |
ESG | Environmental, Social, and Governance |
EPU | Economic Policy Uncertainty |
OVX | Oil Volatility Index |
CF | Carbon Emissions Futures |
SPI | S&P Select Industry Index |
SPT | S&P Select Transport Index |
NTI | NASDAQ Clean Edge Green Energy Index |
NOMXS | Nasdaq OMX Bioenergy Subindex |
NOMXW | Nasdaq OMX Wind Energy Subindex |
NOMXG | Nasdaq OMX Geothermal Energy Subindex |
NOMXFC | Nasdaq OMX Fuel Cell Subindex |
NOMXB | Nasdaq OMX Solar Energy Subindex |
POW | Power Sector |
IND | Industrial Sector |
GT | Ground Transportation Sector |
DA | Domestic Aviation Sector |
Res | Residential Sector |
WTI | West Texas Intermediate (Crude Oil Benchmark) |
HCG | Harbor Conventional Gasoline (New York) |
URA | Uranium Market Index |
COAL | Coal Price Index |
GASN | Natural Gas Index |
BIOC | Bioenergy Sector Index |
References
- Borowski, P.F. Economic and Technological Challenges in Zero-Emission Strategies for Energy Companies. Energies 2025, 18, 898. [Google Scholar] [CrossRef]
- Bistline, J.E.T.; Binsted, M.; Blanford, G.; Boyd, G.; Browning, M.; Cai, Y.; Edmonds, J.; Fawcett, A.A.; Fuhrman, J.; Gao, R.; et al. Policy implications of net-zero emissions: A multi-model analysis of United States emissions and energy system impacts. Energy Clim. Change 2025, 6, 100191. [Google Scholar] [CrossRef]
- Chen, L.; Li, X.; Zhu, J. Carbon peak control for achieving net-zero renewable-based smart cities: Digital twin modeling and simulation. Sustain. Energy Technol. Assess. 2024, 65, 103792. [Google Scholar] [CrossRef]
- Ongoma, V.; Epule, T.E.; Brouziyne, Y.; Tanarhte, M.; Chehbouni, A. COVID-19 response in Africa: Impacts and lessons for environmental management and climate change adaptation. Environ. Dev. Sustain. 2024, 26, 5537–5559. [Google Scholar] [CrossRef]
- Al-Maadid, A.; Ben Ali, M.S.; Si Mohammed, K. The effect of climate risk on the human development index using the panel time-varying interactive fixed effects. Environ. Sustain. Indic. 2025, 27, 100757. [Google Scholar] [CrossRef]
- Bakkar, Y.; Ben Jabeur, S.; Si Mohammed, K.; Ben Arfi, W. Environmental transition dynamics under external conflict risk: New evidence from European countries. J. Clean. Prod. 2024, 472, 143510. [Google Scholar] [CrossRef]
- Van Heerden, R.; Edelenbosch, O.Y.; Daioglou, V.; Le Gallic, T.; Baptista, L.B.; Di Bella, A.; Colelli, F.P.; Emmerling, J.; Fragkos, P.; Hasse, R.; et al. Demand-side strategies enable rapid and deep cuts in buildings and transport emissions to 2050. Nat. Energy 2025, 10, 380–394. [Google Scholar] [CrossRef]
- Monjardino, J.; Dias, L.; Fortes, P.; Tente, H.; Ferreira, F.; Seixas, J. Carbon neutrality pathways effects on air pollutant emissions: The Portuguese case. Atmosphere 2021, 12, 324. [Google Scholar] [CrossRef]
- Mohammed, K.S.; Magdalena, R.; Alofaysan, H.; Hagiu, A. The Impact of Green and Energy Investments on Environmental Sustainability in China: A Technological and Financial Development Perspectives. Environ. Model. Assess. 2025, 1–21. [Google Scholar] [CrossRef]
- Strielkowski, W.; Tarkhanova, E.; Tvaronavičienė, M.; Petrenko, Y. Renewable Energy in the Sustainable Development of Electrical. Energies 2021, 14, 8240. [Google Scholar] [CrossRef]
- Elder, M.; Zusman, E.; Hengesbaugh, M. Why the Second Trump Administration Could Struggle to Undermine Domestic Climate Policies: Obstacles to Backsliding; Institute for Global Environmental Strategies: Kanagawa, Japan, 2025; pp. 1–24. [Google Scholar]
- Hu, L.; Chen, S.; Zhang, C.; Zhou, L.; Li, A. Understanding the heterogeneous roles of China’s sectors under the shock of second Trump administration’s new tariffs: A novel method of shock-based input-output data envelopment analysis. Energy 2025, 324, 135687. [Google Scholar] [CrossRef]
- Ali, A.H.; Abdalla, M. Energy transitions era: Geopolitical characteristics and connotations in the Arab Gulf States. Sustain. Futur. 2025, 10, 100808. [Google Scholar] [CrossRef]
- International Energy Agency (IEA). Renewable Energy Market: Update Outlook for 2020 and 2021; IEA Report; International Energy Agency: Paris, France, 2020; p. 63. [Google Scholar]
- Diebold, F.X.; Yilmaz, K. On the network topology of variance decompositions: Measuring the connectedness of financial firms. J. Econom. 2014, 182, 119–134. [Google Scholar] [CrossRef]
- Diebold, F.X.; Yilmaz, K. Better to give than to receive: Predictive directional measurement of volatility spillovers. Int. J. Forecast. 2012, 28, 57–66. [Google Scholar] [CrossRef]
- Gupta, R.; Pierdzioch, C. Do US economic conditions at the state level predict the realized volatility of oil-price returns? A quantile machine-learning approach. Financ. Innov. 2023, 9, 24. [Google Scholar] [CrossRef] [PubMed]
- Alshammari, S.; Andriosopoulos, K.; Kaabia, O.; Si Mohamed, K.; Urom, C. The interplay among corporate bonds, geopolitical risks, equity market, and economic uncertainties. Int. Rev. Financ. Anal. 2024, 95, 103350. [Google Scholar] [CrossRef]
- Apergis, N.; Payne, J.E.; Menyah, K.; Wolde-Rufael, Y. On the causal dynamics between emissions, nuclear energy, renewable energy, and economic growth. Ecol. Econ. 2010, 69, 2255–2260. [Google Scholar] [CrossRef]
- Okorie, D.I.; Lin, B. Crude oil price and cryptocurrencies: Evidence of volatility connectedness and hedging strategy. Energy Econ. 2020, 87, 104703. [Google Scholar] [CrossRef]
- Asadi, M.; Roubaud, D.; Tiwari, A.K. Volatility spillovers amid crude oil, natural gas, coal, stock, and currency markets in the US and China based on time and frequency domain connectedness. Energy Econ. 2022, 109, 105961. [Google Scholar] [CrossRef]
- Farid, S.; Naeem, M.A.; Paltrinieri, A.; Nepal, R. Impact of COVID-19 on the quantile connectedness between energy, metals and agriculture commodities. Energy Econ. 2022, 109, 105962. [Google Scholar] [CrossRef]
- Ghosh, B.; Pham, L.; Teplova, T.; Umar, Z. COVID-19 and the quantile connectedness between energy and metal markets. Energy Econ. 2023, 117, 106420. [Google Scholar] [CrossRef]
- Alshammari, S.; Serret, V.; Tiwari, S.; Si Mohammed, K. Industry 4.0 and AI amid economic uncertainty: Implications for sustainable markets. Res. Int. Bus. Financ. 2025, 75, 102773. [Google Scholar] [CrossRef]
- Kumar, S.; Managi, S.; Matsuda, A. Stock prices of clean energy firms, oil and carbon markets: A vector autoregressive analysis. Energy Econ. 2012, 34, 215–226. [Google Scholar] [CrossRef]
- Zhao, X.; Si Mohammed, K.; Wang, Y.; Stępień, P.; Mentel, G. Effect of geopolitical risk and economic uncertainty indices on renewable energy. Geosci. Front. 2024, 15, 101655. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, X.; Zhou, C.; Zhang, Y.; Wei, Y. Examining the quantile cross-coherence between fossil energy and clean energy: Is the dependence structure changing with the COVID-19 outbreak? Int. Rev. Financ. Anal. 2024, 94, 103266. [Google Scholar] [CrossRef]
- Udeagha, M.C.; Breitenbach, M.C. Revisiting the nexus between fiscal decentralization and CO2 emissions in South Africa: Fresh policy insights. Financ. Innov. 2023, 9, 50. [Google Scholar] [CrossRef]
- Arnell, L.; Engström, E.; Uddin, G.S.; Hasan, M.B.; Kang, S.H. Volatility spillovers, structural breaks and uncertainty in technology sector markets. Financ. Innov. 2023, 9, 106. [Google Scholar] [CrossRef]
- Ferreira, P.; Almeida, D.; Dionísio, A.; Bouri, E.; Quintino, D. Energy markets–Who are the influencers? Energy 2022, 239, 121962. [Google Scholar] [CrossRef]
- US Environmental Protection Agency. Sources of Greenhouse Gas Emissions; US Environmental Protection Agency: Washington, DC, USA, 2022. [Google Scholar]
- Energy Information Administration (EIA). Short-Term Energy Outlook; US Department of Energy: Washington, DC, USA, 2022; pp. 4–6. [Google Scholar]
- Liu, Z.; Deng, Z.; Davis, S.J.; Giron, C.; Ciais, P. Monitoring global carbon emissions in 2021. Nat. Rev. Earth Environ. 2022, 3, 217–219. [Google Scholar] [CrossRef] [PubMed]
- Yadav, M.; Mishra, N.; Ashok, S. Dynamic connectedness of green bond with financial markets of European countries under OECD economies. Econ. Change Restruct. 2023, 56, 609–631. [Google Scholar] [CrossRef]
- Liu, T.; Nakajima, T.; Hamori, S. The impact of economic uncertainty caused by COVID-19 on renewable energy stocks. Empir. Econ. 2022, 62, 1495–1515. [Google Scholar] [CrossRef] [PubMed]
- Naeem, M.A.; Karim, S.; Tiwari, A.K. Risk Connectedness Between Green and Conventional Assets with Portfolio Implications. Comput. Econ. 2023, 62, 609–637. [Google Scholar] [CrossRef]
- Mohammed, K.S.; Usman, M.; Ahmad, P.; Bulgamaa, U. Do all renewable energy stocks react to the war in Ukraine? Russo-Ukrainian conflict perspective. Environ. Sci. Pollut. Res. 2023, 30, 36782–36793. [Google Scholar] [CrossRef]
- Hossain, M.R.; Ben Jabeur, S.; Si Mohammed, K.; Shahzad, U. Time-varying relatedness and structural changes among green growth, clean energy innovation, and carbon market amid exogenous shocks: A quantile VAR approach. Technol. Forecast. Soc. Change 2024, 208, 123705. [Google Scholar] [CrossRef]
- Xu, C.; Chen, Z.; Zhu, W.; Zhi, J.; Yu, Y.; Shi, C. Time-frequency spillover and early warning of climate risk in international energy markets and carbon markets: From the perspective of complex network and machine learning. Energy 2025, 318, 134857. [Google Scholar] [CrossRef]
- Attarzadeh, A.; Balcilar, M. On the Dynamic Connectedness of the Stock, Oil, Clean Energy, and Technology Markets. Energies 2022, 15, 1893. [Google Scholar] [CrossRef]
- Dong, F.; Li, Z.; Huang, Z.; Liu, Y. Extreme weather, policy uncertainty, and risk spillovers between energy, financial, and carbon markets. Energy Econ. 2024, 137, 107761. [Google Scholar] [CrossRef]
- Ben Jabeur, S.; Gozgor, G.; Rezgui, H.; Mohammed, K.S. Dynamic dependence between quantum computing stocks and Bitcoin: Portfolio strategies for a new era of asset classes. Int. Rev. Financ. Anal. 2024, 95, 103478. [Google Scholar] [CrossRef]
- Bollerslev, T. A generalized least absolute deviation method for parameter estimation of autoregressive signals. J. Econom. 1986, 31, 307–327. [Google Scholar] [CrossRef]
- Engle, R.F. Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation. Econometrica 1982, 50, 987. [Google Scholar] [CrossRef]
- Antonakakis, N.; Chatziantoniou, I.; Floros, C.; Gabauer, D. The dynamic connectedness of UK regional property returns. Urban Stud. 2018, 55, 3110–3134. [Google Scholar] [CrossRef]
- Patton, A.J. Modelling asymmetric exchange rate dependence. Int. Econ. Rev. 2006, 47, 527–556. [Google Scholar] [CrossRef]
- Emenogu, N.G.; Adenomon, M.O.; Nweze, N.O. On the volatility of daily stock returns of Total Nigeria Plc: Evidence from GARCH models, value-at-risk and backtesting. Financ. Innov. 2020, 6, 18. [Google Scholar] [CrossRef]
- Antonakakis, N.; Cunado, J.; Filis, G.; Gabauer, D.; Gracia, F.P. De Oil volatility, oil and gas firms and portfolio diversification. Energy Econ. 2018, 70, 499–515. [Google Scholar] [CrossRef]
- Kroner, K.F.; Jahangir, S. Time-Varying Distributions and Dynamic Hedging with Foreign Currency Futures. J. Financ. Quant. Anal. 1993, 28, 535–551. [Google Scholar] [CrossRef]
- Roner, K.F.; Ng, V.K. Modeling Asymmetric Comovements of Asset Returns, Review of. Rev. Financ. Stud. 1998, 11, 817–844. [Google Scholar]
- EDERINGTON, L.H. The Hedging Performance of the New Futures Markets. J. Financ. 1979, 34, 157–170. [Google Scholar] [CrossRef]
- Charfeddine, L.; Benlagha, N.; Khediri, K. Ben An intra-cryptocurrency analysis of volatility connectedness and its determinants: Evidence from mining coins, non-mining coins and tokens. Res. Int. Bus. Financ. 2022, 62, 101699. [Google Scholar] [CrossRef]
- Balcilar, M.; Cakan, E.; Gupta, R. Does US news impact Asian emerging markets? Evidence from nonparametric causality-in-quantiles test. N. Am. J. Econ. Financ. 2017, 41, 32–43. [Google Scholar] [CrossRef]
- Ji, Q.; Bouri, E.; Lau, C.K.M.; Roubaud, D. Dynamic connectedness and integration in cryptocurrency markets. Int. Rev. Financ. Anal. 2019, 63, 257–272. [Google Scholar] [CrossRef]
- Baker Nicholas Bloom Steven J Davis, S.R.; Jorring, A.; Kost, K.; Al-Kuwari, A.; Biffar, S.; Boehnke, J.; Dashkeyev, V.; Deriy, O.; Dinh, E.; Ezure, Y.; et al. Measuring Economic Policy Uncertainty. Q. J. Econ. 2016, 131, 1593–1636. [Google Scholar] [CrossRef]
- Shahzad, U.; Si Mohammed, K.; Schneider, N.; Faggioni, F.; Papa, A. Technological Forecasting & Social Change GDP responses to supply chain disruptions in a post-pandemic era: Combination of DL and ANN outputs based on Google Trends. Technol. Forecast. Soc. Change 2023, 192, 122512. [Google Scholar] [CrossRef]
- Vats, G.; Mathur, R. A net-zero emissions energy system in India by 2050: An exploration. J. Clean. Prod. 2022, 352, 131417. [Google Scholar] [CrossRef]
- Raza, S.A.; Shah, N.; Sharif, A. Time frequency relationship between energy consumption, economic growth and environmental degradation in the United States: Evidence from transportation sector. Energy 2019, 173, 706–720. [Google Scholar] [CrossRef]
- Xu, H.; Pan, X.; Li, J.; Feng, S.; Guo, S. Comparing the impacts of carbon tax and carbon emission trading, which regulation is more effective? J. Environ. Manag. 2023, 330, 117156. [Google Scholar] [CrossRef]
- Li, S.; Cifuentes-Faura, J.; Talbi, B.; Sadiq, M.; Si Mohammed, K.; Bashir, M.F. Dynamic correlated effects of electricity prices, biomass energy, and technological innovation in Tunisia’s energy transition. Util. Policy 2023, 82, 101521. [Google Scholar] [CrossRef]
- Qu, F.; Chen, Y.; Zheng, B. Is new energy driven by crude oil, high-tech sector or low-carbon notion? New evidence from high-frequency data. Energy 2021, 230, 120770. [Google Scholar] [CrossRef]
- Tiwari, A.K.; Aikins Abakah, E.J.; Gabauer, D.; Dwumfour, R.A. Dynamic spillover effects among green bond, renewable energy stocks and carbon markets during COVID-19 pandemic: Implications for hedging and investments strategies. Glob. Financ. J. 2022, 51, 100692. [Google Scholar] [CrossRef]
- Pham, L.; Hao, M.; Truong, H.; Trinh, H.H. The Impact of Climate Policy on U.S. Clean Energy Firms: A Firm-Level Examination of Stock Return, Volume, Volatility, and Connectedness. SSRN Electron. J. 2022. [Google Scholar] [CrossRef]
- Umar, M.; Farid, S.; Naeem, M.A. Time-frequency connectedness among clean-energy stocks and fossil fuel markets: Comparison between financial, oil and pandemic crisis. Energy 2022, 240, 122702. [Google Scholar] [CrossRef]
- Shahzad, U.; Si, K.; Tiwari, S.; Nakonieczny, J.; Nesterowicz, R. Connectedness between geopolitical risk, financial instability indices and precious metals markets: Novel findings from Russia Ukraine conflict perspective. Resour. Policy 2023, 80, 103190. [Google Scholar] [CrossRef]
- Bossman, A.; Umar, Z.; Agyei, S.K.; Junior, P.O. A new ICEEMDAN-based transfer entropy quantifying information flow between real estate and policy uncertainty. Res. Econ. 2022, 76, 189–205. [Google Scholar] [CrossRef]
- Umar, M.; Mirza, N.; Hasnaoui, J.A.; Rochoń, M.P. The nexus of carbon emissions, oil price volatility, and human capital efficiency. Resour. Policy 2022, 78, 17–22. [Google Scholar] [CrossRef]
- Sadorsky, P. Correlations and volatility spillovers between oil prices and the stock prices of clean energy and technology companies. Energy Econ. 2012, 34, 248–255. [Google Scholar] [CrossRef]
- Kang, S.; Hernandez, J.A.; Sadorsky, P.; McIver, R. Frequency spillovers, connectedness, and the hedging effectiveness of oil and gold for US sector ETFs. Energy Econ. 2021, 99, 105278. [Google Scholar] [CrossRef]
- Kuang, Z.; Chen, Q.; Yu, Y. Assessing the CO2-emission risk due to wind-energy uncertainty. Appl. Energy 2022, 310, 118615. [Google Scholar] [CrossRef]
Variable | Full Name | Category | Unit/Frequency | Data Source |
---|---|---|---|---|
POW | Power Sector Emissions | CO2 Emissions | Metric tons/Daily | Carbon Monitor |
IND | Industrial Emissions | CO2 Emissions | Metric tons/Daily | Carbon Monitor |
GT | Ground Transport Emissions | CO2 Emissions | Metric tons/Daily | Carbon Monitor |
DA | Domestic Aviation Emissions | CO2 Emissions | Metric tons/Daily | Carbon Monitor |
RE | Residential Emissions | CO2 Emissions | Metric tons/Daily | Carbon Monitor |
NOMXS | Bioenergy Index | Clean Energy | Log-returns/Daily | Yahoo Finance |
NOMXW | Wind Energy Index | Clean Energy | Log-returns/Daily | Yahoo Finance |
NOMXG | Geothermal Index | Clean Energy | Log-returns/Daily | Yahoo Finance |
NOMXFC | Fuel Cell Index | Clean Energy | Log-returns/Daily | Yahoo Finance |
NOMXB | Solar Energy Index | Clean Energy | Log-returns/Daily | Yahoo Finance |
WTI | Crude Oil (WTI) | Conventional Energy | USD/barrel → Log-returns/Daily | EIA/Yahoo Finance |
HCG | Harbor Gasoline (NY) | Conventional Energy | USD/gallon → Log-returns/Daily | Yahoo Finance |
URA | Uranium ETF Index | Conventional Energy | Index → Log-returns/Daily | Yahoo Finance |
COAL | Coal Index (ICE) | Conventional Energy | USD/ton → Log-returns/Daily | Yahoo Finance/ICE |
GASN | Natural Gas Index (Henry Hub) | Conventional Energy | USD/MMBtu → Log-returns/Daily | EIA/Yahoo Finance |
Mean | Median | Maximum | Minimum | Std. Dev. | Skewness | Kurtosis | Jarque–Bera | |
---|---|---|---|---|---|---|---|---|
BIOC | −0.001 | 0.000 | 0.084 | −0.192 | 0.024 | −1.060 | 12.410 | 1504.029 * |
COAL | 0.005 | 0.002 | 0.406 | −0.278 | 0.037 | 2.011 | 49.909 | 35,835.30 * |
DA | 0.001 | 0.000 | 0.095 | −0.070 | 0.012 | 0.393 | 18.197 | 3743.807 * |
FUEL_CELL | 0.000 | −0.003 | 0.241 | −0.114 | 0.048 | 0.990 | 6.118 | 220.547 * |
GASN | 0.004 | 0.004 | 0.158 | −0.350 | 0.044 | −1.360 | 14.320 | 2191.095 * |
GEOTH | 0.000 | 0.000 | 0.195 | −0.125 | 0.026 | 1.018 | 14.021 | 2030.689 * |
GT | 0.001 | 0.000 | 0.075 | −0.094 | 0.015 | −0.199 | 11.672 | 1218.435 * |
HCG | 0.002 | 0.001 | 0.123 | −0.104 | 0.026 | 0.087 | 6.119 | 157.721 * |
IND | 0.000 | 0.000 | 0.088 | −0.092 | 0.018 | −0.077 | 7.175 | 282.191 * |
POW | 0.000 | 0.001 | 0.118 | −0.153 | 0.026 | −0.434 | 7.407 | 326.188 * |
RE | −0.004 | 0.000 | 0.189 | −0.248 | 0.045 | −1.163 | 9.813 | 837.919 * |
SOLAR | 0.001 | 0.000 | 0.090 | −0.088 | 0.028 | 0.094 | 3.354 | 326.188 * |
URA | 0.003 | 0.000 | 0.213 | −0.173 | 0.059 | 0.559 | 3.950 | 34.756 * |
WIND | −0.002 | −0.002 | 0.096 | −0.133 | 0.023 | 0.051 | 6.567 | 205.799 * |
WTI | 0.002 | 0.001 | 0.086 | −0.120 | 0.026 | −0.427 | 5.072 | 81.199 * |
DA | GT | IND | POW | RE | WIND | SOLAR | FULL-Cell | Geothermal | BIOC | WTI | HCG | URA | COAL | GASN | FROM | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
DA | 18.71 | 9.90 | 5.86 | 6.50 | 6.12 | 5.42 | 4.76 | 5.49 | 5.26 | 5.87 | 4.16 | 5.28 | 5.99 | 5.56 | 5.13 | 81.29 |
GT | 8.56 | 21.01 | 5.76 | 5.53 | 5.92 | 5.49 | 4.34 | 5.66 | 5.59 | 6.03 | 4.65 | 4.70 | 6.07 | 5.10 | 5.61 | 78.99 |
IND | 5.71 | 6.05 | 21.99 | 12.36 | 6.88 | 5.08 | 3.51 | 4.55 | 5.23 | 5.28 | 3.84 | 3.92 | 4.84 | 5.74 | 5.02 | 78.01 |
POW | 7.31 | 6.95 | 12.21 | 17.61 | 8.82 | 4.80 | 3.97 | 5.17 | 5.52 | 5.16 | 3.97 | 4.27 | 5.19 | 4.53 | 4.51 | 82.39 |
RE | 6.35 | 6.85 | 7.47 | 8.83 | 19.2 | 5.23 | 4.77 | 5.67 | 5.39 | 5.56 | 4.24 | 5.14 | 6.01 | 4.75 | 4.51 | 80.77 |
WIND | 5.32 | 5.78 | 6.15 | 4.71 | 5.17 | 20.76 | 7.10 | 7.24 | 5.18 | 6.95 | 3.92 | 4.16 | 6.43 | 5.41 | 5.71 | 79.24 |
SOLAR | 6.30 | 5.32 | 5.34 | 4.56 | 5.45 | 5.47 | 23.24 | 6.27 | 5.91 | 6.79 | 4.32 | 5.81 | 5.64 | 4.50 | 5.07 | 76.76 |
FULL-Cell | 5.41 | 5.21 | 5.16 | 3.98 | 4.89 | 6.94 | 6.43 | 19.76 | 6.54 | 8.85 | 4.56 | 5.46 | 6.56 | 5.32 | 4.94 | 80.24 |
Geothermal | 4.82 | 5.40 | 5.44 | 5.20 | 4.81 | 4.94 | 5.40 | 6.27 | 24.20 | 6.01 | 5.47 | 5.42 | 6.33 | 4.43 | 5.86 | 75.80 |
BIOC | 5.10 | 5.20 | 6.14 | 4.49 | 4.35 | 6.66 | 5.97 | 9.58 | 6.46 | 18.67 | 4.37 | 4.81 | 5.71 | 6.87 | 5.63 | 81.33 |
WTI | 4.77 | 5.09 | 4.97 | 5.19 | 5.98 | 4.56 | 4.01 | 4.89 | 5.81 | 4.50 | 23.5 | 11.1 | 5.99 | 4.20 | 5.33 | 76.45 |
HCG | 5.11 | 4.30 | 4.91 | 4.79 | 6.15 | 4.79 | 5.02 | 5.66 | 5.32 | 5.50 | 11.67 | 22.47 | 4.91 | 4.71 | 4.72 | 77.53 |
URA | 4.71 | 5.51 | 5.65 | 4.41 | 5.32 | 5.19 | 5.05 | 6.65 | 7.36 | 5.92 | 5.81 | 5.29 | 22.43 | 5.16 | 5.54 | 77.57 |
COAL | 5.44 | 5.95 | 7.68 | 4.99 | 5.17 | 5.70 | 4.25 | 6.53 | 5.29 | 7.16 | 4.24 | 5.34 | 5.36 | 21.87 | 5.03 | 78.13 |
GASN | 5.18 | 6.38 | 6.92 | 5.17 | 5.69 | 5.95 | 4.52 | 5.93 | 5.78 | 5.50 | 4.90 | 5.49 | 5.39 | 5.35 | 21.84 | 78.16 |
TO | 80.08 | 83.90 | 89.66 | 80.72 | 80.71 | 76.22 | 69.09 | 85.56 | 80.63 | 85.09 | 70.11 | 76.23 | 80.42 | 71.62 | 72.61 | 1182.66 |
INC.OWN | 98.80 | 104.90 | 111.65 | 98.32 | 99.95 | 96.98 | 92.33 | 105.32 | 104.84 | 103.76 | 93.66 | 98.70 | 102.86 | 93.49 | 94.45 | cTCI/TCI |
NET | −1.20 | 4.90 | 11.65 | −1.68 | −0.05 | −3.02 | −7.67 | 5.32 | 4.84 | 3.76 | −6.34 | −1.30 | 2.86 | −6.51 | −5.55 | 84.48/78. |
NPT | 5.00 | 9.00 | 12.00 | 7.00 | 5.00 | 7.00 | 2.00 | 11.00 | 11.00 | 10.00 | 3.00 | 7.00 | 8.00 | 3.00 | 5.00 |
DA | GT | IND | POW | RE | WIND | SOLAR | FULL-Cell | Geothermal | BIOC | WTI | HCG | URA | COAL | GASN | FROM | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
DA | 28.73 | 13.69 | 4.96 | 6.46 | 4.97 | 4.26 | 3.61 | 4.53 | 3.85 | 5.42 | 2.57 | 3.54 | 4.91 | 4.34 | 4.17 | 71.27 |
GT | 10.36 | 34.42 | 4.87 | 5.22 | 5.45 | 3.60 | 2.86 | 4.16 | 3.76 | 5.49 | 3.51 | 3.03 | 4.54 | 4.37 | 4.36 | 65.58 |
IND | 4.99 | 5.66 | 31.46 | 15.66 | 7.27 | 3.62 | 2.28 | 3.20 | 4.20 | 4.56 | 2.13 | 2.01 | 3.09 | 5.57 | 4.27 | 68.54 |
POW | 7.29 | 7.67 | 14.92 | 25.91 | 9.92 | 3.85 | 2.53 | 3.87 | 4.10 | 4.01 | 2.28 | 2.29 | 4.38 | 3.26 | 3.73 | 74.09 |
RE | 5.33 | 6.91 | 7.33 | 10.40 | 29.11 | 4.57 | 3.19 | 4.50 | 3.97 | 5.43 | 2.51 | 3.23 | 5.20 | 3.93 | 4.40 | 70.89 |
WIND | 4.02 | 4.18 | 4.84 | 3.78 | 4.68 | 31.91 | 6.98 | 8.82 | 4.18 | 6.85 | 2.48 | 2.29 | 5.85 | 4.05 | 5.09 | 68.09 |
SOLAR | 5.37 | 4.03 | 4.21 | 3.44 | 4.34 | 4.22 | 38.98 | 6.49 | 5.09 | 5.78 | 3.06 | 4.17 | 3.63 | 3.34 | 3.86 | 61.02 |
FULL-Cell | 4.58 | 4.06 | 3.72 | 2.65 | 3.63 | 8.47 | 6.57 | 29.34 | 5.86 | 10.30 | 3.22 | 3.69 | 5.65 | 3.98 | 4.28 | 70.66 |
Geothermal | 3.83 | 3.90 | 4.12 | 3.88 | 3.73 | 4.11 | 4.40 | 6.11 | 36.42 | 6.60 | 4.83 | 4.13 | 5.88 | 3.33 | 4.73 | 63.58 |
BIOC | 4.00 | 4.72 | 4.57 | 2.83 | 3.57 | 6.56 | 4.87 | 10.71 | 6.01 | 29.32 | 2.97 | 3.35 | 5.27 | 6.28 | 4.96 | 70.68 |
WTI | 3.02 | 4.23 | 3.08 | 3.42 | 4.89 | 3.46 | 2.59 | 3.91 | 4.46 | 3.15 | 37.26 | 14.92 | 4.81 | 3.07 | 3.70 | 62.74 |
HCG | 3.27 | 3.27 | 3.08 | 3.18 | 5.37 | 4.15 | 3.79 | 5.12 | 3.82 | 4.94 | 15.20 | 34.66 | 3.89 | 2.95 | 3.32 | 65.34 |
URA | 4.20 | 4.23 | 4.72 | 3.22 | 4.78 | 4.52 | 3.55 | 5.76 | 6.74 | 6.16 | 4.65 | 3.94 | 34.95 | 4.07 | 4.52 | 65.05 |
COAL | 4.02 | 5.47 | 7.39 | 3.75 | 4.41 | 5.33 | 3.00 | 5.93 | 3.36 | 6.87 | 3.10 | 3.79 | 4.57 | 34.78 | 4.23 | 65.22 |
GASN | 4.05 | 5.62 | 5.45 | 4.24 | 5.49 | 5.46 | 2.91 | 4.88 | 4.91 | 5.49 | 3.50 | 3.59 | 3.95 | 4.46 | 36.00 | 64.00 |
TO | 68.33 | 77.66 | 77.25 | 72.12 | 72.51 | 66.17 | 53.13 | 77.99 | 64.31 | 81.04 | 56.00 | 57.97 | 65.65 | 57.00 | 59.61 | 1006.76 |
Inc.Own | 97.06 | 112.08 | 108.71 | 98.03 | 101.62 | 98.08 | 92.11 | 107.33 | 100.74 | 110.36 | 93.26 | 92.63 | 100.60 | 91.78 | 95.61 | cTCI/TCI |
NET | −2.94 | 12.08 | 8.71 | −1.97 | 1.62 | −1.92 | −7.89 | 7.33 | 0.74 | 10.36 | −6.74 | −7.37 | 0.60 | −8.22 | −4.39 | 71.91/67.12 |
NPT | 6.00 | 11.00 | 10.00 | 7.00 | 6.00 | 6.00 | 2.00 | 11.00 | 9.00 | 12.00 | 4.00 | 6.00 | 8.00 | 3.00 | 4.00 |
Coefficient | |
---|---|
SPT se | 0.674 (0.398) *** |
SPI se | −1.119 (0.566) ** |
OVX se | 0.012 (0.055) |
NTI se | −0.008 (0.154) |
EPU se | 0.015 (0.006) ** |
CF se | −0.296 (0.100) * |
Intercept se | 0.0021 (0.003) |
0.0021 (0.003) |
Variable | VIF |
---|---|
SPT | 1.82 |
SPI | 2.03 |
OVX | 1.76 |
NTI | 1.67 |
EPU | 2.21 |
CF | 1.94 |
Mean | Std. Dev. | 5% | 95% | HE | p-Value | |
---|---|---|---|---|---|---|
WIND/WTI | 0.51 | 0.13 | 0.34 | 0.76 | 0.47 | 0.00 |
WIND/HCG | 0.51 | 0.14 | 0.33 | 0.77 | 0.47 | 0.00 |
WIND/URA | 0.93 | 0.01 | 0.91 | 0.95 | 0.04 | 0.72 |
WIND/COEL | 0.52 | 0.22 | 0.29 | 1.00 | 0.32 | 0.00 |
WIND/GASN | 0.71 | 0.19 | 0.39 | 0.97 | 0.16 | 0.09 |
SOLAR/WTI | 0.44 | 0.16 | 0.22 | 0.76 | 0.53 | 0.00 |
SOLAR/HCG | 0.44 | 0.16 | 0.23 | 0.77 | 0.53 | 0.00 |
SOLAR/URA | 0.92 | 0.05 | 0.82 | 0.98 | 0.05 | 0.65 |
SOLAR/COEL | 0.46 | 0.22 | 0.19 | 0.92 | 0.60 | 0.00 |
SOLAR/GASN | 0.63 | 0.20 | 0.32 | 0.92 | 0.40 | 0.00 |
FULL-Cell/WTI | 0.22 | 0.12 | 0.06 | 0.48 | 0.78 | 0.00 |
FULL-Cell/HCG | 0.22 | 0.13 | 0.06 | 0.48 | 0.77 | 0.00 |
FULL-Cell/URA | 0.71 | 0.16 | 0.38 | 0.87 | 0.18 | 0.05 |
FULL-Cell/COEL | 0.27 | 0.21 | 0.07 | 0.73 | 0.76 | 0.00 |
FULL-Cell/GASN | 0.42 | 0.20 | 0.14 | 0.74 | 0.62 | 0.00 |
Geothermal/WTI | 0.48 | 0.18 | 0.21 | 0.76 | 0.51 | 0.00 |
Geothermal/HCG | 0.49 | 0.18 | 0.18 | 0.76 | 0.50 | 0.00 |
Geothermal/URA | 0.98 | 0.04 | 0.90 | 1.00 | −0.01 | 0.95 |
Geothermal/COEL | 0.50 | 0.18 | 0.23 | 0.85 | 0.51 | 0.00 |
Geothermal/GASN | 0.65 | 0.17 | 0.36 | 0.89 | 0.35 | 0.00 |
BIOC/WTI | 0.49 | 0.18 | 0.24 | 0.84 | 0.43 | 0.00 |
BIOC/HCG | 0.50 | 0.18 | 0.20 | 0.82 | 0.42 | 0.00 |
BIOC/URA | 0.97 | 0.07 | 0.89 | 1.00 | 0.01 | 0.94 |
BIOC/COEL | 0.51 | 0.24 | 0.20 | 0.99 | 0.33 | 0.00 |
BIOC/GASN | 0.72 | 0.20 | 0.38 | 0.99 | 0.13 | 0.18 |
WTI/WIND | 0.49 | 0.13 | 0.24 | 0.66 | 0.58 | 0.00 |
WTI/SOLAR | 0.56 | 0.16 | 0.24 | 0.78 | 0.46 | 0.00 |
WTI/FULL-Cell | 0.78 | 0.12 | 0.52 | 0.94 | 0.23 | 0.01 |
WTI/Geothermal | 0.52 | 0.18 | 0.24 | 0.79 | 0.52 | 0.00 |
WTI/BIOC | 0.51 | 0.18 | 0.16 | 0.76 | 0.50 | 0.00 |
HCG/WIND | 0.49 | 0.14 | 0.23 | 0.67 | 0.58 | 0.00 |
HCG/SOLAR | 0.56 | 0.16 | 0.23 | 0.77 | 0.47 | 0.00 |
HCG/FULL-Cell | 0.78 | 0.13 | 0.52 | 0.94 | 0.20 | 0.03 |
HCG/Geothermal | 0.51 | 0.18 | 0.24 | 0.82 | 0.52 | 0.00 |
HCG/BIOC | 0.50 | 0.18 | 0.18 | 0.80 | 0.50 | 0.00 |
URA/WIND | 0.07 | 0.01 | 0.05 | 0.09 | 0.86 | 0.00 |
URA/SOLAR | 0.08 | 0.05 | 0.02 | 0.18 | 0.79 | 0.00 |
URA/FULL-Cell | 0.29 | 0.16 | 0.13 | 0.62 | 0.47 | 0.00 |
URA/Geothermal | 0.02 | 0.04 | 0.00 | 0.10 | 0.81 | 0.00 |
URA/BIOC | 0.03 | 0.07 | 0.00 | 0.11 | 0.84 | 0.00 |
COEL/WIND | 0.48 | 0.22 | 0.00 | 0.71 | 0.74 | 0.00 |
COEL/SOLAR | 0.54 | 0.22 | 0.08 | 0.81 | 0.78 | 0.00 |
COEL/FULL-Cell | 0.73 | 0.21 | 0.27 | 0.93 | 0.60 | 0.00 |
COEL/Geothermal | 0.50 | 0.18 | 0.15 | 0.77 | 0.77 | 0.00 |
COEL/BIOC | 0.49 | 0.24 | 0.01 | 0.80 | 0.72 | 0.00 |
GASN/WIND | 0.29 | 0.19 | 0.03 | 0.61 | 0.77 | 0.00 |
GASN/SOLAR | 0.37 | 0.20 | 0.08 | 0.68 | 0.77 | 0.00 |
GASN/FUEL-CELL | 0.58 | 0.20 | 0.26 | 0.86 | 0.55 | 0.00 |
GASN/Geothermal | 0.35 | 0.17 | 0.11 | 0.64 | 0.78 | 0.00 |
GASN/BIOC | 0.28 | 0.20 | 0.01 | 0.62 | 0.74 | 0.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alofaysan, H.; Si Mohammed, K. Green vs. Brown Energy Subsector in the Context of Carbon Emissions: Evidence from the United States Amid External Shocks. Energies 2025, 18, 4530. https://doi.org/10.3390/en18174530
Alofaysan H, Si Mohammed K. Green vs. Brown Energy Subsector in the Context of Carbon Emissions: Evidence from the United States Amid External Shocks. Energies. 2025; 18(17):4530. https://doi.org/10.3390/en18174530
Chicago/Turabian StyleAlofaysan, Hind, and Kamal Si Mohammed. 2025. "Green vs. Brown Energy Subsector in the Context of Carbon Emissions: Evidence from the United States Amid External Shocks" Energies 18, no. 17: 4530. https://doi.org/10.3390/en18174530
APA StyleAlofaysan, H., & Si Mohammed, K. (2025). Green vs. Brown Energy Subsector in the Context of Carbon Emissions: Evidence from the United States Amid External Shocks. Energies, 18(17), 4530. https://doi.org/10.3390/en18174530