Study on the Emission Characteristics of Pollutants During the Waste-to-Energy Process of Landfill Waste and Municipal Solid Waste
Abstract
1. Introduction
2. Materials and Methods
2.1. Profile of the Studied MSWI Plant and Landfill
2.2. Design of Co-Disposal Tests
2.3. Waste Characteristics
2.4. Sampling and Analysis
3. Results
3.1. Impact of Co-Disposal on Toxic PCDD/Fs
3.1.1. Toxic PCDD/F Concentrations
3.1.2. The Distribution of Toxic PCDD/Fs
3.2. Impact of Co-Disposal on Formation Pathways of PCDD/Fs
3.2.1. The Distribution of PCDD/F Congeners
3.2.2. Formation Pathways of PCDD/Fs
3.2.3. Effect on CP-Route Synthesis
3.2.4. Effect on Chlorination of DD/DF
3.2.5. Effect on De Novo Synthesis
3.3. Impact of Co-Disposal on Air Pollutants
3.4. Impact of Co-Disposal on Physicochemical Characteristics of FA
3.4.1. XRD Analysis
3.4.2. Elemental Composition
4. Discussion
5. Conclusions
- (1)
- By comparing five co-disposal conditions (0%, 15%, 25%, 35%, and 45%), it was found that the LW co-disposal led to a significant reduction in the toxic PCDD/F concentration at the BO (from 3.18 ng/Nm3 down to 1.69 ng/Nm3). This reduction is mainly attributed to the higher sulfur content of LW compared to MSW. The toxic PCDD/F concentration at the CH of all conditions met the national emission limit (0.1 ng I-TEQ/Nm3, GB 18485–2014), with removal efficiencies exceeding 92.9%. However, co-disposal significantly increased the EF and EA in the FA. While co-disposal improves flue gas pollutant control, it also enhances the environmental risks associated with FA, highlighting the need for enhanced FA management strategies.
- (2)
- With increasing co-disposal ratio, the ∑PCDD/∑PCDF ratio in flue gas of BO and FA increased, suggesting enhanced precursor pathways. Moreover, highly chlorinated congeners dominated in the FA (average chlorination degree: 7.19–7.23), likely due to their low vapor pressure and high tendency to adsorb on particulate surfaces. Hagenmaier profile analysis further indicated that higher co-disposal ratios (25–45%) inhibited the chlorination of DD/DF congeners in the FA but promoted gas-phase formation of PCDFs. These findings suggest that co-disposal alters combustion conditions and FA physicochemical properties, thereby reshaping dioxin formation pathways.
- (3)
- The co-disposal ratio has a noticeable impact on the emission concentrations and removal efficiencies of air pollutants, including NOx, SO2, and HCl. With an increasing ratio, NOx concentrations fluctuated but showed an overall declining trend. SO2 and HCl concentrations at the BO first increased and then decreased with increasing ratio. Despite these variations, the overall flue gas concentrations remained at low levels. Nevertheless, the potential load impacts caused by high-sulfur and high-chlorine LW require careful attention to avoid local overload or system instability.
- (4)
- Although the co-disposal did not alter the crystalline phase composition of fly ash (mainly consisting of CaO, CaClOH, NaCl, and KCl), it led to an increased content of heavy metals such as Cu, Hg, and Pb. Ca, O, and Cl remained the dominant elements in the fly ash, while the addition of LW caused significant enrichment of certain heavy metals.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
MSW | Municipal Solid Waste |
LW | Landfill Waste |
LFM | Landfill Mining |
MSWI | Municipal Solid Waste Incineration |
RDF | Refuse-Derived Fuel |
APCS | Air Pollution Control System |
SNCR | Selective Non-Catalytic Reduction |
BO | Boiler Outlet |
CH | Chimney |
FA | Fly Ash |
EA | Emission Amount |
EF | Emission Factor |
PCDDs | Polychlorinated Dibenzo-p-Dioxins |
PCDFs | Polychlorinated Dibenzofurans |
PCDD/Fs | Polychlorinated Dibenzo-p-Dioxins and Dibenzofurans |
136 PCDD/Fs | 136 Kinds of Tetra- to Octa-Chlorinated Dibenzop-Dioxin and Dibenzofurans |
Nm3 | Normal Cubic Meters |
I-TEQ | International Toxic Equivalency Quantity |
I-TEF | International Toxic Equivalency Factor |
M | Moisture |
A | Ash |
V | Volatile |
Fc | Fixed Carbon |
Qner,ar | Net Calorific Value |
ar | Received Basis |
d | Dry Basis |
CP | Chlorophenol |
DD | Dibenzodioxin |
DF | Dibenzofuran |
XRD | X-ray diffraction |
XRF | X-ray fluorescence |
Appendix A
References
- Lee, R.P.; Meyer, B.; Huang, Q.; Voss, R. Sustainable waste management for zero waste cities in China: Potential, challenges and opportunities. Clean. Energy 2020, 4, 169–201. [Google Scholar] [CrossRef]
- Xianchao, X.; Jiarui, C.; Zongao, Z. Current status of landfill mining and resource utilization of mineralized waste. Environ. Sanit. Eng. 2024, 3, 16–27. [Google Scholar]
- Zhou, C.; Gong, Z.; Hu, J.; Cao, A.; Liang, H. A cost-benefit analysis of landfill mining and material recycling in China. Waste Manag. 2015, 35, 191–198. [Google Scholar] [CrossRef]
- Talalaj, I.A.; Biedka, P. Use of the landfill water pollution index (LWPI) for groundwater quality assessment near the landfill sites. Environ. Sci. Pollut. Res. 2016, 23, 24601–24613. [Google Scholar] [CrossRef]
- Nair, A.T.; Senthilnathan, J.; Nagendra, S.S. Emerging perspectives on VOC emissions from landfill sites: Impact on tropospheric chemistry and local air quality. Process Saf. Environ. 2019, 121, 143–154. [Google Scholar] [CrossRef]
- CPCB. Annual Report on Solid Waste Management; Central Pollution Control Board: Delhi, India, 2022. [Google Scholar]
- Calderón Márquez, A.J.; Cassettari Filho, P.C.; Rutkowski, E.W.; de Lima Isaac, R. Landfill mining as a strategic tool towards global sustainable development. J. Clean. Prod. 2019, 226, 1102–1115. [Google Scholar] [CrossRef]
- Zoungrana, A.; Hasnine, M.T.; Yuan, Q. Landfill Mining: Significance, Operation and Global Perspectives; Springer: Berlin/Heidelberg, Germany, 2022; pp. 25–45. [Google Scholar]
- Krook, J.; Svensson, N.; Eklund, M. Landfill mining: A critical review of two decades of research. Waste Manag. 2012, 32, 513–520. [Google Scholar] [CrossRef]
- Jain, M.; Kumar, A.; Kumar, A. Landfill mining: A review on material recovery and its utilization challenges. Process Saf. Environ. 2023, 169, 948–958. [Google Scholar] [CrossRef]
- Jagodzińska, K.; Garcia Lopez, C.; Yang, W.; Jönsson, P.G.; Pretz, T.; Raulf, K. Characterisation of excavated landfill waste fractions to evaluate the energy recovery potential using Py-GC/MS and ICP techniques. Resour. Conserv. Recycl. 2021, 168, 105446. [Google Scholar] [CrossRef]
- Quaghebeur, M.; Laenen, B.; Geysen, D.; Nielsen, P.; Pontikes, Y.; Van Gerven, T.; Spooren, J. Characterization of landfilled materials: Screening of the enhanced landfill mining potential. J. Clean. Prod. 2013, 55, 72–83. [Google Scholar] [CrossRef]
- Jones, P.T.; Geysen, D.; Tielemans, Y.; Van Passel, S.; Pontikes, Y.; Blanpain, B.; Quaghebeur, M.; Hoekstra, N. Enhanced Landfill Mining in view of multiple resource recovery: A critical review. J. Clean. Prod. 2013, 55, 45–55. [Google Scholar] [CrossRef]
- Zhou, C.; Fang, W.; Xu, W.; Cao, A.; Wang, R. Characteristics and the recovery potential of plastic wastes obtained from landfill mining. J. Clean. Prod. 2014, 80, 80–86. [Google Scholar] [CrossRef]
- Ministry of Ecology and Environment of the People’s Republic of China (MEE). National Automatic Monitoring Platform for Waste Incineration Facilities. Available online: https://ljgk.envsc.cn/ (accessed on 1 January 2024).
- Zhang, Y.; Tang, Y.; Tang, J.; Wang, S.; Ma, X. A study on the co-combustion of excavated waste and municipal solid waste: Thermogravimetric characteristics and gaseous pollutants emission. J. Environ. Chem. Eng. 2022, 10, 108964. [Google Scholar] [CrossRef]
- Chen, Z.; Chen, Z.; Liu, J.; Zhuang, P.; Evrendilek, F.; Huang, S.; Chen, T.; Xie, W.; He, Y.; Sun, S. Optimizing co-combustion synergy of soil remediation biomass and pulverized coal toward energetic and gas-to-ash pollution controls. Sci. Total Environ. 2023, 857, 159585. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Guan, Z.; Liu, G.; Zhou, G.; Zhu, T. Recycling combustibles from aged municipal solid wastes (MSW) to improve fresh MSW incineration in Shanghai: Investigation of necessity and feasibility. Front. Environ. Sci. Eng. China 2010, 4, 235–243. [Google Scholar] [CrossRef]
- Jagodzińska, K.; Zaini, I.N.; Svanberg, R.; Yang, W.; Jönsson, P.G. Pyrolysis of excavated waste from landfill mining: Characterisation of the process products. J. Clean. Prod. 2021, 279, 123541. [Google Scholar] [CrossRef]
- Jani, Y.; Kaczala, F.; Marchand, C.; Hogland, M.; Kriipsalu, M.; Hogland, W.; Kihl, A. Characterisation of excavated fine fraction and waste composition from a Swedish landfill. Waste Manag. Res. 2016, 34, 1292–1299. [Google Scholar] [CrossRef]
- Cai, P.; Zhan, M.; Ma, H.; Xu, X.; Chen, T.; Li, X. Pollutant Emissions during Co-incineration of Landfill Material Refuse-Derived Fuel in a Lab-Scale Municipal Solid Waste Incineration Fluidized Bed Furnace. Energ. Fuel 2020, 34, 2346–2354. [Google Scholar] [CrossRef]
- Cai, P.; Fu, J.; Zhan, M.; Jiao, W.; Chen, T.; Li, X. Formation mechanism and influencing factors of dioxins during incineration of mineralized refuse. J. Clean. Prod. 2022, 342, 130762. [Google Scholar] [CrossRef]
- Olie, K.; Addink, R.; Schoonenboom, M. Metals as Catalysts during the Formation and Decomposition of Chlorinated Dioxins and Furans in Incineration Processes. J. Air Waste Manag. Assoc. 1998, 48, 101–105. [Google Scholar] [CrossRef]
- Themba, N.; Sibali, L.L.; Chokwe, T.B. A review on the formation and remediations of polychlorinated dibenzo p-dioxins and dibenzo-furans (PCDD/Fs) during thermal processes with a focus on MSW process. Air Qual. Atmos. Health 2023, 16, 2115–2132. [Google Scholar] [CrossRef]
- Shibamoto, T.; Yasuhara, A.; Katami, T. Dioxin formation from waste incineration. In Reviews of Environmental Contamination and Toxicology: Continuation of Residue Reviews; Springer: Berlin/Heidelberg, Germany, 2007; pp. 1–41. [Google Scholar]
- Chen, M.; Oshita, K.; Takaoka, M.; Shiota, K. Co-incineration effect of sewage sludge and municipal solid waste on the behavior of heavy metals by phosphorus. Waste Manag. 2022, 152, 112–117. [Google Scholar] [CrossRef]
- Qin, S.; Jia, L.; Qiao, X.; Wang, C.; Guo, B.; Chang, X.; Cheng, P.; Jin, Y. Heavy metals migration and in-situ solidification in the co-combustion of solid waste fuels: Rules and differences. J. Environ. Chem. Eng. 2025, 13, 115097. [Google Scholar] [CrossRef]
- Yu, S.; Zhang, B.; Wei, J.; Zhang, T.; Yu, Q.; Zhang, W. Effects of chlorine on the volatilization of heavy metals during the co-combustion of sewage sludge. Waste Manag. 2017, 62, 204–210. [Google Scholar] [CrossRef] [PubMed]
- CJ/T 313–2009; Sampling and Analysis Methods for Domestic Waste. Ministry of Housing and Urban-Rural Development of the People’s Republic of China: Beijing, China, 2009.
- ASTM E897-88; Standard Test Method for Volatile Matter in the Analysis Sample of Refuse-Derived Fuel. ASTM International: West Conshohocken, PA, USA, 1998.
- ASTM E830-87; Standard Test Method for Ash in the Analysis Sample of Refuse-Derived Fuel. ASTM International: West Conshohocken, PA, USA, 2004.
- HJ 77.2-2008; Determination of Polychlorinated Diben-zo-p-dioxins (PCDDs) and Polychlorinated Dibenzofurans (PCDFs) in Ambient Air and Flue Gas—Isotope Dilution HRGC-HRMS. Ministry of Ecology and Environment of the People’s Republic of China: Beijing, China, 2008.
- GB 18485-2014; Standard for Pollution Control on the Municipal Solid Waste Incineration. Ministry of Ecology and Environment of the People’s Republic of China: Beijing, China, 2014.
- EPA Method 3050B; Acid Digestion of Sediments, Sludges, and Soils. EPA: Washington, DC, USA, 1996.
- Ryan, S.P.; Li, X.; Gullett, B.K.; Lee, C.W.; Clayton, M.; Touati, A. Experimental study on the effect of SO2 on PCDD/F emissions: Determination of the importance of gas-phase versus solid-phase reactions in PCDD/F formation. Environ. Sci. Technol. 2006, 40, 7040–7047. [Google Scholar] [CrossRef]
- HJ 1134-2020; Technical Specification for Pollution Control of Fly-Ash from Municipal Solid Waste Incineration. Ministry of Ecology and Environment of the People’s Republic of China: Beijing, China, 2020.
- Xue, Y.; Liu, X. Detoxification, solidification and recycling of municipal solid waste incineration fly ash: A review. Chem. Eng. J. 2021, 420, 130349. [Google Scholar] [CrossRef]
- Tang, Y.; Tao, D.; Li, G.; Ye, C.; Bu, Z.; Shen, R.; Lin, Y.; Lv, W. Formation behavior of PCDD/Fs during waste pyrolysis and incineration: Effect of temperature, calcium oxide addition, and redox atmosphere. Environ. Pollut. 2024, 350, 124011. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Wang, P.; Lin, X.; Chen, T.; Li, X. Formation and inhibition of Polychlorinated-ρ-dibenzodioxins and dibenzofurans from mechanical grate municipal solid waste incineration systems. J. Hazard. Mater. 2021, 403, 123812. [Google Scholar] [CrossRef]
- Zhu, F.; Li, X.; Lu, J.; Hai, J.; Zhang, J.; Xie, B.; Hong, C. Emission characteristics of PCDD/Fs in stack gas from municipal solid waste incineration plants in Northern China. Chemosphere 2018, 200, 23–29. [Google Scholar] [CrossRef]
- Liu, G.; Jiang, X.; Wang, M.; Dong, S.; Zheng, M. Comparison of PCDD/F levels and profiles in fly ash samples from multiple industrial thermal sources. Chemosphere 2015, 133, 68–74. [Google Scholar] [CrossRef]
- McKay, G. Dioxin characterisation, formation and minimisation during municipal solid waste (MSW) incineration: Review. Chem. Eng. J. 2002, 86, 343–368. [Google Scholar] [CrossRef]
- Everaert, K.; Baeyens, J. The formation and emission of dioxins in large scale thermal processes. Chemosphere 2002, 46, 439–448. [Google Scholar] [CrossRef]
- Li, H.; Wang, L.; Chen, C.; Yang, X.; Chang-Chien, G.; Wu, E.M. Influence of memory effect caused by aged bag filters on the stack PCDD/F emissions. J. Hazard. Mater. 2011, 185, 1148–1155. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Lin, X.; Chen, Z.; Li, X.; Lu, S.; Yan, J. Influence factors and mass balance of memory effect on PCDD/F emissions from the full-scale municipal solid waste incineration in China. Chemosphere 2020, 239, 124614. [Google Scholar] [CrossRef] [PubMed]
- Lomnicki, S.; Dellinger, B. A detailed mechanism of the surface-mediated formation of PCDD/F from the oxidation of 2-chlorophenol on a CuO/Silica surface. J. Phys. Chem. A 2003, 107, 4387–4395. [Google Scholar] [CrossRef]
- Meyers, J.M.; Gellman, A.J. Effect of substituents on the phenyl coupling reaction on Cu(111). Surf. Sci. 1995, 337, 40–50. [Google Scholar] [CrossRef]
- Weber, R.; Hagenmaier, H. PCDD/PCDF formation in fluidized bed incineration. Chemosphere 1999, 38, 2643–2654. [Google Scholar] [CrossRef]
- Khachatryan, L.; Lomnicki, S.; Dellinger, B. An expanded reaction kinetic model of the CuO surface-mediated formation of PCDD/F from pyrolysis of 2-chlorophenol. Chemosphere 2007, 68, 1741–1750. [Google Scholar] [CrossRef]
- Luijk, R.; Dorland, K.; Smith, P.; Govers, H. The halogenation of dibenzo-p-dioxin and dibenzofuran in a model fly ash system. Organohalogen Compd. 1992, 8, e276. [Google Scholar]
- Wehrmeier, A.; Lenoir, D.; Schramm, K.W.; Zimmermann, R.; Hahn, K.; Henkelmann, B.; Kettrup, A. Patterns of isomers of chlorinated dibenzo-p-dioxins as tool for elucidation of thermal formation mechanisms. Chemosphere 1998, 36, 2775–2801. [Google Scholar] [CrossRef]
- Hagenmaier, H.; Brunner, H.; Haag, R.; Kraft, M. Copper-catalyzed dechlorination/hydrogenation of polychlorinated dibenzo-p-dioxins, polychlorinated dibenzofurans, and other chlorinated aromatic compounds. Environ. Sci. Technol. 1987, 21, 1085–1088. [Google Scholar] [CrossRef]
- Stanmore, B.R. The formation of dioxins in combustion systems. Combust. Flame 2004, 136, 398–427. [Google Scholar] [CrossRef]
- Vermeulen, I.; Van Caneghem, J.; Vandecasteele, C. Indication of PCDD/F formation through precursor condensation in a full-scale hazardous waste incinerator. J. Mater. Cycles Waste 2014, 16, 167–171. [Google Scholar] [CrossRef]
- Zhou, Y.; Liu, J. Emissions, environmental levels, sources, formation pathways, and analysis of polybrominated dibenzo-p-dioxins and dibenzofurans: A review. Environ. Sci. Pollut. Res. 2018, 25, 33082–33102. [Google Scholar] [CrossRef]
- Liu, Y.; Li, A.; Guo, G.; Zhang, J.; Ren, Y.; Dong, L.; Gong, L.; Hu, H.; Yao, H.; Naruse, I. Comparative life cycle assessment of organic industrial solid waste co-disposal in a MSW incineration plant. Energy 2024, 305, 132322. [Google Scholar] [CrossRef]
- Lan, D.; Zhang, H.; Wu, T.; Lü, F.; Shao, L.; He, P. Repercussions of clinical waste co-incineration in municipal solid waste incinerator during COVID-19 pandemic. J. Hazard. Mater. 2022, 423, 127144. [Google Scholar] [CrossRef]
- Hu, H.; Liu, H.; Shen, W.; Luo, G.; Li, A.; Lu, Z.; Yao, H. Comparison of CaO’s effect on the fate of heavy metals during thermal treatment of two typical types of MSWI fly ashes in China. Chemosphere 2013, 93, 590–596. [Google Scholar] [CrossRef]
- Grabic, R.; Pekárek, V.; Ullrich, J.; Punčochář, M.; Fišerová, E.; Karban, J.; Šebestová, M. Effect of reaction time on PCDD and PCDF formation by de novo synthetic reactions under oxygen deficient and rich atmosphere. Chemosphere 2002, 49, 691–696. [Google Scholar] [CrossRef]
- Wei, J.; Li, H.; Liu, J. Phase distribution of PCDD/Fs in flue gas from municipal solid waste incinerator with ultra-low emission control in China. Chemosphere 2021, 276, 130166. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.; Li, H.; Liu, J. Fate of dioxins in a municipal solid waste incinerator with state-of-the-art air pollution control devices in China. Environ. Pollut. 2021, 289, 117798. [Google Scholar] [CrossRef]
- Jiacheng, L. Four years of waste sorting leaves China’s incinerators short of fuel. Dialogue Earth, 4 September 2023. [Google Scholar]
- Wang, T.; Tang, J.; Aljerf, L.; Qiao, J.; Alajlani, M. Emission reduction optimization of multiple flue gas pollutants in Municipal solid waste incineration power plant. Fuel 2025, 381, 133382. [Google Scholar] [CrossRef]
- Bošković, G.; Cvetanović, A.M.; Jovičić, N.; Jovanović, A.; Jovičić, M.; Milojević, S. Digital Technologies for Advancing Future Municipal Solid Waste Collection Services; IGI Global Scientific Publishing: Hershey, PA, USA, 2024; pp. 167–192. [Google Scholar]
Analysis | Index | LW | MSW | |
---|---|---|---|---|
Proximate analysis | Mar | % | 38.88 | 53.70 |
Ad | 28.57 | 13.16 | ||
Vd | 64.62 | 73.46 | ||
Fcd | 6.81 | 10.02 | ||
Ultimate analysis | Cd | 45.48 | 47.60 | |
Hd | 4.91 | 5.95 | ||
Nd | 1.11 | 0.82 | ||
Sd | 0.79 | 0.34 | ||
Od | 16.57 | 28.86 | ||
Cld | 1.43 | 0.44 | ||
Calorific value | Qner, ar | kJ/kg | 9653.23 | 7606.21 |
BO | CH | FA | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Unit | MSWI | 15% | 25% | 35% | 45% | MSWI | 15% | 25% | 35% | 45% | Unit | MSWI | 15% | 25% | 35% | 45% | |
∑PCDDs | ng/Nm3 | 1.24 | 0.86 | 0.75 | 0.88 | 0.93 | 0.02 | 0.03 | 0.03 | 0.02 | 0.03 | µg/kg | 2.20 | 2.12 | 2.50 | 2.39 | 2.43 |
∑PCDFs | ng/Nm3 | 1.95 | 1.12 | 0.94 | 1.31 | 1.4 | 0.05 | 0.06 | 0.06 | 0.04 | 0.05 | µg/kg | 0.80 | 0.73 | 0.81 | 0.76 | 0.74 |
∑PCDD/Fs | ng/Nm3 | 3.18 | 1.99 | 1.69 | 2.19 | 2.33 | 0.07 | 0.09 | 0.08 | 0.06 | 0.06 | µg/kg | 2.99 | 2.86 | 3.31 | 3.15 | 3.21 |
I-TEQ | ng I-TEQ/Nm3 | 0.32 | 0.19 | 0.14 | 0.20 | 0.23 | 0.005 | 0.01 | 0.01 | 0.004 | 0.005 | µg I-TEQ/kg | 0.11 | 0.10 | 0.12 | 0.11 | 0.11 |
∑PCDD/∑PCDF | / | 0.66 | 0.77 | 0.80 | 0.67 | 0.66 | 0.43 | 0.41 | 0.46 | 0.48 | 0.51 | / | 2.76 | 2.90 | 3.10 | 3.15 | 3.17 |
dCl-PCDDs | 7.33 | 7.40 | 7.43 | 7.41 | 7.42 | 7.24 | 7.31 | 7.26 | 7.43 | 7.52 | 7.56 | 7.56 | 7.54 | 7.56 | 7.55 | ||
dCl-PCDFs | 5.72 | 5.73 | 6.00 | 5.96 | 6.11 | 7.04 | 6.93 | 6.90 | 6.91 | 6.89 | 6.24 | 6.27 | 6.12 | 6.14 | 6.19 | ||
dCI-PCDD/Fs | 6.36 | 6.45 | 6.64 | 6.54 | 6.65 | 7.09 | 7.04 | 7.01 | 7.08 | 7.07 | 7.21 | 7.23 | 7.19 | 7.22 | 7.21 | ||
Emission Factor | ng I-TEQ/ton fuel | / | / | / | / | / | 21.42 | 24.17 | 27.83 | 18.35 | 20.48 | µg I-TEQ/ton fuel | 3.30 | 3.56 | 5.06 | 5.00 | 4.83 |
Emission Amounts | mg I-TEQ/year | / | / | / | / | / | 5.78 | 6.53 | 7.51 | 4.96 | 5.61 | mg I-TEQ/year | 891.87 | 962.17 | 1365.97 | 1349.50 | 1355.38 |
BO (ng/Nm3) | CH (ng/Nm3) | FA (µg/kg) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0% | 15% | 25% | 35% | 45% | 0% | 15% | 25% | 35% | 45% | 0% | 15% | 25% | 35% | 45% | |
TCDD | 0.71 | 0.6 | 0.43 | 0.55 | 0.53 | 0.15 | 0.1 | 0.2 | 0.09 | 0.13 | 0.23 | 0.22 | 0.44 | 0.4 | 0.35 |
±0.12 | ±0.0093 | ±0.02 | ±0.12 | ±0.03 | ±0.037 | ±0.022 | ±0.098 | ±0.016 | ±0.017 | ±0.049 | ±0.047 | ±0.0071 | ±0.0018 | ±0.086 | |
PeCDD | 0.67 | 0.53 | 0.38 | 0.53 | 0.48 | 0.019 | 0.025 | 0.03 | 0.025 | 0.03 | 0.54 | 0.49 | 0.73 | 0.68 | 0.63 |
±0.13 | ±0.040 | ±0.020 | ±0.13 | ±0.04 | ±0.00042 | ±0.0011 | ±0.0082 | ±0.011 | ±0.0053 | ±0.093 | ±0.084 | ±0.017 | ±0.0038 | ±0.012 | |
HxCDD | 0.94 | 0.67 | 0.59 | 0.71 | 0.66 | 0.015 | 0.025 | 0.028 | 0.02 | 0.02 | 1.19 | 1.01 | 1.71 | 1.64 | 1.45 |
±0.25 | ±0.081 | ±0.049 | ±0.15 | ±0.18 | ±0.0012 | ±0.0023 | ±0.0057 | ±0.0061 | ±0.0052 | ±0.26 | ±0.21 | ±0.029 | ±0.0073 | ±0.0057 | |
HpCDD | 0.92 | 0.63 | 0.58 | 0.69 | 0.63 | 0.013 | 0.016 | 0.019 | 0.013 | 0.02 | 1.31 | 1.28 | 1.67 | 1.56 | 1.50 |
±0.17 | ±0.056 | ±0.030 | ±0.14 | ±0.05 | ±0.00093 | ±0.0028 | ±0.0046 | ±0.0029 | ±0.0037 | ±0.25 | ±0.26 | ±0.037 | ±0.0083 | ±0.028 | |
OCDD | 0.95 | 0.75 | 0.67 | 0.79 | 0.74 | 0.017 | 0.021 | 0.022 | 0.02 | 0.02 | 1.34 | 1.29 | 1.48 | 1.46 | 1.41 |
±0.076 | ±0.035 | ±0.039 | ±0.16 | ±0.08 | ±0.0016 | ±0.0033 | ±0.0020 | ±0.0036 | ±0.0022 | ±0.29 | ±0.18 | ±0.035 | ±0.0041 | ±0.031 | |
TCDF | 9.53 | 6.69 | 4.41 | 6.34 | 5.81 | 0.27 | 0.21 | 0.29 | 0.18 | 0.23 | 1.15 | 1.03 | 1.6 | 1.5 | 1.38 |
±2.37 | ±0.23 | ±0.47 | ±1.17 | ±1.08 | ±0.039 | ±0.0063 | ±0.063 | ±0.022 | 0.044 | ±0.27 | ±0.21 | ±0.043 | ±0.0080 | ±0.19 | |
PeCDF | 4.79 | 2.95 | 2.09 | 3.23 | 2.76 | 0.064 | 0.076 | 0.079 | 0.053 | 0.07 | 0.83 | 0.73 | 0.98 | 0.94 | 0.88 |
±1.23 | ±0.14 | ±0.19 | ±0.73 | ±0.34 | ±0.0038 | ±0.0066 | ±0.018 | ±0.0087 | 0.013 | ±0.15 | ±0.12 | ±0.019 | ±0.0037 | ±0.064 | |
HxCDF | 2.37 | 1.31 | 1.09 | 1.69 | 1.36 | 0.03 | 0.053 | 0.057 | 0.039 | 0.05 | 0.73 | 0.66 | 0.73 | 0.71 | 0.70 |
±0.77 | ±0.14 | ±0.11 | ±0.32 | ±0.13 | ±0.0066 | ±0.0096 | ±0.019 | ±0.0072 | ±0.0055 | ±0.15 | ±0.12 | ±0.027 | ±0.0058 | ±0.020 | |
HpCDF | 0.92 | 0.56 | 0.6 | 0.86 | 0.67 | 0.016 | 0.033 | 0.032 | 0.023 | 0.03 | 0.45 | 0.42 | 0.41 | 0.4 | 0.41 |
±0.23 | ±0.055 | ±0.095 | ±0.12 | ±0.08 | ±0.0035 | ±0.0056 | ±0.0082 | ±0.0052 | ±0.0082 | ±0.081 | ±0.066 | ±0.017 | ±0.0024 | ±0.021 | |
OCDF | 0.18 | 0.15 | 0.21 | 0.25 | 0.20 | 0.043 | 0.044 | 0.041 | 0.032 | 0.04 | 0.087 | 0.08 | 0.08 | 0.079 | 0.08 |
±0.024 | ±0.0040 | ±0.057 | ±0.022 | ±0.043 | ±0.0035 | ±0.00045 | ±0.0043 | ±0.0017 | ±0.004 | ±0.024 | ±0.019 | ±0.0028 | ±0.00053 | ±0.00034 | |
∑PCDDs | 4.18 | 3.18 | 2.65 | 3.27 | 3.03 | 0.22 | 0.19 | 0.3 | 0.17 | 0.22 | 4.62 | 4.3 | 6.03 | 5.74 | 5.36 |
±0.75 | ±0.22 | ±0.16 | ±0.71 | ±0.32 | ±0.041 | ±0.031 | ±0.12 | ±0.039 | ±0.076 | ±0.94 | ±0.78 | ±0.12 | ±0.025 | ±0.026 | |
∑PCDFs | 17.79 | 11.66 | 8.4 | 12.37 | 10.81 | 0.43 | 0.42 | 0.5 | 0.33 | 0.42 | 3.25 | 2.92 | 3.8 | 3.62 | 3.45 |
±4.62 | ±0.56 | ±0.91 | ±2.36 | ±0.87 | ±0.056 | ±0.029 | ±0.11 | ±0.045 | ±0.038 | ±0.67 | ±0.54 | ±0.11 | ±0.020 | ±0.034 | |
∑PCDD/Fs | 21.97 | 14.84 | 11.05 | 15.64 | 13.84 | 0.64 | 0.61 | 0.8 | 0.5 | 0.64 | 7.86 | 7.22 | 9.83 | 9.36 | 8.80 |
±5.37 | ±0.79 | ±1.07 | ±3.07 | ±1.78 | ±0.10 | ±0.060 | ±0.23 | ±0.084 | ±0.14 | ±1.61 | ±1.32 | ±0.23 | ±0.046 | ±0.017 | |
∑PCDD/∑PCDF | 0.24 | 0.27 | 0.32 | 0.26 | 0.28 | 0.51 | 0.46 | 0.6 | 0.53 | 0.53 | 1.42 | 1.47 | 1.59 | 1.59 | 1.55 |
dCl-PCDDs | 6.17 | 6.12 | 6.26 | 6.19 | 6.29 | 4.72 | 5.08 | 4.77 | 5.07 | 4.97 | 6.65 | 6.68 | 6.5 | 6.52 | 6.57 |
dCl-PCDFs | 4.73 | 4.67 | 4.82 | 4.82 | 4.77 | 4.81 | 5.1 | 4.9 | 5.01 | 5.00 | 5.22 | 5.24 | 5.05 | 5.07 | 5.12 |
dCl-PCDD/Fs | 5.01 | 4.98 | 5.17 | 5.11 | 5.13 | 4.78 | 5.09 | 4.85 | 5.03 | 4.99 | 6.06 | 6.1 | 5.94 | 5.96 | 6.00 |
Emission Factor | 84.25 | 54.93 | 37.38 | 52.54 | 54.83 | 2.96 | 2.7 | 3.26 | 2.01 | 2.66 | 235.83 | 259.85 | 413.06 | 421.16 | 437.58 |
(ug/ton fuel) |
CP-Route Congeners | BO | FA | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
MSW | 10% | 20% | 25% | 45% | MSW | 10% | 20% | 25% | 45% | |
1,3,7,9-TCDD | 10.57 | 11.99 | 13.00 | 12.41 | 12.67 | 9.74 | 12.53 | 9.46 | 9.58 | 10.06 |
1,3,6,8-TCDD | 23.98 | 29.41 | 30.91 | 30.04 | 31.12 | 52.01 | 51.37 | 64.78 | 63.56 | 62.78 |
Sum of TCDD | 34.55 | 41.39 | 43.90 | 42.45 | 43.79 | 61.75 | 63.90 | 74.24 | 73.14 | 72.84 |
1,2,4,6,8/1,2,4,7,9-PeCDD | 27.83 | 30.93 | 30.88 | 30.82 | 30.88 | 34.24 | 34.89 | 36.83 | 36.83 | 35.43 |
1,2,3,6,8-PeCDD | 21.71 | 23.76 | 23.74 | 23.32 | 23.61 | 31.10 | 30.18 | 32.68 | 31.57 | 31.83 |
1,2,3,7,9-PeCDD | 12.21 | 12.07 | 12.00 | 11.83 | 11.77 | 13.57 | 14.11 | 14.49 | 14.02 | 14.32 |
Sum of PeCDD | 61.74 | 66.76 | 66.62 | 65.97 | 66.25 | 78.91 | 79.19 | 84.00 | 82.42 | 81.58 |
1,2,3,4,6,8-HxCDD | 48.25 | 50.23 | 48.44 | 48.40 | 48.12 | 68.00 | 67.35 | 75.70 | 75.92 | 75.88 |
2,4,6,8-TCDF | 1.90 | 2.18 | 2.22 | 2.20 | 2.20 | 2.26 | 2.26 | 2.24 | 2.11 | 2.17 |
1,2,3,8/1,2,3,6/1,4,6,9/ 1,6,7,8/1,2,3,4/2,3,6,8-TCDF | 6.78 | 6.88 | 7.78 | 7.48 | 7.58 | 7.92 | 8.40 | 7.16 | 7.99 | 7.58 |
Sum of TCDF | 8.69 | 9.06 | 9.99 | 9.68 | 9.78 | 10.18 | 10.66 | 9.41 | 10.10 | 9.75 |
Sum of PCDD/Fs | 8.83 | 10.43 | 10.58 | 9.85 | 10.24 | 19.03 | 18.28 | 24.26 | 24.03 | 24.14 |
Hagenmaier Profile (%) | BO | FA | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
0% | 15% | 25% | 35% | 45% | 0% | 15% | 25% | 35% | 45% | |
2,3,7,8-TCDD | 5.9 | 4.7 | 4.2 | 4.4 | 4.43 | 2.50 | 2.00 | 1.60 | 1.70 | 1.77 |
1,2,3,7,8-PeCDD | 7.8 | 6 | 6 | 6 | 6.00 | 3.20 | 3.50 | 2.50 | 2.40 | 2.80 |
1,2,3,4,7,8-HxCDD | 4.7 | 3.8 | 4.3 | 4.4 | 4.17 | 1.60 | 1.70 | 1.10 | 1.00 | 1.27 |
1,2,3,6,7,8-HxCDD | 1.6 | 1.3 | 1 | 1.2 | 1.17 | 3.90 | 3.50 | 6.90 | 6.40 | 5.60 |
1,2,3,7,8,9-HxCDD | 3.7 | 3.8 | 3.8 | 3.8 | 3.80 | 2.00 | 2.10 | 1.40 | 1.40 | 1.63 |
1,2,3,4,6,7,8-HpCDD | 51.2 | 51.2 | 50.8 | 51.6 | 51.20 | 49.10 | 49.60 | 47.30 | 46.10 | 47.67 |
OCDD | 19.5 | 19.8 | 21.9 | 21 | 20.90 | 18.20 | 19.00 | 13.20 | 13.80 | 15.33 |
Sum of 2,3,7,8-PCDDs | 34.3 | 32.6 | 35.8 | 34.8 | 34.40 | 28.70 | 30.20 | 21.40 | 21.90 | 24.50 |
2,3,7,8-TCDF | 4 | 3.9 | 3.6 | 3.5 | 3.67 | 4.40 | 4.10 | 4.10 | 4.10 | 4.10 |
1,2,3,7,8-PeCDF | 7.5 | 7 | 6.3 | 6.3 | 6.53 | 6.90 | 6.80 | 7.30 | 6.90 | 7.00 |
2,3,4,7,8-PeCDF | 9.6 | 9.1 | 10.2 | 9.7 | 9.67 | 10.50 | 10.20 | 9.50 | 9.50 | 9.73 |
1,2,3,4,7,8-HxCDF | 14.2 | 14 | 15.5 | 14.4 | 14.63 | 10.80 | 11.70 | 11.00 | 11.00 | 11.23 |
1,2,3,6,7,8-HxCDF | 1.8 | 1 | 0.7 | 1.1 | 0.93 | 0.70 | 0.60 | 0.80 | 0.70 | 0.70 |
2,3,4,6,7,8-HxCDF | 8.2 | 9.1 | 9.9 | 9.1 | 9.37 | 12.80 | 12.50 | 12.20 | 12.10 | 12.27 |
1,2,3,7,8,9-HxCDF | 0.6 | 0.3 | 0.3 | 0.4 | 0.33 | 0.20 | 0.20 | 0.20 | 0.20 | 0.20 |
1,2,3,4,6,7,8-HpCDF | 63.2 | 61.8 | 54.9 | 56.6 | 57.77 | 71.30 | 70.80 | 68.00 | 68.00 | 68.93 |
1,2,3,4,7,8,9-HpCDF | 10.9 | 11.2 | 15.3 | 12 | 12.83 | 6.80 | 7.40 | 7.90 | 8.00 | 7.77 |
OCDF | 1 | 1.3 | 2.5 | 2 | 1.93 | 2.70 | 2.70 | 2.10 | 2.20 | 2.33 |
Sum of 2,3,7,8-PCDFs | 16.5 | 15.2 | 18.6 | 17.8 | 17.20 | 27.90 | 28.40 | 23.70 | 23.60 | 25.23 |
Sum of 2,3,7,8-PCDD/Fs | 20.3 | 19.4 | 23.2 | 21.7 | 21.43 | 28.50 | 29.70 | 22.00 | 22.40 | 24.70 |
Co-Disposal Ratio | Sampling Points | NOx | SO2 | HCl |
---|---|---|---|---|
mg/Nm3 | ||||
0% | BO | 266.02 ± 19.65 | 33.94 ± 3.17 | 127.65 ± 12.98 |
CH | 67.00 ± 8.34 | 0.13 ± 0.73 | 17.20 ± 5.11 | |
15% | BO | 243.23 ± 18.61 | 46.95 ± 8.89 | 110.43 ± 11.37 |
CH | 64.00 ± 9.44 | 1.33 ± 0.55 | 19.18 ± 8.22 | |
25% | BO | 260.39 ± 23.71 | 92.17 ± 15.26 | 143.8 ± 17.70 |
CH | 80.80 ± 9.11 | 4.475 ± 1.54 | 22.72 ± 8.47 | |
35% | BO | 227.72 ± 28.51 | 39.85 ± 10.86 | 107.72 ± 10.26 |
CH | 76.66 ± 11.61 | 0.09 ± 0.06 | 16.82 ± 3.87 | |
45% | BO | 232.23 ± 35.63 | 45.85 ± 15.17 | 101.39 ± 17.33 |
CH | 78.21 ± 8.67 | 0.12 ± 0.05 | 18.66 ± 1.66 |
Components | MSW | 15% | 25% | 35% | 45% |
---|---|---|---|---|---|
Ca | 35.41 | 34.87 | 35.47 | 36.43 | 36.68 |
K | 3.71 | 3.44 | 3.12 | 3.31 | 3.26 |
Na | 2.10 | 2.07 | 2.61 | 2.55 | 2.18 |
Si | 4.75 | 4.91 | 4.27 | 4.51 | 4.64 |
Al | 1.74 | 1.77 | 1.61 | 1.67 | 1.71 |
Fe | 1.53 | 1.60 | 0.76 | 1.14 | 0.98 |
Mg | 1.42 | 1.48 | 1.30 | 1.29 | 1.32 |
O | 15.56 | 15.98 | 16.51 | 16.72 | 16.95 |
S | 4.05 | 4.21 | 4.13 | 4.26 | 4.16 |
Cl | 15.15 | 13.94 | 13.99 | 13.64 | 13.82 |
Others | 14.58 | 15.72 | 16.24 | 14.49 | 14.30 |
Components | MSW | 10% | 20% | 25% | 45% |
---|---|---|---|---|---|
Cu | 412.0 | 453.0 | 551.0 | 511.0 | 526.0 |
Ni | 33.0 | 37.9 | 16.7 | 19.9 | 24.2 |
Cr | 1460.0 | 1830.0 | 1230.0 | 873.0 | 687 |
Zn | 3500.0 | 3880.0 | 4650.0 | 3330.0 | 3469 |
As | 39.6 | 36.9 | 37.2 | 34.0 | 36.4 |
Se | 3.6 | 3.4 | 3.4 | 3.2 | 3.5 |
Cd | 135.0 | 146.0 | 281.0 | 235.0 | 207.0 |
Ba | 172.0 | 191.0 | 436.0 | 278.0 | 357.0 |
Hg | 7.5 | 7.2 | 12.9 | 9.7 | 8.4 |
Pb | 300.0 | 364.0 | 1320.0 | 683.0 | 749.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhen, Z.; Xiang, X.; Li, X. Study on the Emission Characteristics of Pollutants During the Waste-to-Energy Process of Landfill Waste and Municipal Solid Waste. Energies 2025, 18, 4515. https://doi.org/10.3390/en18174515
Zhen Z, Xiang X, Li X. Study on the Emission Characteristics of Pollutants During the Waste-to-Energy Process of Landfill Waste and Municipal Solid Waste. Energies. 2025; 18(17):4515. https://doi.org/10.3390/en18174515
Chicago/Turabian StyleZhen, Zongao, Xianchao Xiang, and Xiaodong Li. 2025. "Study on the Emission Characteristics of Pollutants During the Waste-to-Energy Process of Landfill Waste and Municipal Solid Waste" Energies 18, no. 17: 4515. https://doi.org/10.3390/en18174515
APA StyleZhen, Z., Xiang, X., & Li, X. (2025). Study on the Emission Characteristics of Pollutants During the Waste-to-Energy Process of Landfill Waste and Municipal Solid Waste. Energies, 18(17), 4515. https://doi.org/10.3390/en18174515