Design and Optimization of a High-Efficiency Lightweight Permanent Magnet In-Wheel Motor with Torque Performance Improvement
Abstract
1. Introduction
2. Motor Structure and Theoretical Analysis
2.1. Motor Structure
2.2. Theoretical Analysis
- (1)
- The PM permeability is the same as that of the air.
- (2)
- The iron core permeability is considered as infinite, and the saturation effect is ignored.
- (3)
- The magnetic leakage is neglected.
3. The Design Process of the LW-PMIW Motor
3.1. The PM Topology Design
3.2. The Modulator Design
4. Electromagnetic Performance Evaluation
5. Conclusions
- (1)
- A novel trade-off factor Ytotal is defined to quantify the balance between torque, efficiency, and airgap harmonics, breaking through the limitations of optimizing single performance indicators and providing generalizable theoretical guidance for multi-objective collaborative design.
- (2)
- The HI design adopted by the PM is different from the traditional harmonic suppression approach, achieving the dual goals of high-order harmonic suppression and 18th harmonic enhancement through directional regulation. The proposed HI ratio coefficient provides a quantitative basis for the magnetic field design of the PM. In addition, the modulator design actively introduces new harmonics and enhances the amplitude of the 18th harmonic, forming a synergistic modulation with the PM, breaking through the limitations of optimizing the modulator or PM topology separately in existing research and significantly improving the coupling efficiency with the armature magnetic field.
- (3)
- Through the multi-modulation design of PM source and modulator, the torque of the improved LW-PMIW motor is increased by 19.6% while the torque ripple remains unchanged. At the same time, the output power increased by 0.37 kW. The research results directly verify the engineering value of the motor in low-speed and high-torque scenarios, providing a feasible technical path for the performance improvement of this type of motor in agricultural driving, new energy equipment, and other fields.
- (4)
- The framework of “performance quantification factor—harmonic directional control—multi-modulation design” established in this study enriches the theory of harmonic optimization for PM motors and provides new ideas for the multi-objective design of similar modulation motors. It can be extended to the design of other motors with modulation structures.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, J.Y.; Wu, Z.Z.; Li, M.Q.; Shang, Z.J. Dynamic Measurement Method for Steering Wheel Angle of Autonomous Agricultural Vehicles. Agriculture 2024, 14, 1602. [Google Scholar] [CrossRef]
- Zhang, L.; Li, X.Q.; Zhu, X.Y.; Zhang, C.H. Design and Optimization of a Five-Phase Reverse-Salient Fault-Tolerant Permanent Magnet Motor for Electric Vehicles. IEEE Trans. Ind. Electron. 2025, 72, 6762–6774. [Google Scholar] [CrossRef]
- Xiang, P.J.; Yan, L.; Liu, X.S.; He, X.H.; Du, N.N.; Wang, H. Structural Topology Design for Electromagnetic Performance Enhancement of Permanent-Magnet Machines. Chin. J. Mech. Eng. 2025, 38, 26. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, M.; Zhu, X.Y.; Pei, Z.F.; Chen, X. Space Decoupling Sensorless Control of Five-Phase Flux-Intensifying PM Motor Based on AFCCF-SMO Considering Flux-Weakening Operation. IEEE Trans. Ind. Electron. 2025, 72, 6865–6875. [Google Scholar] [CrossRef]
- Zhu, Y.Y.; Cui, B.B.; Yu, Z.L.; Gao, Y.Y.; Wei, X.H. Tillage Depth Detection and Control Based on Attitude Estimation and Online Calibration of Model Parameters. Agriculture 2024, 14, 2130. [Google Scholar] [CrossRef]
- Liu, H.; Yan, S.C.; Shen, Y.; Li, C.H.; Zhang, Y.F.; Hussain, F. Model predictive control system based on direct yaw moment control for 4WID self-steering agriculture vehicle. Int. J. Agric. Biol. Eng. 2021, 14, 175–181. [Google Scholar] [CrossRef]
- Lu, E.; Ma, Z.; Li, Y.M.; Xu, L.Z.; Tang, Z. Adaptive backstepping control of tracked robot running trajectory based on real-time slip parameter estimation. Int. J. Agric. Biol. Eng. 2020, 13, 178–187. [Google Scholar] [CrossRef]
- Xiang, P.J.; Yan, L.; Ge, L.J.; He, X.H.; Du, N.N.; Liu, X.S. Development of a Radial-Flux Machine with Multi-Shaped Magnet Rotor and Non-Ferromagnetic Yoke for Low Torque Ripple and Rotor Mass. IEEE Trans. Ind. Appl. 2025, 61, 2897–2910. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhao, Z.H.; Gao, G.Q. Fuzzy Comprehensive Evaluation for Grasping Prioritization of Stacked Fruit Clusters Based on Relative Hierarchy Factor Set. Agronomy 2022, 12, 663. [Google Scholar] [CrossRef]
- Ji, W.; He, G.Z.; Xu, B.; Zhang, H.W.; Yu, X.W. A New Picking Pattern of a Flexible Three-Fingered End-Effector for Apple Harvesting Robot. Agriculture 2024, 14, 102. [Google Scholar] [CrossRef]
- Xiang, P.J.; Yan, L.; Guo, Y.M.; He, X.H.; Gerada, C.; Chen, I.M. A Concentrated-Flux-Type PM Machine with Irregular Magnets and Iron Poles. IEEE/ASME Trans. Mechatron. 2024, 29, 691–702. [Google Scholar] [CrossRef]
- Zhu, L.; Chen, S.R.; Zhao, Z.; Ding, H.T.; Zhu, Y.L. Influence of Sieve Surface Attitude on Sieving Performance of Granular Materials with Non-Uniform Feeding Conditions. Agriculture 2022, 12, 2023. [Google Scholar] [CrossRef]
- Hu, J.P.; Zhao, X.S.; Liu, W.; Yao, M.J.; Zhao, J. Development of a Seeding Control Method Based on Seed Height in the Hopper of a Precision Wheat Drill. Appl. Eng. Agric. 2021, 37, 1131–1138. [Google Scholar] [CrossRef]
- Yang, S.; Zhai, C.Y.; Gao, Y.Y.; Dou, H.J.; Zhao, X.G.; He, Y.K.; Wang, X. Planting uniformity performance of motor-driven maize precision seeding systems. Int. J. Agric. Biol. Eng. 2022, 15, 101–108. [Google Scholar] [CrossRef]
- Li, J.Y.; Shang, Z.J.; Li, R.F.; Cui, B.B. Adaptive Sliding Mode Path Tracking Control of Unmanned Rice Transplanter. Agriculture 2022, 12, 1225. [Google Scholar] [CrossRef]
- Shi, Q.; Liu, D.; Mao, H.P.; Shen, B.G.; Li, M.Q. Wind-induced response of rice under the action of the downwash flow field of a multi-rotor UAV. Biosyst. Eng. 2021, 203, 60–69. [Google Scholar] [CrossRef]
- Zhao, X.Y.; Du, Y.M.; Zhang, R.H.; Guo, K.Y.; Wang, H.H. Comparative Research on Performance of Iron-core and Ironless Permanent Magnetic Linear Synchronous Motor. In Proceedings of the 2022 25th International Conference on Electrical Machines and Systems (ICEMS), Chiang Mai, Thailand, 29 November–2 December 2022. [Google Scholar]
- Lu, E.; Xue, J.L.; Chen, T.T.; Jiang, S. Robust Trajectory Tracking Control of an Autonomous Tractor-Trailer Considering Model Parameter Uncertainties and Disturbances. Agriculture 2023, 13, 869. [Google Scholar] [CrossRef]
- Dai, D.; Chen, D.; Wang, S.M.; Li, S.; Mao, X.; Zhang, B.; Wang, Z.Y.; Ma, Z. Compilation and Extrapolation of Load Spectrum of Tractor Ground Vibration Load Based on CEEMDAN-POT Model. Agriculture 2023, 13, 125. [Google Scholar] [CrossRef]
- Yu, Y.; Hao, S.H.; Guo, S.B.; Tang, Z.; Chen, S.R. Motor Torque Distribution Strategy for Different Tillage Modes of Agricultural Electric Tractors. Agriculture 2022, 12, 1373. [Google Scholar] [CrossRef]
- Sun, J.L.; Wang, Z.; Ding, S.H.; Xia, J.; Xing, G.Y. Adaptive disturbance observer-based fixed time nonsingular terminal sliding mode control for path-tracking of unmanned agricultural tractors. Biosyst. Eng. 2024, 246, 96–109. [Google Scholar] [CrossRef]
- Geng, W.W.; Zhang, Z.R. Analysis and Implementation of New Ironless Stator Axial-Flux Permanent Magnet Machine with Concentrated Nonoverlapping Windings. IEEE Trans. Energy Convers. 2018, 33, 1274–1284. [Google Scholar] [CrossRef]
- Li, Y.; Xu, L.Z.; Lv, L.Y.; Shi, Y.; Yu, X. Study on Modeling Method of a Multi-Parameter Control System for Threshing and Cleaning Devices in the Grain Combine Harvester. Agriculture 2022, 12, 1483. [Google Scholar] [CrossRef]
- Ding, Z.X.; Tang, Z.; Zhang, B.; Ding, Z. Vibration Response of Metal Plate and Shell Structure under Multi-Source Excitation with Welding and Bolt Connection. Agriculture 2024, 14, 816. [Google Scholar] [CrossRef]
- Mao, Y.H.; Sun, Z.L.; Huang, C.B.; Jia, G.Y.; Ding, A.M. Electromagnetic Characteristics Analysis of a Novel Ironless Double-Sided Halbach Permanent Magnet Synchronous Linear Motor for Electromagnetic Launch Considering Longitudinal End Effect. IEEE Trans. Transp. Electrif. 2024, 10, 7467–7477. [Google Scholar] [CrossRef]
- Wang, C.; Han, J.B.; Zhang, Z.R.; Hua, Y.T.; Gao, H.M. Design and Optimization Analysis of Coreless Stator Axial-Flux Permanent Magnet In-Wheel Motor for Unmanned Ground Vehicle. IEEE Trans. Transp. Electrif. 2022, 8, 1053–1062. [Google Scholar] [CrossRef]
- Shuaibu, I.; Wei, E.H.T.; Kannan, R.; Samaila, Y.A. Advancements in axial flux permanent magnet machines utilizing coreless technology: A systematic review. Ain Shams Eng. J. 2024, 15, 103091. [Google Scholar] [CrossRef]
- Zhai, F.G.; Yang, L.; Fu, W.Q.; Tong, H.S.; Zhao, T.Y. The Effects of Permanent Magnet Segmentations on Electromagnetic Performance in Ironless Brushless DC Motors. Energies 2022, 15, 621. [Google Scholar] [CrossRef]
- Zhang, H.W.; Ji, W.; Xu, B.; Yu, X.W. Optimizing Contact Force on an Apple Picking Robot End-Effector. Agriculture 2024, 14, 996. [Google Scholar] [CrossRef]
- Ji, W.; Zhang, T.; Xu, B.; He, G.Z. Apple recognition and picking sequence planning for harvesting robot in a complex environment. J Agric. Eng. 2024, 55, 1549. [Google Scholar]
- Ji, W.; Pan, Y.; Xu, B.; Wang, J.C. A Real-Time Apple Targets Detection Method for Picking Robot Based on ShufflenetV2-YOLOX. Agriculture 2022, 12, 856. [Google Scholar] [CrossRef]
- Ji, W.; Gao, X.X.; Xu, B.; Pan, Y.; Zhang, Z.; Zhao, D. Apple target recognition method in complex environment based on improved YOLOv4. J. Food Process Eng. 2021, 44, e13866. [Google Scholar] [CrossRef]
- Wang, M.Q.; Tong, C.D.; Song, Z.Y.; Liu, J.Q.; Zheng, P. Performance Analysis of an Axial Magnetic-Field-Modulated Brushless Double-Rotor Machine for Hybrid Electric Vehicles. IEEE Trans. Transp. Electrif. 2019, 66, 806–817. [Google Scholar] [CrossRef]
- Ma, P.C.; Li, Y.; Shan, Y.Z.; Wang, Q.; Hu, J.H.; Liu, C.J. Research on a Novel Hybrid Axial Transverse Flux Permanent Magnet Motor with Compound Rotor. IEEE Trans. Transp. Electrif. 2024, 10, 5092–5102. [Google Scholar] [CrossRef]
- Toker, K.; Tosun, O.; Serteller, N.F.O.; Topuz, V. Design, Optimization and Experimental Study of Axial and Hub BLDC Motors in-Wheel Application for Light Electric Vehicles. In Proceedings of the 2022 IEEE 21st Mediterranean Electrotechnical Conference (MELECON), Palermo, Italy, 14–16 June 2022. [Google Scholar]
- Si, J.K.; Li, S.; Nie, R.; Wang, P.X.; Xu, S.; Gan, C. A Dual-Rotor Axial-Flux PM Motor with Equidirectional Toroidal Winding and 3-Slot/4-Pole Unit Block for Torque Density Improvement. IEEE Trans. Ind. Electron. 2024, 71, 16200–16211. [Google Scholar] [CrossRef]
- Lang, J.W.; Tong, C.D.; Bai, J.A.; Zheng, P.; Liu, J.Q. A high-efficiency magnetic-geared double-rotor machine with the coreless stator for hybrid aircraft propulsion. IET Electr. Power Appl. 2023, 17, 1367–1378. [Google Scholar] [CrossRef]
- Zhang, Y.Z.; Li, D.W.; Fang, L.; Zha, X.M.; Gao, Y.T. Design and Manufacture of a High-Torque-Density Permanent Magnet Traction Motor for Light-Duty Electric Vehicles. IEEE Trans. Transp. Electrif. 2024, 10, 379–391. [Google Scholar] [CrossRef]
- Fang, L.; Zhang, Y.Z.; Li, D.W.; Qu, R.H. High-torque density and low-torque ripple- oriented design method for multi-harmonics surface-mounted PM vernier machine. IEEE Trans. Ind. Appl. 2025, 61, 3687–3700. [Google Scholar] [CrossRef]
- Liu, G.P.; Bai, J.G.; Lang, J.W.; Wang, Y.T.; Zheng, P. Investigation of a Dual-Winding Dual-Flux-Concentrated Magnetic-Field-Modulated Brushless Compound-Structure Machine for Hybrid Electrical Vehicles. IEEE Trans. Transp. Electrif. 2024, 10, 6039–6048. [Google Scholar] [CrossRef]
- Geng, W.W.; Wang, Y.; Wang, J.; Hou, J.N.; Guo, J.; Zhang, Z.R. Comparative Study of Yokeless Stator Axial-Flux PM Machines Having Fractional Slot Concentrated and Integral Slot Distributed Windings for Electric Vehicle Traction Applications. IEEE Trans. Ind. Electron. 2023, 70, 155–166. [Google Scholar] [CrossRef]
- He, Z.F.; Du, Y.; Xiao, F.; Zhu, X.Y.; Chen, H.; Zhang, C. Comprehensive Performance Improvement of Permanent Magnet Vernier Motor for Electric Tractors. IEEE Trans. Transp. Electrif. 2024, 10, 4821–4832. [Google Scholar] [CrossRef]
- Zhang, G.; Guo, X.; Zhou, J.; Hua, W. Review on the Development and Applications of Permanent Magnet Vernier Motors. Energies 2025, 18, 2353. [Google Scholar] [CrossRef]
- Xiang, Z.X.; Wei, J.Q.; Zhu, X.Y. Torque Ripple Suppression of a PM Vernier Machine from Perspective of Time and Space Harmonic Magnetic Field. IEEE Trans. Ind. Electron. 2024, 71, 10150–10161. [Google Scholar] [CrossRef]
- Xiang, Z.X.; Zhou, Y.T.; Zhu, X.Y.; Quan, L.; Fan, D.Y.; Liu, Q. Research on Characteristic Airgap Harmonics of a Double-Rotor Flux-Modulated PM Motor Based on Harmonic Dimensionality Reduction. IEEE Trans. Transp. Electrif. 2024, 10, 5750–5761. [Google Scholar] [CrossRef]
Items | Value | Unit |
---|---|---|
Outer radius of the outer rotor shell Rshell_oo | 153.5 | mm |
Radius of the outer rotor iron ring Riron_o | 150.5 | mm |
Radius of the outer rotor Rrotor_o | 149 | mm |
Inner radius of the outer rotor shell Rshell_oi | 143 | mm |
Outer radius of the inner rotor shell Rshell_io | 130 | mm |
Radius of the inner rotor Rrotor_i | 129 | mm |
Radius of the inner rotor iron ring Riron_i | 124 | mm |
Inner radius of the inner rotor shell Rshell_ii | 118.9 | mm |
Radius of stator shell Rshell_s | 142 | mm |
Outer airgap length Rairo | 1 | mm |
Inner airgap length Rairi | 1 | mm |
Rated speed nr | 600 | rpm |
Rated current Im | 10 | A |
Stack length le | 50 | mm |
Stator slot number Ns | 27 | -- |
Rotor pole number Pr | 18 | -- |
Items | Value | Unit |
---|---|---|
PM area S | 35 | mm2 |
Width of inner PM b | 8.59 | mm |
Width of outer PM b1 | 8.1 | mm |
PM interpolar offset angle θ | −4 | deg |
Distance between the inner and outer PMs hmove | 19.8 | mm |
Radius of inner PM Rpmi | 125.4 | mm |
Radius of outer PM Rpmo | 145.2 | mm |
k1 | 4.05 | -- |
k2 | −0.2 | -- |
k3 | −0.05 | -- |
k11 | −0.74 | -- |
k22 | 0.28 | -- |
k33 | 0.05 | -- |
Items | Value | Unit |
---|---|---|
The length of modulator ltie | 0.7 | mm2 |
The width of modulator htie | 7 | mm |
The radius of modulator Rtie | 132.5 | mm |
The radian occupied by modulator width θtie | 0.3 | deg |
Method | Harmonic Variation | Output Torque | Torque Ripple | Output Power |
---|---|---|---|---|
HI | 54th and 90th decrease; 18th increases | 30.1 Nm | 0.27% | 1.89 kW |
HI + Modulation | 18th increases; (iPr ± jNs) generation | 35.4 Nm | 0.24% | 2.23 kW |
Comparison | Reference [25] | Reference [29] | Reference [36] | Proposed Method |
---|---|---|---|---|
Research object | AMFM-BDRM | CS-MGDRM | V-PMV | LW-PMIW |
Main technical methods | Theoretical analysis; simulation. | Ironless stator; finite element analysis | Rotor shape design, star–delta hybrid connection winding | Multi-modulation design, definition of comprehensive trade-off factors |
High output torque | × | × | × | √ |
Low torque ripple | - | √ | √ | √ |
Iron loss | √ | × | √ | × |
High efficiency | - | √ | √ | √ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiang, Z.; Miao, Y.; Zhou, Y.; Li, F. Design and Optimization of a High-Efficiency Lightweight Permanent Magnet In-Wheel Motor with Torque Performance Improvement. Energies 2025, 18, 4509. https://doi.org/10.3390/en18174509
Xiang Z, Miao Y, Zhou Y, Li F. Design and Optimization of a High-Efficiency Lightweight Permanent Magnet In-Wheel Motor with Torque Performance Improvement. Energies. 2025; 18(17):4509. https://doi.org/10.3390/en18174509
Chicago/Turabian StyleXiang, Zixuan, Yu Miao, Yuting Zhou, and Feng Li. 2025. "Design and Optimization of a High-Efficiency Lightweight Permanent Magnet In-Wheel Motor with Torque Performance Improvement" Energies 18, no. 17: 4509. https://doi.org/10.3390/en18174509
APA StyleXiang, Z., Miao, Y., Zhou, Y., & Li, F. (2025). Design and Optimization of a High-Efficiency Lightweight Permanent Magnet In-Wheel Motor with Torque Performance Improvement. Energies, 18(17), 4509. https://doi.org/10.3390/en18174509