Equivalent Modeling and Simulation of Fracture Propagation in Deep Coalbed Methane
Abstract
1. Introduction
2. Mathematical Model
2.1. Fluid–Solid Coupling Equation of Deep Coalbed Methane
2.2. CEPPZ Element of Fracture Propagation
2.3. Finite Element Modeling and Solution
3. Comprehensive Equivalent Modeling and Parameters Invert
3.1. Reservoir Characteristics Overview
3.2. Equivalent Modeling and Parameters Invert
4. Numerical Simulation Result
4.1. Minimum Horizontal Ground Stress
4.2. Fracturing Fluid Injection Rate
4.3. Fracturing Fluid Volume
4.4. Fracturing Fluid Viscosity
4.5. Perforation Position
4.5.1. Perforation Position in Coal Seam
4.5.2. Perforation Position in Limestone
4.5.3. Perforation Position in Mudstone
4.5.4. Damage of the Bedding Interface
5. Conclusions
- (1)
- Hydraulic fractures are more likely to expand into layers with low minimum horizontal stress. Increasing the minimum horizontal stress difference between the coal seam and the limestone/mudstone layer forms a more considerable hydraulic fracture length and fracture area. However, the hydraulic fracture in the coal seam, limestone, and mudstone layers may propagate asynchronously.
- (2)
- The high injection rate can increase the length of the hydraulic fracture and form a larger area of hydraulic fracture. Increasing the fracturing fluid volume helps the hydraulic fracture expand further. However, the improvement effect on fracture length and area gradually weakens with the increased fracturing fluid volume.
- (3)
- As the fracturing fluid viscosity increases, the half-length of the hydraulic fracture and hydraulic fracture area increase initially and then decrease. The maximum fracture half-length and area can be obtained when the fracturing fluid viscosity is 50–75 mPa·s.
- (4)
- Different perforation locations have little effect on the hydraulic fracture morphology and hydraulic fracture parameters when perforating in the coal seam. When perforating in limestone and mudstone layers, perforating close to the coal seam (bottom of limestone layer and upper of mudstone layer) makes hydraulic fractures susceptible to being confined by the bedding interface, restricting their expansion.
- (5)
- When directional roof limestone/floor mudstone layer perforation is used, and the appropriate perforation location is selected, hydraulic fractures can communicate the coal seam to form a roof limestone/floor mudstone layer indirect fracturing.
- (6)
- The hydraulic fracture propagation model for deep coal seam gas reservoirs established in this paper can conduct numerical simulations of hydraulic fracture propagation, but it still has certain limitations. These include not considering the changes in reservoir pore pressure caused by the adsorption–desorption behavior of coalbed methane, the interference between clusters during the expansion process of multiple clusters of hydraulic fractures, and the influence of coal seam plasticity. Subsequent research needs to address these issues.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- He, X.P.; Zhang, P.X.; Gao, Y.Q.; Wang, K.M.; He, G.S.; Ren, J.H.; Gao, Q.F.; Zang, S.H. Challenges and countermeasures for beneficial development of unconventional oil and gas resources in China. China Pet. Explor. 2025, 30, 28–43. [Google Scholar]
- Li, Q.; Zhao, D.; Yin, J.; Zhou, X.; Li, Y.; Chi, P.; Han, Y.; Ansari, U.; Cheng, Y. Sediment Instability Caused by Gas Production from Hydrate-bearing Sediment in Northern South China Sea by Horizontal Wellbore: Evolution and Mechanism. Nat. Resour. Res. 2023, 32, 1595–1620. [Google Scholar] [CrossRef]
- Li, Q.; Li, Q.; Wang, F.; Xu, N.; Wang, Y.; Bai, B. Settling behavior and mechanism analysis of kaolinite as a fracture proppant of hydrocarbon reservoirs in CO2 fracturing fluid. Colloids Surf. A Physicochem. Eng. Asp. 2025, 724, 137463. [Google Scholar] [CrossRef]
- Yang, R.; Hong, C.; Huang, Z.; Song, X.; Zhang, S.; Wen, H. Coal breakage using abrasive liquid nitrogen jet and its implications for coalbed methane recovery. Appl. Energy 2019, 253, 113485. [Google Scholar] [CrossRef]
- Pang, X.-Q.; Jia, C.-Z.; Wang, W.-Y. Petroleum geology features and research developments of hydrocarbon accumulation in deep petroliferous basins. Pet. Sci. 2015, 12, 1–53. [Google Scholar] [CrossRef]
- Zhang, X.W.; Pang, X.Q.; Li, C.J.; Yu, J.W.; Wang, W.Y.; Xiao, H.Y.; Li, C.R.; Yu, J.T. Geological characteristics, formation conditions and accumulation model of deep and ultra-deep, high-porosity and high-permeability clastic reservoirs: A case study of Gulf of Mexico Basin. Acta Pet. Sin. 2021, 42, 466–480. [Google Scholar]
- Huang, Z.W.; Li, G.F.; Yang, R.Y.; Li, G.S. Review and development trends of coalbed methane exploitation technology in China. J. China Coal Soc. 2022, 47, 3212–3238. [Google Scholar]
- Qin, Y.; Shen, J.; Shi, R. Strategic value and choice on construction of large CMG industry in China. J. China Coal Soc. 2022, 47, 371–387. [Google Scholar]
- Yang, F.; Li, B.; Wang, K.; Wen, H.; Yang, R.; Huang, Z. Extreme massive hydraulic fracturing in deep coalbed methane horizontal wells: A case study of the Linxing Block, eastern Ordos Basin, NW China. Pet. Explor. Dev. 2024, 51, 440–452. [Google Scholar] [CrossRef]
- Wang, H.Y.; Duan, Y.Y.; Liu, H.L.; Zhao, Q.; Chen, S.B.; Lu, H.B.; Shi, Z.S.; Sun, Q.P.; Chen, Z.H.; Zhou, S.W.; et al. Preliminarily exploring the theories and technologies for coalbed methane production using horizontal wells: Comparison of conditions for coalbed methane and shale gas exploitation. Coal Geol. Explor. 2024, 52, 47–59. [Google Scholar]
- An, Q.; Yang, F.; Yang, R.Y.; Huang, Z.W.; Li, G.S.; Gong, Y.J.; Yu, W. Practice and understanding of deep coalbed methane massive hydraulic fracturing in Shenfu Block, Ordos Basin. J. China Coal Soc. 2024, 49, 2376–2393. [Google Scholar]
- Xu, F.Y.; Nie, Z.H.; Sun, W.; Xiong, X.Y.; Xu, B.R.; Zhang, L.; Shi, X.S.; Liu, Y.; Liu, S.R.; Zhao, Z.P.; et al. Theoretical and technological system for Highly efficient development of deep coalbed methane in the Eastern edge of Erdos Basin. J. China Coal Soc. 2024, 49, 528–544. [Google Scholar]
- Xiong, D.; He, J.Y.; Ma, X.F.; Qu, Z.L.; Guo, T.K. Fracturing simulation under different perforation positions of deep coal and roof/floor rock-Taking the 8 # deep coal seam of a gas field in the Ordos Basin as an example. J. China Coal Soc. 2024, 49, 4897–4914. [Google Scholar] [CrossRef]
- Zhou, X.; Liu, X.; Wang, X.; Gu, Z.; Xie, H.; Zhang, S. Mechanical and fracture characteristics in center cracked circular discs of coal specimens with different sizes: An experimental investigation. Theor. Appl. Fract. Mech. 2024, 129, 104245. [Google Scholar] [CrossRef]
- Wang, H.; Ma, T.; Liu, Y.; Zhang, D.; Ranjith, P.G. Experimental Investigation on the 3D Anisotropic Fracture Behavior of Layered Shales Under Mode-I Loading. Rock Mech. Rock Eng. 2024, 57, 3459–3482. [Google Scholar] [CrossRef]
- Cai, Y.D.; Jia, D.; Qiu, F.; Liu, D.M.; Yan, X.; Zhou, Y.; An, K. Micromechanical properties of coal and its influencing factors based on nanoindentation. Rock Mech. Rock Eng. 2022, 48, 879–890. [Google Scholar]
- Du, F.; Wang, K.; Dong, X.L.; Wei, J.P. Numerical simulation of damage and failure of coal-rock combination based on CT three-dimensional reconstruction. J. China Coal Soc. 2021, 46, 253–262. [Google Scholar]
- Qi, X.H.; Hou, S.R.; Ma, H.; Wang, P.; Liu, Y.; Zhang, X.M. Research on triaxial test of coal rock mechanics based on graphical measurement technology. Chin. Q. Mech. 2023, 44, 739–749. [Google Scholar]
- Zhao, H.; Liu, C.; Xiong, Y.; Zhen, H.; Li, X. Experimental research on hydraulic fracture propagation in group of thin coal seams. J. Nat. Gas Sci. Eng. 2022, 103, 104614. [Google Scholar] [CrossRef]
- Zhao, H.; Wang, X.; Liu, Z. Experimental investigation of hydraulic sand fracturing on fracture propagation under the influence of coal macrolithotypes in Hancheng block, China. J. Pet. Sci. Eng. 2019, 175, 60–71. [Google Scholar] [CrossRef]
- Cao, W.; Yildirim, B.; Durucan, S.; Wolf, K.-H.; Cai, W.; Agrawal, H.; Korre, A. Fracture behaviour and seismic response of naturally fractured coal subjected to true triaxial stresses and hydraulic fracturing. Fuel 2021, 288, 119618. [Google Scholar] [CrossRef]
- Li, Y.; Rui, Z.; Zhao, W.; Bo, Y.; Fu, C.; Chen, G.; Patil, S. Study on the mechanism of rupture and propagation of T-type fractures in coal fracturing. J. Nat. Gas Sci. Eng. 2018, 52, 379–389. [Google Scholar] [CrossRef]
- Jiang, T.T.; Zhang, J.H.; Huang, G. Experimental study of fracture geometry during hydraulic fracturing in coal. Rock Soil Mech. 2018, 39, 3677–3684. [Google Scholar]
- Li, H.-Z.; Jiang, Z.-B.; Fan, Z.-Y.; Pang, T.; Liu, X.-G. Experimental study on dynamic propagation characteristics of fracturing crack across coal-rock interface. Rock Soil Mech. 2024, 45, 737–749. [Google Scholar] [CrossRef]
- Li, Q.; Li, T.; Cai, Y.D.; Liu, D.M.; Li, L.F.; Ru, Z.X.; Yin, T.T. Research progress on hydraulic fracture characteristics and controlling factors of coalbed methane reservoirs. J. China Coal Soc. 2023, 48, 4443–4460. [Google Scholar]
- Liu, Y.; Tang, D.; Xu, H.; Zhao, T.; Hou, W. Effect of interlayer mechanical properties on initiation and propagation of hydraulic fracturing in laminated coal reservoirs. J. Pet. Sci. Eng. 2022, 208, 109381. [Google Scholar] [CrossRef]
- Zhao, H.; Li, X.; Zhen, H.; Wang, X.; Li, S. Study on H-shaped fracture propagation and optimization in shallow dull-type coal seams in the Hancheng block, China. Geoenergy Sci. Eng. 2023, 221, 111226. [Google Scholar] [CrossRef]
- Huang, L.; Li, B.; Wu, B.; Li, C.; Wang, J.; Cai, H. Study on the extension mechanism of hydraulic fractures in bedding coal. Theor. Appl. Fract. Mech. 2024, 131, 104431. [Google Scholar] [CrossRef]
- Li, H.Z.; Jiang, Z.B.; Shu, J.S.; Fan, Y.; Du, T.L. Numerical simulation of layer-crossing propagation behavior of hydraulic fractures at coal-rock interface. Coal Geol. Explor. 2020, 48, 106–113. [Google Scholar]
- Satuk, B.A.; Abdullah, F. A data-driven approach for the prediction of coal seam gas content using machine learning techniques. Appl. Energy 2023, 347, 121499. [Google Scholar] [CrossRef]
- Yan, X.; Xiong, X.Y.; Li, S.G.; Huang, L.; Wang, F.; Sun, X.D.; Guo, L.L.; Feng, Y.Q. Production contributions of deep CBM horizontal well sections and their controlling factors: A case study of Daning—Jixian area, eastern Ordos Basin. Nat. Gas Ind. 2024, 44, 80–92. [Google Scholar]
- Wei, M.Q.; Wang, H.; Duan, Y.G.; Chen, H.; Li, X.T.; Yang, H.X.; Sun, Y.P.; Duan, X.Y. Production profile prediction model of fractured marine-terrestrial transitional facies shale gas horizontal wells considering SRV heterogeneity between different sections. Nat. Gas Ind. 2023, 43, 80–89. [Google Scholar]
- Biot, M.A. General Theory of Three-Dimensional Consolidation. J. Appl. Phys. 1941, 12, 155–164. [Google Scholar] [CrossRef]
- Zhang, G.M.; Liu, H.; Zhang, J.; Wu, H.A.; Wang, X.X. Mathematical model and nonlinear finite element equation for reservoir fluid-solid coupling. Rock Soil Mech. 2010, 31, 1657–1662. [Google Scholar]
- Liu, C.; Zhang, J.; Yu, H.; Chen, J.; Lu, D.; Wu, H. New insights of natural fractures growth and stimulation optimization based on a three-dimensional cohesive zone model. J. Nat. Gas Sci. Eng. 2020, 76, 103165. [Google Scholar] [CrossRef]
- Wang, D.; Dong, Y.; Sun, D.; Yu, B. A three-dimensional numerical study of hydraulic fracturing with degradable diverting materials via CZM-based FEM. Eng. Fract. Mech. 2020, 237, 107251. [Google Scholar] [CrossRef]
- ABAQUS. Abaqus Analysis User’s Manual; Dassault Systémes Simulia Corp.: Providence, RI, USA, 2014. [Google Scholar]
- Camanho, P.; Davila, C. Mixed-Mode Decohesion Finite Elements for the Simulation of Delamination in Composite Materials; NASA/TM-2002-211737; NASA: Hampton, VA, USA, 2002; pp. 1–37.
- Sun, X.; Yu, L.; Rentschler, M.; Wu, H.; Long, R. Delamination of a rigid punch from an elastic substrate under normal and shear forces. J. Mech. Phys. Solids 2019, 122, 141–160. [Google Scholar] [CrossRef]
- Benzeggagh, M.L.; Kenane, M. Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus. Compos. Sci. Technol. 1996, 56, 439–449. [Google Scholar] [CrossRef]
- Gong, D.G.; Qu, Z.Q.; Li, J.X.; Qu, G.Z.; Cao, Y.C.; Guo, T.K. Extended finite element simulation of hydraulic fracture based on ABAOUS platform. Rock Soil Mech. 2016, 37, 1512–1520. [Google Scholar]
- Chen, Z. Finite element modelling of viscosity-dominated hydraulic fractures. J. Pet. Sci. Eng. 2012, 88–89, 136–144. [Google Scholar] [CrossRef]
- Anthony, P.; Emmanuel, D. An implicit level set method for modeling hydraulically driven fractures. Comput. Methods Appl. Mech. Eng. 2008, 197, 2858–2885. [Google Scholar] [CrossRef]
- Zhang, Z.W. Study on crack propagation law of hydraulic fracturing of coal rock complex based on cohesive element. Saf. Coal Mines 2024, 55, 57–64. [Google Scholar]
- Fu, T.; Tang, X.; Cai, Z.; Zuo, Y.; Tang, Y.; Zhao, X. Correlation research of phase angle variation and coating performance by means of Pearson’s correlation coefficient. Prog. Org. Coat. 2020, 139, 105459. [Google Scholar] [CrossRef]
- Li, D.Q.; Zhang, S.C.; Zhang, S.A. Pressure loss prediction model of newtonian fluid hydraulic fracturing in coalbed methane well. Coal Geol. Explor. 2013, 41, 22–30. [Google Scholar]
- Crump, J.; Conway, M. Effects of Perforation-Entry Friction on Bottomhole Treating Analysis. J. Pet. Technol. 1988, 40, 1041–1048. [Google Scholar] [CrossRef]
Reservoir Type | Minimum Horizontal Ground Stress (MPa) | Maximum Horizontal Ground Stress (MPa) |
---|---|---|
Limestone | 60.04 | 70.11 |
Coal seam | 53.66 | 61.07 |
Mudstone | 57.16 | 67.01 |
Reservoir Type | Parameter | Unit | Value | Value Source |
---|---|---|---|---|
Limestone | Elastic modulus | GPa | 22.36 | Triaxial compression results |
Poisson’s ratio | Dimensionless | 0.165 | Triaxial compression results | |
Porosity | Dimensionless | 0.0409 | Document [13] | |
Matrix tensile strength | MPa | 5 | Document [27,44] | |
Coal | Elastic modulus | GPa | 8.28 | Triaxial compression results |
Poisson’s ratio | Dimensionless | 0.186 | Triaxial compression results | |
Porosity | Dimensionless | 0.0499 | CT scan results | |
Tensile strength of matrix | MPa | 1 | Document [27,44] | |
Tensile strength of interface | MPa | 0.25 | Document [27,44] | |
Mudstone | Elastic modulus | GPa | 16.89 | Triaxial compression results |
Poisson’s ratio | Dimensionless | 0.17 | Triaxial compression results | |
Porosity | Dimensionless | 0.0138 | Document [13] | |
Tensile strength of matrix | MPa | 4.5 | Document [27,44] |
Parameter | Unit | Value |
---|---|---|
Bedding interfaces fluid filtration coefficient of coal reservoir | m3·s−1·Pa−1 | 5 × 10−11 |
Permeability coefficient of the coal matrix reservoir | m·s−1 | 3.5 × 10−7 |
Hydraulic fracture fluid filtration coefficient of coal reservoir | m3·s−1·Pa−1 | 5 × 10−11 |
Permeability coefficient of the limestone matrix reservoir | m·s−1 | 5.5 × 10−8 |
Hydraulic fracture fluid filtration coefficient of limestone reservoir | m3·s−1·Pa−1 | 5.5 × 10−12 |
Permeability coefficient of the mudstone matrix reservoir | m·s−1 | 5 × 10−8 |
Hydraulic fracture fluid filtration coefficient of mudstone reservoir | m3·s−1·Pa−1 | 5 × 10−12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, C.; He, J.; Meng, L.; Zhang, R.; Xiong, D. Equivalent Modeling and Simulation of Fracture Propagation in Deep Coalbed Methane. Energies 2025, 18, 4432. https://doi.org/10.3390/en18164432
Xiao C, He J, Meng L, Zhang R, Xiong D. Equivalent Modeling and Simulation of Fracture Propagation in Deep Coalbed Methane. Energies. 2025; 18(16):4432. https://doi.org/10.3390/en18164432
Chicago/Turabian StyleXiao, Cong, Jiayuan He, Lin Meng, Rusheng Zhang, and Dong Xiong. 2025. "Equivalent Modeling and Simulation of Fracture Propagation in Deep Coalbed Methane" Energies 18, no. 16: 4432. https://doi.org/10.3390/en18164432
APA StyleXiao, C., He, J., Meng, L., Zhang, R., & Xiong, D. (2025). Equivalent Modeling and Simulation of Fracture Propagation in Deep Coalbed Methane. Energies, 18(16), 4432. https://doi.org/10.3390/en18164432