Integrating Energy Transition into Protected Landscapes: Geoinformatic Solution for Low Visual Impact of Energy Infrastructure Development—A Case Study from Roztoczański National Park (Poland)
Abstract
1. Introduction
2. Methods
2.1. Method for Mapping Energy Infrastructure
2.2. Method for Mapping Visual Landscape Resources—From Viewpoint to Vantage Points
2.3. Method for VLAC Calculation
2.4. Method for Energy Transition Suitability Map
3. Case Study Characteristic
4. Results
4.1. Existing Energy Infrastructure
4.2. The Results of Visual Landscape Resources Mapping
4.3. The Visual Landscape Absorption Capacity Results
4.3.1. VLAC for Single VP
4.3.2. Cumulative VLAC Results
4.4. Resulted Suitability Map
5. Conclusions and Discussion
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Manowska, A.; Bluszcz, A.; Chomiak-Orsa, I.; Wowra, R. Towards Energy Transformation: A Case Study of EU Countries. Energies 2024, 17, 1778. [Google Scholar] [CrossRef]
- Ruppert-Winkel, C.; Hauber, J. Changing the Energy System towards Renewable Energy Self-Sufficiency—Towards a multi-perspective and Interdisciplinary Framework. Sustainability 2014, 6, 2822–2831. [Google Scholar] [CrossRef]
- Kozar, Ł.J.; Sulich, A. Energy Sector’s Green Transformation towards Sustainable Development: A Review and Future Directions. Sustainability 2023, 15, 11628. [Google Scholar] [CrossRef]
- Directive (EU) 2023/1791 of the European Parliament and of the Council of 13 September 2023 on energy efficiency and amending Regulation (EU) 2023/955. Available online: http://data.europa.eu/eli/dir/2023/1791/oj (accessed on 1 June 2025).
- Kardaś, S. Od Węgla Do Konsensusu: Wyzwania i Perspektywy Transformacji Energetycznej Polsk (From Coal to Consensus: Challenges and Prospects of Poland’s Energy Transformation); Forumdei—Fundacja Stefana Baoego: Warsaw, Poland, 2023; pp. 1–19. [Google Scholar]
- Chmielewska-Śmietanko, D.K.; Miśkiewicz, A.; Smoliński, T.; Zakrzewska-Kołtuniewicz, G.; Chmielewski, A.G. Selected Legal and Safety Aspects of the “Coal-To-Nuclear” Strategy in Poland. Energies 2024, 17, 1128. [Google Scholar] [CrossRef]
- Ciepielewska, M. Rozwój odnawialnych źródeł energii w Polsce w świetle unijnego pakietu klimatyczno-energetycznego oraz ustawy o odnawialnych źródłach energii (The development of renewable energy sources in Poland in the light of the EU climate and energy package and the Act on Renewable Energy Sources). Gospod. W Prakt. I Teor. 2017, 43, 7–18. [Google Scholar] [CrossRef]
- Supreme Audit Office Development of the Renewable Energy Sources Sector. Information on Audit Results. 2017, 93 (No. P/17/020/LLU). Available online: https://www.nik.gov.pl/kontrole/wyniki-kontroli-nik/pobierz,kgp~p_17_020_201709181219251505737165~01,typ,kk.pdf (accessed on 1 June 2025).
- Dolge, K.; Blumberga, D. Transitioning to Clean Energy: A Comprehensive Analysis of Renewable Electricity Generation in the EU-27. Energies 2023, 16, 6415. [Google Scholar] [CrossRef]
- Hou, K.; Waqas, M. Assess the Economic and Environmental Impacts of the Energy Transition in Selected Asian Economies. Energies 2024, 17, 5103. [Google Scholar] [CrossRef]
- Wang, Q.; Dong, Z.; Li, R.; Wang, L. Renewable Energy and Economic Growth: New Insight from Country Risks. Energy 2022, 238, 122018. [Google Scholar] [CrossRef]
- Zhang, K.Q.; Chen, H.H.; Tang, L.Z.; Qiao, S. Green Finance, Innovation and the Energy-Environment-Climate Nexus. Front. Environ. Sci. 2022, 10, 879681. [Google Scholar] [CrossRef]
- Tiwari, S.; Sharif, A. A Step toward Sustainable Development: Role of Energy Transition, Eco-Innovation and Environmental Policy Stringency. Gondwana Res. 2025, in press. [Google Scholar] [CrossRef]
- Martínez-Medina, R.; Gil-Meseguer, E.; Gómez-Espín, J.M. Changes in Land Use Due to the Development of Photovoltaic Solar Energy in the Region of Murcia (Spain). Land 2025, 14, 1083. [Google Scholar] [CrossRef]
- Diffendorfer, J.E.; Sergi, B.; Lopez, A.; Williams, T.; Gleason, M.; Ancona, Z.; Cole, W. The Interplay of Future Solar Energy, Land Cover Change, and Their Projected Impacts on Natural Lands and Croplands in the US. Sci. Total Environ. 2024, 947, 173872. [Google Scholar] [CrossRef]
- Levin, A.H.; Markus, C.; McKenzie, P.F.; Meek, J.B.; Hernandez, R.R. Solar Energy-driven Land-cover Change Could Alter Landscapes Critical to Animal Movement in the Continental United States. Environ. Sci. Technol. 2023, 57, 11499–11509. [Google Scholar] [CrossRef]
- Golawski, A.; Mitrus, C.; Jankowiak, Ł. Increased Bird Diversity around Small-Scale Solar Energy Plants in Agricultural Landscape. Agric. Ecosyst. Environ. 2025, 379, 109361. [Google Scholar] [CrossRef]
- Tveit, M.; Ode, A.; Fry, G. Key visual concepts in a framework for analyzing visual landscape character. Landsc. Res. 2006, 31, 229–255. [Google Scholar] [CrossRef]
- Samołyk, D. Naturalny potencjał województwa lubelskiego do wytwarzania energii ze źródeł odnawialnych (The potential of the Lublin Voivodeship to generate energy from renewable sources). Ecol. Eng. 2019, 20, 8–14. [Google Scholar] [CrossRef]
- Mazanek, Ł. Plan Adaptacji Do Zmian Klimatu Dla Miasta Goraj (Climate Change Adaptation Plan for the City of Goraj). Gmina Goraj. 2024. Available online: https://uggoraj.bip.lubelskie.pl/upload/pliki/goraj_plan_adaptacji.pdf (accessed on 1 June 2025).
- Grabowski, T.; Harasimuik, M.; Kaszewsmki, B.; Kravchnuk, Y.; Lorens, B.; Michalczyk, Z.; Shabily, O. Roztocze—Przyroda i Człowiek (Roztocze—Nature and Man); Roztoczański Park Narodowy: Zwierzyniec, Poland, 2015; pp. 1–527. [Google Scholar]
- ISAP. Dz.U. z 2023 poz.1506. Act of 7 July 2023 Amending the Act on the Preparation and Implementation of Strategic Investments in Transmission Networks and Certain Other Acts; SEJM: Warsaw, Poland, 2023. Available online: https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20230001506 (accessed on 1 June 2025).
- Iwata, K.; Kyoi, S.; Ushifusa, Y. Public attitudes of offshore wind energy in Japan: An empirical study using choice experiments. Clean. Energy Syst. 2023, 4, 100052. [Google Scholar] [CrossRef]
- Brennan, N.; van Rensburg, T.M. Does intermittency management improve public acceptance of wind energy? A discrete choice experiment in Ireland. Energy Res. Soc. Sci. 2023, 95, 102917. [Google Scholar]
- Duarte, R.; García-Riazuelo, Á.; Sáez, L.A.; Sarasa, C. Analysing citizens’ perceptions of renewable energies in rural areas: A case study on wind farms in Spain. Energy Rep. 2022, 8, 12822–12831. [Google Scholar] [CrossRef]
- Buchmayr, A.; Verhofstadt, E.; Van Ootegem, L.; Thomassen, G.; Taelman, S.E.; Dewulf, J. Exploring the global and local social sustainability of wind energy technologies: An application of a social impact assessment framework. Appl. Energy 2022, 312, 118808. [Google Scholar] [CrossRef]
- Windemer, R. Acceptance should not be assumed. How the dynamics of social acceptance changes over time, impacting onshore wind repowering. Energy Policy 2023, 173, 113363. [Google Scholar] [CrossRef]
- Knauf, J. Can’t buy me acceptance? Financial benefits for wind energy projects in Germany. Energy Policy 2022, 165, 112924. [Google Scholar] [CrossRef]
- Tsantopoulos, G.; Arabatzis, G.; Tampakis, S. Public attitudes towards photovoltaic developments: Case study from Greece. Energy Policy 2014, 71, 94–106. [Google Scholar] [CrossRef]
- Patel, S.; Parkins, J.R. Assessing motivations and barriers to renewable energy development: Insights from a survey of municipal decision-makers in Alberta, Canada. Energy Rep. 2023, 9, 5788–5798. [Google Scholar] [CrossRef]
- Smith, H.; Henwood, K.; Pidgeon, N. The Infrastructural Ecologies of Industrial Decarbonisation: Visual Methods and Psychosocial Logics in Place-Based Public Engagement. Energy Res. Soc. Sci. 2025, 120, 103874. [Google Scholar] [CrossRef]
- Jiang, F.; Wang, C.; Shi, Y.; Zhang, X. Exploration of Research Hotspots and Trends in Photovoltaic Landscape Studies Based on Citespace Analysis. Sustainability 2024, 16, 11247. [Google Scholar] [CrossRef]
- Scognamiglio, A. “Photovoltaic Landscapes”: Design and Assessment. A Critical Review for a New Transdisciplinary Design Vision. Renew. Sustain. Energy Rev. 2016, 55, 629–661. [Google Scholar] [CrossRef]
- Oudes, D.; van den Brink, A.; Stremke, S. Towards a Typology of Solar Energy Landscapes: Mixed-Production, Nature Based and Landscape Inclusive Solar Power Transitions. Energy Res. Soc. Sci. 2022, 91, 102742. [Google Scholar] [CrossRef]
- ISAP. Rozporządzenie Rady Ministrów z dnia 11 Stycznia 2019 r. w Sprawie Sporządzania Audytów Krajobrazowych, Dz.U. 2019 poz. 394.; SEJM: Warsaw, Poland. Available online: https://isap.sejm.gov.pl/isap.nsf/download.xsp/WDU20190000394/O/D20190394.pdf (accessed on 1 June 2025).
- Chmielewski, T.J.; Myga-Piątek, U.; Solon, J. Typologia Aktualnych Krajobrazów Polski. Prz. Geogr. 2015, 87, 377–408. [Google Scholar] [CrossRef]
- Zhou, W.; Cenci, J.; Zhang, J. Systematic Bibliometric Analysis of the Cultural Landscape. J. Asian Archit. Build. Eng. 2024, 23, 1142–1164. [Google Scholar] [CrossRef]
- Tuan, Y.-F. Thought and Landscape. The Interpretation of Ordinary Landscapes; Oxford University Press: New York, NY, USA; Oxford, UK, 1979; pp. 1–233. [Google Scholar]
- Berr, K. Multisensuality Versus Visual Primacy of Landscape Perception. In Multisensory Landscapes: Theories, Research Fields, Methods—An Introduction; Koegst, L., Kühne, O., Edler, D., Eds.; Springer Fachmedien: Wiesbaden, Germany, 2023; pp. 49–71. [Google Scholar]
- Biasotto, L.D.; Becker, F.G.; Nóbrega, R.A.A.; Kindel, A. Routing Power Lines: Towards an Environmental and Engineering Friendly Framework for Avoiding Impacts and Conflicts in the Planning Phase. Environ. Impact Assess. Rev. 2022, 95, 106797. [Google Scholar] [CrossRef]
- Hosseini, S.E. An Outlook on the Global Development of Renewable and Sustainable Energy at the Time of COVID-19. Energy Res. Soc. Sci. 2020, 68, 101633. [Google Scholar] [CrossRef] [PubMed]
- Goodchild, M.F. GIScience and Systems. Elsevier: Amsterdam, The Netherlands, 2009; pp. 526–538. [Google Scholar] [CrossRef]
- Felleman, J.P. Landscape Visibility Mapping: Theory and Practice School of Landscape Architecture; State University of New York, College of Environmental Forestry: Syracuse, NY, USA, 1979. [Google Scholar]
- Minelli, A.; Marchesini, I.; Taylor, F.E.; De Rosa, P.; Casagrande, L.; Cenci, M. An Open Source GIS Tool to Quantify the Visual Impact of Wind Turbines and Photovoltaic Panels. Environ. Impact Assess. Rev. 2014, 49, 70–78. [Google Scholar] [CrossRef]
- Smardon, R.C.; Palmer, J.E.; Felleman, J.P. Foundations for Visual Project Analysis; Wiley: New York, NY, USA, 1987. [Google Scholar]
- Jacobs, P. The landscape image: Current approaches to the visual analysis of the landscape. Town Plan. Rev. 1975, 46, 1–126. [Google Scholar] [CrossRef]
- Tlusty, W. The Use of View and Perspective Plot to Assist in Determining the Landscape’s Visual Absorption Capability. In Proceedings of the Our National Landscape, A Conference on Applied Techniques for Analysis and Management of the Visual Resource; Incline Village, NV, USA, 23–25 April 1979, Forest Service, U.S. Department of Agriculture: Washington, DC, USA; pp. 201–208. Available online: https://research.fs.usda.gov/treesearch/27580 (accessed on 1 June 2025).
- National Grid. Landscape and Visual Impact Metodology. 2013. Available online: https://www.nationalgrid.com/document/284136/download (accessed on 1 June 2025).
- Da Cruz, P. Lydenburg—Merensky 132kV Power lines Project Visual Impact Assessment Study; Eskom Holdings SOC Ltd.: Sandton, South Africa, 2014; Available online: http://www.rhdhv.co.za/media/Lydenburg-Merensky/Visual%20Report.pdf (accessed on 1 June 2025).
- Transmission Guideline. Technical Supplement for Landscape Character and Visual Impact Assessment; State of New South Wales through Department of Planning, Housing and Infrastructure: Parramatta, Australia, 2024. Available online: https://www.planning.nsw.gov.au/sites/default/files/2024-11/transmission-guideline-visual-technical-supplement.pdf (accessed on 1 June 2025).
- Chamberlain, B.; Smardon, R. Overview for Exploring the Multisensory Landscape. Land 2024, 13, 1445. [Google Scholar] [CrossRef]
- Cooper, N.; Brady, E.; Steen, H.; Bryce, R. Aesthetic and Spiritual Values of Ecosystems: Recognising the Ontological and Axiological Plurality of Cultural Ecosystem ‘Services’. Ecosyst. Serv. 2016, 21, 218–229. [Google Scholar] [CrossRef]
- Do, Y. Valuating Aesthetic Benefits of Cultural Ecosystem Services Using Conservation Culturomics. Ecosyst. Serv. 2019, 36, 100894. [Google Scholar] [CrossRef]
- Kyushik, O. Visual threshold carrying capacity (VTCC) in urban landscape management: A case study of Seoul, Korea. Landsc. Urban Plan. 1998, 39, 283–294. [Google Scholar] [CrossRef]
- Amir, S.; Gidalizon, E. Expert based Method for the Evaluation of Visual Absorption Capacity of the Landscape. J. Environ. Manag. 1990, 30, 251–263. [Google Scholar] [CrossRef]
- Ozimek, P.; Ozimek, A. Badania chłonności krjaobrazowej przy użyciu przestrzennego modelu cyfrowego (Research on landscape capacity using a spatial digital model). Nauka Przyr. Technol. 2009, 3, 1–12. [Google Scholar]
- Dorsey, S.S.; Catlin, D.H.; Ritter, S.J.; Wails, C.N.; Robinson, S.G.; Oliver, K.W.; Bellman, H.A.; Karpanty, S.M.; Fraser, J.D. The Importance of Viewshed in Nest Site Selection of a Ground-Nesting Shorebird. PLoS ONE 2025, 20, e0319021. [Google Scholar] [CrossRef]
- Fisher, P.F. An Exploration of Probable Viewsheds in Landscape Planning. Environ. Plan. B Plan. Des. 1995, 22, 527–546. [Google Scholar] [CrossRef]
- Wang, Z.; Xiong, L.; Guo, Z.; Zhang, W.; Tang, G. A view-tree method to compute viewsheds from digital elevation models. Int. J. Geogr. Inf. Sci. 2022, 37, 68–87. [Google Scholar] [CrossRef]
- Danese, M.; Nolè, G.; Murgante, B. Identifying Viewshed: New Approaches to Visual Impact Assessment. Stud. Comput. Intell. 2011, 348, 73–89. [Google Scholar] [CrossRef]
- Wrózyński, R.; Sojka, M.; Pyszny, K. The Application of GIS and 3D Graphic Software to Visual Impact Assessment of Wind Turbines. Renew. Energy 2016, 96, 625–635. [Google Scholar] [CrossRef]
- Impram, S.; Varbak Nese, S.; Oral, B. Challenges of Renewable Energy Penetration on Power System Flexibility: A Survey. Energy Strateg. Rev. 2020, 31, 100539. [Google Scholar] [CrossRef]
- Salman, U.T.; Shafiq, S.; Al-Ismail, F.S.; Khalid, M. A Review of Improvements in Power System Flexibility: Implementation, Operation and Economics. Electronics 2022, 11, 581. [Google Scholar] [CrossRef]
- Coban, H.H.; Lewicki, W. Flexibility in Power Systems of Integrating Variable Renewable Energy Sources. J. Adv. Res. Nat. Appl. Sci. 2023, 9, 190–204. [Google Scholar] [CrossRef]
- Knez, K.; Herman, L.; Ilkovski, M.; Blažič, B. Long-Term Planning of Low-Voltage Networks Using Reference Network Models: Slovenian Use Case. Int. J. Electr. Power Energy Syst. 2025, 168. [Google Scholar] [CrossRef]
- Monteiro, C.; Ramírez-Rosado, I.J.; Miranda, V.; Zorzano-Santamaría, P.J.; García-Garrido, E.; Fernández-Jiménez, L.A. GIS Spatial Analysis Applied to Electric Line Routing Optimization. IEEE Trans. Power Deliv. 2005, 20, 934–942. [Google Scholar] [CrossRef]
- Vallés-Planells, M.; Galiana, F.; Van Eetvelde, V. A Classification of Landscape Services to Support Local Landscape Planning. Ecol. Soc. 2014, 19, 44. [Google Scholar] [CrossRef]
- Plieninger, T.; van der Horst, D.; Schleyer, C.; Bieling, C. Sustaining Ecosystem Services in Cultural Landscapes. Ecol. Soc. 2014, 19, 59. [Google Scholar] [CrossRef]
- American Society of Photogrammetry and Remote Sensing. [Lidar] LAS Specification, version 1.2; American Society of Photogrammetry and Remote Sensing: Bethesda, MD, USA, 2008.
- Song, J.; Qian, J.; Li, Y.; Liu, Z.; Chen, Y.; Chen, J. Automatic Extraction of Power Lines from Aerial Images of Unmanned Aerial Vehicles. Sensors 2022, 22, 6431. [Google Scholar] [CrossRef]
- PN-EN 50341-1:2013-03; Overhead Power Lines Above 1 kV AC. Polish Committee for Standardization: Warsaw, Poland, 2013.
- Tittenbrun, A. Plan Ochrony Roztoczańskiego Parku Narodowego (Roztocze National Park Protection Act); Roztoczański Park Narodowy: Zwierzyniec, Poland, 2019; pp. 1–238. ISBN 978-83-948249-8-3. [Google Scholar]
- Chmielewski, S.; Grabowski, T. Wskaźnik Ekspozycji Widokowej Jako Narzędzie Optymalizacji Punktów Widokowych–Studium Przypadku Szczebrzeszyńskiego Parku Krajobrazowego (Visual Exposure Index as landscape vantage points location decision support tool: The Szczebrzeszyński Landscape Park case study). Rozw. Reg. I Polityka Reg. 2023, 63, 191–206. [Google Scholar] [CrossRef]
- Wheatley, D. Cumulative Viewshed Analysis: A GIS-Based Method for Investigating Intervisibility, and Its Archaeological Application. In Archaeology and Geographical Information Systems: A European Perspective; Lock, G., Stancic, Z., Eds.; Taylor and Francis: London, UK, 1995. [Google Scholar]
- Świeca, A.; Krukowska, R.; Tucki, A.; Grabowski, T. Tourism in Roztocze National Park: Development and Key Issues. Ekon. Probl. Tur. 2016, 35, 123–134. [Google Scholar] [CrossRef]
- Solon, J.; Borzyszkowski, J.; Bidłasik, M.; Richling, A.; Badora, K.; Balon, J.; Brzezińska-Wójcik, T.; Brzezińska-Wójcik, Ł.; Dobrowolski, R.; Grzegorczyk, I.; et al. Physico-geographical mesoregions of Poland: Verification and adjustment of boundaries on the basis of contemporary spatial data. Geogr. Pol. 2018, 91, 143–170. [Google Scholar] [CrossRef]
- Borchard, T.; Haubrich, H. Evaluating the benefit of voltage comprehensive planning of high and medium voltage networks. In Proceedings of the International Conference on Electric Utility Deregulation and Restructuring and Power Technologies, Nanjing, China, 6–9 May 2008; pp. 823–828. [Google Scholar] [CrossRef]
- Koopmann, S.; Potratz, F.; Cramer, M.; Goergens, P. Automated smart grid planning considering flexibility options and voltage regulating assets. CIRED 2017, 1, 2122–2126. [Google Scholar] [CrossRef]
- Miller, M.; Rudion, K.; Nägele, H.; Schnaars, J. A grid reinforcement approach for an optimized planning of high-voltage distribution grids under consideration of line loading indicators. Iet Renew. Power Gener. 2022, 16, 1841–1852. [Google Scholar] [CrossRef]
- Grassi, S.; Friedli, R.; Grangier, M.; Raubal, M. A GIS-Based Process for Calculating Visibility Impact from Buildings During Transmission Line Routing. In Connecting a Digital Europe Through Location and Place; Huerta, J., Schade, S., Granell, C., Eds.; Springer: Cham, Switzerland, 2014; pp. 383–402. [Google Scholar]
- Vrînceanu, A.; Dumitrașcu, M.; Kucsicsa, G. Site Suitability for Photovoltaic Farms and Current Investment in Romania. Renew. Energy 2022, 187, 320–330. [Google Scholar] [CrossRef]
- Li, C.; Xu, C.; Li, X. A Multi-Criteria Decision-Making Framework for Site Selection of Distributed PV Power Stations along High-Speed Railway. J. Clean. Prod. 2020, 277, 124086. [Google Scholar] [CrossRef]
- Pluntke, H.; Weisenstein, M.; Wellssow, W.H. Evaluation of transmission network reinforcements in an automated network planning process. In Proceedings of the IEEE International Conference on Probabilistic Methods Applied to Power Systems, Beijing, China, 16–20 October 2016; pp. 1–7. [Google Scholar] [CrossRef]
- Liu, Z.; Zhao, L.; Feng, H.; Yu, L. The Modeling of Uncertainty in Planning of Smart Transmission Grid based on Artificial Intelligence. In Proceedings of the International Conference on Applied Intelligence and Sustainable Computing (ICAISC) 2023, Dharwad, India, 16–17 June 2023. [Google Scholar] [CrossRef]
- de Luis-Ruiz, J.M.; Salas-Menocal, B.R.; Pereda-García, R.; Pérez-Álvarez, R.; Sedano-Cibrián, J.; Ruiz-Fernández, C. Optimal Location of Solar Photovoltaic Plants Using Geographic Information Systems and Multi-Criteria Analysis. Sustainability 2024, 16, 2895. [Google Scholar] [CrossRef]
- Cañete, J.M.; Benitez, I.B.; Bauzon, M.D.A.I.; Sotto, M.E.; Ibañez, J.A.; Principe, J.A. Development of a Webgis for Solar Pv Resource and Installation Assessment Using Geospatial Technologies. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. ISPRS Arch. 2024, 48, 107–112. [Google Scholar] [CrossRef]
- Shugart, H.H. Secondary Succession; Wiley Online Library: Hoboken, NJ, USA, 2012. [Google Scholar] [CrossRef]
- Sobala, M.; Myga-Piątek, U.; Szypuła, B. Assessment of Changes in a Viewshed in the Western Carpathians Landscape as a Result of Reforestation. Land 2020, 9, 430. [Google Scholar] [CrossRef]
- Wróżyński, R.; Pyszny, K.; Wróżyńska, M. Reaching beyond GIS for comprehensive 3D visibility analysis. Landsc. Urban Plan. 2024, 274, 105074. [Google Scholar] [CrossRef]
- Klouček, T.; Lagner, O.; Šímová, P. How does data accuracy influence the reliability of digital viewshed models? A case study with wind turbines. Appl. Geogr. 2015, 64, 46–54. [Google Scholar] [CrossRef]
- Hagstrom, S.; Messinger, D.; Salvaggio, K. Estimating Sampling Completeness of Lidar Datasets Using Voxel-Based Geometry. In Laser Radar Technology and Applications and Atmospheric Propagation; Proc. SPIE 9080-25; SPIE Digital Library: Baltimore, MD, USA, 2014. [Google Scholar]
- Chmielewski, S.; Tompalski, P. Estimating Outdoor Advertising Media Visibility with Voxel-Based Approach. Appl. Geogr. 2017, 87, 1–13. [Google Scholar] [CrossRef]
- Bishop, I.A. Analysis and visualization of temporal variation in visual impacts. Landsc. Urban Plan. 2021, 210, 104068. [Google Scholar] [CrossRef]
- Balestra, M.; Tonelli, E.; Vitali, A.; Urbinati, C.; Frontoni, E.; Pierdicca, R. Geomatic Data Fusion for 3D Tree Modeling: The Case Study of Monumental Chestnut Trees. Remote Sens. 2023, 15, 2197. [Google Scholar] [CrossRef]
- Sačkov, I. Forest Inventory Based on Canopy Height Model Derived from Airborne Laser Scanning Data. Cent. Eur. For. J. 2022, 68, 224–231. [Google Scholar] [CrossRef]
- Sahraoui, Y.; Clauzel, C.; Foltête, J.C. Spatial Modelling of Landscape Aesthetic Potential in Urban-Rural Fringes. J. Environ. Manag. 2016, 181, 623–636. [Google Scholar] [CrossRef] [PubMed]
VP Number | Native Viewpoint Name (In Polish) | X Coordinate | Y Coordinate | Z Coordinate | VEI (%) |
---|---|---|---|---|---|
1 | Bukowa Góra | 779293.478176 | 309997.356125 | 301.55 | 0.61 |
2 | Biała Góra | 782840.2345 | 310004.056808 | 272.58 | 0.61 |
3 | Pola Obroczy | 784863.636854 | 311124.616341 | 275.85 | 0.69 |
4 | Poręby | 784939.447481 | 310218.698949 | 334.43 | 1.67 |
5 | Góra Niedźwiedź | 788235.174472 | 313890.876288 | 297.49 | 0.17 |
6 | Góra Księża Choina | 789003.46428 | 314153.201962 | 299.33 | 0.18 |
7 | Góra Wieprzec | 790177.477029 | 316257.992831 | 272.13 | 0.18 |
8 | Guciów | 787509.394271 | 309803.045279 | 296.49 | 0.10 |
9 | Wysoka Góra | 781639.392638 | 304961.217414 | 320.75 | 0.65 |
10 | Florianka | 782361.061501 | 306230.674007 | 272.99 | 0.00 |
11 | Piaseczna Góra | 779620.171333 | 311377.684349 | 281.15 | 0.50 |
12 | Wzgórze Polak | 775357.35804 | 311030.712304 | 310.21 | 0.42 |
13 | Góra Młynarka | 787898.281443 | 302016.298036 | 331.74 | 1.86 |
14 | Tartaczna Góra | 782030.118185 | 313174.605841 | 285.4 | 0.30 |
15 | Punkt nad Tereszpolem | 776723.15593 | 308210.601726 | 322.12 | 1.07 |
16 | Senderki | 787635.559025 | 305356.964034 | 342.73 | 1.61 |
17 | Felkowa Góra | 777761.567214 | 316147.371747 | 298.25 | 0.47 |
18 | Żurawnica | 780691.740048 | 316239.574832 | 291.13 | 3.13 |
19 | Kąty | 791021.935447 | 320026.271369 | 285.86 | 2.06 |
20 | Wzgórze Adamów | 792572.863489 | 312113.875269 | 340.55 | 0.32 |
PV-Farm Suitability Map | HV-Line Suitability Map | ||||||
---|---|---|---|---|---|---|---|
Zone name | AGL | Zone area (ha) | PVs | Zone name | AGL | Zone area (ha) | Length (km) |
Visual impact risk | <3 m | 1628.08 | 6 | Visual impact risk | <16 m | 7870.96 | 22.38 |
Conditional | 3–4 m | 627.39 | 1 | Conditional | 16–17 m | 452.55 | 0.95 |
Allowed | >4 m | 12,433.31 | 8 | Allowed | >17 m | 6365.27 | 22.04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chmielewski, S. Integrating Energy Transition into Protected Landscapes: Geoinformatic Solution for Low Visual Impact of Energy Infrastructure Development—A Case Study from Roztoczański National Park (Poland). Energies 2025, 18, 4414. https://doi.org/10.3390/en18164414
Chmielewski S. Integrating Energy Transition into Protected Landscapes: Geoinformatic Solution for Low Visual Impact of Energy Infrastructure Development—A Case Study from Roztoczański National Park (Poland). Energies. 2025; 18(16):4414. https://doi.org/10.3390/en18164414
Chicago/Turabian StyleChmielewski, Szymon. 2025. "Integrating Energy Transition into Protected Landscapes: Geoinformatic Solution for Low Visual Impact of Energy Infrastructure Development—A Case Study from Roztoczański National Park (Poland)" Energies 18, no. 16: 4414. https://doi.org/10.3390/en18164414
APA StyleChmielewski, S. (2025). Integrating Energy Transition into Protected Landscapes: Geoinformatic Solution for Low Visual Impact of Energy Infrastructure Development—A Case Study from Roztoczański National Park (Poland). Energies, 18(16), 4414. https://doi.org/10.3390/en18164414