Feature Importance Analysis of Solar Gasification of Biomass via Machine Learning Models
Abstract
1. Introduction
2. Methodology
2.1. Description of the Model
2.2. Energy Balance
2.3. Gasification Analysis
2.4. Gasification Model Validation
2.5. Machine Learning Algorithms
3. Results and Discussion
3.1. Simulation Results
3.2. Comparison of the Machine Learning Algorithms
3.3. Feature Importance Analysis
3.4. Effect of the Elemental Ratios in the Syngas Composition
4. Summary and Conclusions
- From the three tested ML algorithms, Random Forest provided the best accuracy (average R2 = 0.942, Mean Absolute Error = 0.086, and Root Mean Square Error = 0.951).
- Regarding the ultimate composition of the biomass, the element that had the most significant effect in the syngas composition was hydrogen, while byproducts such as tar and solid char were mostly impacted by the carbon percentage.
- Biomasses with low C/O and C/H ratios are the most suitable for gasification, since increasing their ratios increases tar production while also decreasing H2 production.
- The produced syngas lower heating value decreases with the hydrogen percentage and increases with carbon and oxygen. The gas yield increases with carbon and hydrogen.
- The gasification efficiency was measured by using the Cold Gas and Carbon Conversion Efficiencies (CGE and CCE). It was found that the amount of radiation (and hence temperature) had a significant impact in both efficiencies, since at higher DNIs, a higher CGE and CCE were found. On the other hand, increasing the steam-to-biomass ratio increased the CCE but decreased the CGE (due to the dilution of syngas with steam).
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
abbreviations | |
ANN | Artificial Neural Network |
CCE | Carbon Conversion Efficiency |
CGE | Cold Gas Efficiency |
HTF | Heat Transfer Fluid |
LHV | Lower Heating Value |
MAE | Mean Absolute Error |
ML | Machine Learning |
RF | Random Forest |
RMSE | Root Mean Square Error |
SBR | Steam-to-Biomass ratio |
SG | Solar Gasification |
SVM | Support Vector Machine |
WGS | Water–gas shift |
Greek letters | |
α | Normalized value from biomass ultimate analysis |
β | Normalized value from biomass ultimate analysis |
γ | Normalized value from biomass ultimate analysis |
δ | Normalized steam mass |
ε | Emissivity |
ηreceiver | Solar receiver efficiency |
σ | Steffan–Boltzmann constant |
ρsyngas | Syngas density |
symbols | |
Areceiver | Solar receiver area |
Cp | Specific heat at constant pressure |
CR | Concentration Ratio |
DNI | Direct Normal Irradiance |
ΔH0Biomass | Enthalpy of formation of biomass |
Δhi0 | Enthalpy of formation of species i |
ΔHrxn | Enthalpy of reaction |
Qrad | Energy collected by the receiver and transferred to gasifier |
SBR | Steam-to-Biomass Ratio |
T0 | Ambient temperature |
Tgas | Gasification temperature |
THTF | Heat transfer fluid temperature |
wi | Mass fraction of species i from ultimate analysis |
xi | Mass fraction of species i |
Yi | Mole fraction of species i |
References
- Buentello-Montoya, D.A.; Sepúlveda-Montufar, L.; Pulido-Moreno, D.O. Valorization of waste biomass via an integrated gasification system for the co-production of dimethyl ether and urea. Energy 2025, 319, 134891. [Google Scholar] [CrossRef]
- Rabeti, S.A.M.; Manesh, M.H.K.; Amidpour, M. Techno-economic and environmental assessment of a novel polygeneration system based on integration of biomass air-steam gasification and solar parabolic trough collector. Sustain. Energy Technol. Assess. 2023, 56, 103030. [Google Scholar] [CrossRef]
- Freda, C.; Tarquini, P.; Sharma, V.K.; Braccio, G. Thermodynamic improvement of solar driven gasification compared to conventional one. Energy 2022, 261, 124953. [Google Scholar] [CrossRef]
- Ling, J.L.J.; Go, E.S.; Park, Y.K.; Lee, S.H. Recent advances of hybrid solar—Biomass thermo-chemical conversion systems. Chemosphere 2022, 290, 133245. [Google Scholar] [CrossRef]
- Fang, Y.; Paul, M.C.; Varjani, S.; Li, X.; Park, Y.-K.; You, S. Concentrated solar thermochemical gasification of biomass: Principles, applications, and development. Renew. Sustain. Energy Rev. 2021, 150, 111484. [Google Scholar] [CrossRef]
- Ouedraogo, H.; Sadio Sidibe, S.D.; Richardson, Y. Advancing small-scale biomass gasification (10–200 kW) for energy access: Syngas purification, system modeling and the role of artificial intelligence-A review. Energy Convers. Manag. X 2025, 27, 101059. [Google Scholar] [CrossRef]
- Maytorena, V.M.; Buentello-Montoya, D.A. Worldwide developments and challenges for solar pyrolysis. Heliyon 2024, 10, e35464. [Google Scholar] [CrossRef]
- Ravaghi-Ardebili, Z.; Manenti, F.; Corbetta, M.; Pirola, C.; Ranzi, E. Biomass gasification using low-temperature solar-driven steam supply. Renew. Energy 2015, 74, 671–680. [Google Scholar] [CrossRef]
- Lichty, P.; Perkins, C.; Woodruff, B.; Bingham, C.; Weimer, A. Rapid High Temperature Solar Thermal Biomass Gasification in a Prototype Cavity Reactor. J. Sol. Energy Eng. 2010, 132, 011012. [Google Scholar] [CrossRef]
- Müller, R.; Zedtwitz, P.V.; Wokaun, A.; Steinfeld, A. Kinetic investigation on steam gasification of charcoal under direct high-flux irradiation. Chem. Eng. Sci. 2003, 58, 5111–5119. [Google Scholar] [CrossRef]
- Jeon, P.R.; Moon, J.-H.; Ogunsola, N.O.; Lee, S.H.; Ling, J.L.J.; You, S.; Park, Y.-K. Recent advances and future prospects of thermochemical biofuel conversion processes with machine learning. Chem. Eng. J. 2023, 471, 144503. [Google Scholar] [CrossRef]
- Bellan, S.; Kodama, T.; Matsubara, K.; Gokon, N.; Cho, H.S.; Inoue, K. Thermal performance of a 30 kW fluidized bed reactor for solar gasification: A CFD-DEM study. Chem. Eng. J. 2019, 360, 1287–1300. [Google Scholar] [CrossRef]
- Li, X.; Zhong, K.; Feng, L. Machine learning-based metaheuristic optimization of an integrated biomass gasification cycle for fuel and cooling production. Fuel 2023, 332, 125969. [Google Scholar] [CrossRef]
- Liu, Y.; Pan, R.; Ansart, R.; Debenest, G. Optimization and analysis of solar-driven biomass gasification using a CFD-ANN-GA framework. Energy 2025, 325, 136036. [Google Scholar] [CrossRef]
- Mutlu, A.Y.; Yucel, O. An artificial intelligence based approach to predicting syngas composition for downdraft biomass gasification. Energy 2018, 165, 895–901. [Google Scholar] [CrossRef]
- Alrbai, M.; Al-Dahidi, S.; Alahmer, H.; Shboul, B.; Rinchi, B.; Al-Ghussain, L.; Abusorra, M.; Ayadi, O.; Alahmer, A. Applications of machine learning and multi-objective optimization in agricultural waste management: A techno-economic study of hydrogen production from olive waste via combined air-steam gasification. Bioresour. Technol. 2025, 434, 132844. [Google Scholar] [CrossRef] [PubMed]
- Meena, M.; Kumar, H.; Chaturvedi, N.D.; Kovalev, A.A.; Bolshev, V.; Kovalev, D.A.; Sarangi, P.K.; Chawade, A.; Rajput, M.S.; Vivekanand, V.; et al. Biomass Gasification and Applied Intelligent Retrieval in Modeling. Energies 2023, 16, 6524. [Google Scholar] [CrossRef]
- Fang, Y.; Li, X.; Wang, X.; Dai, L.; Ruan, R.; You, S. Machine learning-based multi-objective optimization of concentrated solar thermal gasification of biomass incorporating life cycle assessment and techno-economic analysis. Energy Convers. Manag. 2024, 302, 118137. [Google Scholar] [CrossRef]
- Ascher, S. Environmental and Techno-Economic Analysis of Biomass and Waste Gasification Facilitated by Machine Learning. Ph.D. Thesis, University of Glasgow, Glasgow, UK, 2024. [Google Scholar]
- Mahdavi, N.; Dutta, A.; Tasnim, S.H.; Mahmud, S. Review of machine learning techniques for energy sharing and biomass waste gasification pathways in integrating solar greenhouses into smart energy systems. Energy AI 2025, 20, 100498. [Google Scholar] [CrossRef]
- Tasneem, S.; Ageeli, A.A.; Alamier, W.M.; Hasan, N.; Goodarzi, M. Development of machine learning-based models for describing processes in a continuous solar-driven biomass gasifier. Int. J. Hydrogen Energy 2024, 52, 718–738. [Google Scholar] [CrossRef]
- Tahir, F.; Arshad, M.Y.; Saeed, M.A.; Ali, U. Integrated process for simulation of gasification and chemical looping hydrogen production using Artificial Neural Network and machine learning validation. Energy Convers. Manag. 2023, 296, 117702. [Google Scholar] [CrossRef]
- Ascher, S.; Wang, X.; Watson, I.; Sloan, W.; You, S. Interpretable machine learning to model biomass and waste gasification. Bioresour. Technol. 2022, 364, 128062. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. XGBoost: A scalable tree boosting system. In Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; Association for Computing Machinery: New York, NY, USA, 2016; pp. 785–794. [Google Scholar] [CrossRef]
- Laghari, A.A.; Jamro, I.A.; Kumar, A.; Chen, G.; Sajnani, S.; Guo, Z.; Shen, Y.; Zhang, J.; Khoso, S.; Guo, Q.; et al. Catalytic gasification of municipal solid waste using eggshell-derived CaO catalyst: An investigation of optimum H2 production, production distribution, and tar compounds. Next Sustain. 2024, 4, 100038. [Google Scholar] [CrossRef]
- Puig-Arnavat, M.; Bruno, J.C.; Coronas, A. Review and analysis of biomass gasification models. Renew. Sustain. Energy Rev. 2010, 14, 2841–2851. [Google Scholar] [CrossRef]
- Liu, Y.; Pan, R.; Ansart, R.; Debenest, G. Numerical simulation of solar-driven biomass gasification by using ceramic foam. Process Saf. Environ. Prot. 2024, 184, 300–313. [Google Scholar] [CrossRef]
- Jess, A. Mechanisms and Kinetics of Thermal Reactions of Aromatics From Pyrolysis of Solid Fuels. Fuel 1996, 75, 1441–1448. [Google Scholar] [CrossRef]
- Frenklach, M. Reaction mechanism of soot formation in flames. Phys. Chem. Chem. Phys. 2002, 4, 2028–2037. [Google Scholar] [CrossRef]
- Sajjadnejad, M.; Haghshenas, S.M.S.; Targhi, V.T.; Zahmatkesh, H.G.; Naeimi, M. Utilization of Sustainable Energies for Purification of Water. Adv. J. Chem. Sect. A 2020, 3, 493–509. [Google Scholar] [CrossRef]
- Fiore, M.; Magi, V.; Viggiano, A. Internal combustion engines powered by syngas: A review. Appl. Energy 2020, 276, 115415. [Google Scholar] [CrossRef]
- Samani, N.; Khalil, R.; Seljeskog, M.; Bakken, J.; Thapa, R.K.; Eikeland, M.S. Experimental and simulation studies of oxygen-blown, steam-injected, entrained flow gasification of lignin. Fuel 2024, 362, 130713. [Google Scholar] [CrossRef]
- Li, J.; Qiao, Y.; Chen, X.; Zong, P.; Qin, S.; Wu, Y.; Wang, S.; Zhang, H.; Tian, Y. Steam gasification of land, coastal zone and marine biomass by thermal gravimetric analyzer and a free-fall tubular gasifier: Biochars reactivity and hydrogen-rich syngas production. Bioresour. Technol. 2019, 289, 121495. [Google Scholar] [CrossRef]
- Tuomi, S.; Kaisalo, N.; Simell, P.; Kurkela, E. Effect of pressure on tar decomposition activity of different bed materials in biomass gasification conditions. Fuel 2015, 158, 293–305. [Google Scholar] [CrossRef]
- Barman, N.S.; Ghosh, S.; De, S. Gasification of biomass in a fixed bed downdraft gasifier—A realistic model including tar. Bioresour. Technol. 2012, 107, 505–511. [Google Scholar] [CrossRef]
- Jayah, T.H.; Aye, L.; Fuller, R.J.; Stewart, D.F. Computer simulation of a downdraft wood gasifier for tea drying. Biomass Bioenergy 2003, 25, 459–469. [Google Scholar] [CrossRef]
- Bates, R.B.; Ghoniem, A.F.; Jablonski, W.S.; Carpenter, D.L.; Altantzis, C.; Grag, A.; Barton, J.L.; Chen, R.; Field, R.P. Steam-Air Blown Bubbling Fluidized Bed Biomass Gasification (BFBBG): Multi-Scale Models and Experimental Validation. AIChE J. 2017, 63, 1543–1565. [Google Scholar] [CrossRef]
- Choi, Y.K.; Cho, M.H.; Kim, J.S. Steam/oxygen gasification of dried sewage sludge in a two-stage gasifier: Effects of the steam to fuel ratio and ash of the activated carbon on the production of hydrogen and tar removal. Energy 2015, 91, 160–167. [Google Scholar] [CrossRef]
- Aydin, E.S.; Yucel, O.; Sadikoglu, H. Development of a semi-empirical equilibrium model for downdraft gasification systems. Energy 2017, 130, 86–98. [Google Scholar] [CrossRef]
- Miles, T.R.; Miles, T.R., Jr.; Baxter, L.L.; Bryers, R.W.; Jenkins, B.M.; Oden, L.L. Alkali Deposits Found in Biomass Power Plants: A Preliminary Investigation of Their Extent and Nature; National Renewable Energy Laboratory: Golden, CO, USA, 1995. [Google Scholar]
- Bryers, R.W. Fireside slagging, fouling, and high-temperature corrosion of heat-transfer surface due to impurities in steam-raising fuels. Prog. Energy Combust. Sci. 1996, 22, 29–120. [Google Scholar] [CrossRef]
- Scurlock, J.M.O.; Dayton, D.C.; Hames, B. Bamboo: An overlooked biomass resource? Biomass Bioenergy 2000, 19, 229–244. [Google Scholar] [CrossRef]
- Moilanen, A. Thermogravimetric Characterisations of Biomass and Waste for Gasification Processes; VTT Technical Research Centre of Finland: Espoo, Finland, 2006; Volume 607, p. 103. [Google Scholar]
- Masiá, A.A.T.; Buhre, B.J.P.; Gupta, R.P.; Wall, T.F. Characterising ash of biomass and waste. Fuel Process. Technol. 2007, 88, 1071–1081. [Google Scholar] [CrossRef]
- Theis, M.; Skrifvars, B.-J.; Hupa, M.; Tran, H. Fouling tendency of ash resulting from burning mixtures of biofuels. Part 1: Deposition rates. Fuel 2006, 85, 1125–1130. [Google Scholar] [CrossRef]
- Werther, J.; Saenger, M.; Hartge, E.-U.; Ogada, T.; Siagi, Z. Combustion of agricultural residues. Prog. Energy Combust. Sci. 2000, 26, 1–27. [Google Scholar] [CrossRef]
- Demirbas, A. Combustion characteristics of different biomass fuels. Prog. Energy Combust. Sci. 2004, 30, 219–230. [Google Scholar] [CrossRef]
- Lapuerta, M.; Hernández, J.J.; Pazo, A.; López, J. Gasification and co-gasification of biomass wastes: Effect of the biomass origin and the gasifier operating conditions. Fuel Process. Technol. 2008, 89, 828–837. [Google Scholar] [CrossRef]
- Buentello-Montoya, D.A.; Armenta-Gutiérrez, M.Á.; Maytorena-Soria, V.M. Parametric Modelling Study to Determine the Feasibility of the Co-Gasification of Macroalgae and Plastics for the Production of Hydrogen-Rich Syngas. Energies 2023, 16, 6819. [Google Scholar] [CrossRef]
- Global Solar Atlas. Available online: https://globalsolaratlas.info/detail?c=28.971803,-110.99762,11&s=29.098177,-110.954361&m=site (accessed on 15 June 2025).
- Zhang, Y.; Xu, P.; Liang, S.; Liu, B.; Shuai, Y.; Li, B. Exergy analysis of hydrogen production from steam gasification of biomass: A review. Int. J. Hydrogen Energy 2019, 44, 14290–14302. [Google Scholar] [CrossRef]
- Umeki, K.; Yamamoto, K.; Namioka, T.; Yoshikawa, K. High temperature steam-only gasification of woody biomass. Appl. Energy 2010, 87, 791–798. [Google Scholar] [CrossRef]
- Pachouly, J.; Ahirrao, S.; Kotecha, K.; Selvachandran, G.; Abraham, A. A systematic literature review on software defect prediction using artificial intelligence: Datasets, Data Validation Methods, Approaches, and Tools. Eng. Appl. Artif. Intell. 2022, 111, 104773. [Google Scholar] [CrossRef]
- Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2017, arXiv:1412.6980. [Google Scholar]
- Géron, A. Hands-on Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems; O’Reilly Media, Inc.: Sebastopol, CA, USA, 2019. [Google Scholar]
- Buentello-Montoya, D.; Zhang, X.; Li, J.; Ranade, V.; Marques, S.; Geron, M. Performance of biochar as a catalyst for tar steam reforming: Effect of the porous structure. Appl. Energy 2020, 259, 114176. [Google Scholar] [CrossRef]
- Toolbox, E. Engineering ToolBox Webpage. Available online: http://www.engineeringtoolbox.com/ (accessed on 15 June 2025).
- Levenspiel, O. Chemical Reaction Engineering. Ind. Eng. Chem. Res. 1999, 38, 4140–4143. [Google Scholar] [CrossRef]
- Abidin, S.Z.; Osazuwa, O.U.; Othman, N.H.; Setiabudi, H.D.; Sulaiman, S. Recent progress on catalyst development in biomass tar steam reforming: Toluene as a biomass tar model compound. Biomass Convers. Biorefinery 2024, 14, 15187–15222. [Google Scholar] [CrossRef]
Species | MAE | RMSE |
---|---|---|
H2 | 4.3727 | 5.4659 |
CO | 4.6463 | 5.8081 |
CO2 | 3.8763 | 4.8453 |
CH4 | 4.5168 | 5.646 |
Tar | 4.6842 | 5.8552 |
Biomass | C% | H% | O% | N% | Ref. |
---|---|---|---|---|---|
Alder-fir sawdust | 53.2 | 6.1 | 40.2 | 0.5 | [41] |
Balsam bark | 54 | 6.2 | 39.5 | 0.2 | [42] |
Beech bark | 51.4 | 6 | 41.8 | 0.7 | [42] |
Birch bark | 57 | 6.7 | 35.7 | 0.5 | [42] |
Christmas trees | 54.5 | 5.9 | 38.7 | 0.5 | [41] |
Elm bark | 50.9 | 5.8 | 42.5 | 0.7 | [42] |
Pine bark | 53.8 | 5.9 | 39.9 | 0.3 | [42] |
Eucalyptus bark | 48.7 | 5.7 | 45.3 | 0.3 | [42] |
Arundo grass | 48.7 | 6.1 | 44.5 | 0.6 | [41] |
Bamboo whole | 52 | 5.1 | 42.5 | 0.4 | [43] |
Bana grass | 50.1 | 6.0 | 42.9 | 0.9 | [41] |
Miscanthus grass | 49.2 | 6.0 | 44.2 | 0.4 | [44] |
Sweet sorghum grass | 49.7 | 6.1 | 43.7 | 0.4 | [44] |
Switchgrass | 49.7 | 6.1 | 43.4 | 0.4 | [41] |
Alfalfa straw | 49.9 | 6.3 | 40.8 | 2.8 | [41] |
Barley straw | 49.4 | 6.2 | 43.6 | 0.7 | [44] |
Corn straw | 48.7 | 6.4 | 44.1 | 0.7 | [45] |
Mint straw | 50.6 | 6.2 | 40.1 | 2.8 | [41] |
Oat straw | 48.8 | 6 | 44.6 | 0.5 | [46] |
Rice straw | 50.1 | 5.7 | 43.0 | 1.0 | [41] |
Wheat straw | 49.4 | 6.1 | 43.6 | 0.7 | [44] |
Almond hulls | 50.6 | 6.4 | 41.7 | 1.2 | [41] |
Coconut shells | 51.1 | 5.6 | 43.1 | 0.1 | [47] |
Coffee husks | 45.4 | 4.9 | 48.3 | 1.1 | [47] |
Cotton husks | 50.4 | 8.4 | 39.8 | 1.4 | [47] |
Olive husks | 50.0 | 6.2 | 42.1 | 1.6 | [48] |
Olive pits | 52.8 | 6.6 | 39.4 | 1.1 | [41] |
Grape marc | 54 | 6.1 | 37.4 | 2.4 | [49] |
Mustard husks | 45.8 | 9.2 | 44.4 | 0.4 | [47] |
Palm fibre husks | 51.5 | 6.6 | 40.1 | 1.5 | [47] |
Palm kernel | 51.0 | 6.5 | 39.5 | 2.7 | [47] |
Plum pits | 49.9 | 6.7 | 42.4 | 0.9 | [41] |
Pistachio shells | 50.9 | 6.4 | 41.8 | 0.8 | [41] |
Rice husks | 49.3 | 6.1 | 43.7 | 0.8 | [41] |
Sugar cane bagasse | 49.8 | 6.0 | 43.9 | 0.2 | [41] |
Sunflower husks | 50.4 | 5.5 | 43.0 | 1.1 | [47] |
Chicken litter | 60.5 | 6.8 | 25.3 | 6.2 | [45] |
Meat-bone meal | 57.3 | 8 | 20.8 | 12.2 | [45] |
Marine macroalgae | 43.2 | 6.2 | 45.8 | 2.2 | [50] |
Rape straw | 48.5 | 6.4 | 44.5 | 0.5 | [44] |
Details | ANN | RF | SVM | ||||||
---|---|---|---|---|---|---|---|---|---|
MAE | RMSE | R2 | MAE | RMSE | R2 | MAE | RMSE | R2 | |
H2% | 0.008 | 0.016 | 0.848 | 0.002 | 0.010 | 0.942 | 0.003 | 0.018 | 0.812 |
CO% | 0.009 | 0.012 | 0.985 | 0.002 | 0.004 | 0.998 | 0.003 | 0.249 | 0.948 |
CO2% | 0.007 | 0.011 | 0.976 | 0.001 | 0.004 | 0.997 | 0.002 | 0.023 | 0.927 |
CH4% | 0.001 | 0.001 | 0.961 | 0.001 | 3 × 10−3 | 0.995 | 0.001 | 0.002 | 0.907 |
Tar (g/Nm3) | 4.909 | 54.443 | 0.835 | 1.513 | 53.227 | 0.923 | 13.367 | 55.090 | 0.804 |
Gas yield (Nm3/kg) | 1.057 | 1.559 | 0.925 | 0.037 | 1.524 | 0.998 | 0.029 | 1.583 | 0.954 |
LHV (MJ/Nm3) | 0.243 | 1.904 | 0.984 | 0.093 | 0.810 | 0.932 | 0.943 | 4.011 | 0.531 |
CCE | 1.038 | 2.914 | 0.945 | 0.185 | 2.949 | 0.977 | 0.123 | 2.993 | 0.954 |
CGE | 0.387 | 2.190 | 0.984 | 0.368 | 1.358 | 0.995 | 0.424 | 2.717 | 0.906 |
Calculation time (dimensionless) | 0.8 | 1.0 | 0.5 | ||||||
Calculation time (seconds) | 274 | 342 | 18 |
Description | MAE Mean | MAE Standard Deviation |
---|---|---|
H2% | 0.00595 | 0.00039 |
CO% | 0.00404 | 0.00021 |
CO2% | 0.00346 | 0.0002 |
CH4% | 0.00483 | 0.00048 |
Tar (g/Nm3) | 0.00646 | 0.00053 |
Char (g/Nm3) | 0.00601 | 0.00041 |
Gas yield (Nm3/kg) | 0.00733 | 0.00026 |
Lower Heating Value (MJ/Nm3) | 0.00577 | 0.00025 |
CCE% | 0.0073 | 0.00026 |
CGE% | 0.0073 | 0.00042 |
Biomass | C/O | C/H | Ref. |
---|---|---|---|
Alder-fir sawdust | 1.323 | 8.721 | [41] |
Balsam bark | 1.367 | 8.710 | [42] |
Beech bark | 1.230 | 8.567 | [42] |
Birch bark | 1.597 | 8.507 | [42] |
Christmas trees | 1.408 | 9.237 | [41] |
Elm bark | 1.198 | 8.776 | [42] |
Pine bark | 1.348 | 9.119 | [42] |
Eucalyptus bark | 1.075 | 8.544 | [42] |
Arundo grass | 1.094 | 7.984 | [41] |
Bamboo whole | 1.224 | 10.196 | [43] |
Bana grass | 1.168 | 8.350 | [41] |
Miscanthus grass | 1.113 | 8.200 | [44] |
Sweet sorghum grass | 1.137 | 8.148 | [44] |
Switchgrass | 1.145 | 8.148 | [41] |
Alfalfa straw | 1.223 | 7.921 | [41] |
Barley straw | 1.133 | 7.968 | [44] |
Corn straw | 1.104 | 7.609 | [45] |
Mint straw | 1.262 | 8.161 | [41] |
Oat straw | 1.094 | 8.133 | [46] |
Rice straw | 1.165 | 8.789 | [41] |
Wheat straw | 1.133 | 8.098 | [44] |
Almond hulls | 1.213 | 7.906 | [41] |
Coconut shells | 1.186 | 9.125 | [47] |
Coffee husks | 0.936 | 9.265 | [47] |
Cotton husks | 1.266 | 6.000 | [47] |
Olive husks | 1.188 | 8.065 | [48] |
Olive pits | 1.340 | 8.000 | [41] |
Grape marc | 1.444 | 8.852 | [49] |
Mustard husks | 1.032 | 4.978 | [47] |
Palm fibre husks | 1.284 | 7.803 | [47] |
Palm kernel | 1.291 | 7.846 | [47] |
Plum pits | 1.177 | 7.448 | [41] |
Pistachio shells | 1.218 | 7.953 | [41] |
Rice husks | 1.128 | 8.082 | [41] |
Sugar cane bagasse | 1.134 | 8.300 | [41] |
Sunflower husks | 1.172 | 9.164 | [47] |
Chicken litter | 2.391 | 8.897 | [45] |
Meat-bone meal | 2.755 | 7.163 | [45] |
Marine macroalgae | 0.943 | 6.968 | [50] |
Rape straw | 1.268 | 8.182 | [44] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Buentello-Montoya, D.A.; Maytorena-Soria, V.M. Feature Importance Analysis of Solar Gasification of Biomass via Machine Learning Models. Energies 2025, 18, 4409. https://doi.org/10.3390/en18164409
Buentello-Montoya DA, Maytorena-Soria VM. Feature Importance Analysis of Solar Gasification of Biomass via Machine Learning Models. Energies. 2025; 18(16):4409. https://doi.org/10.3390/en18164409
Chicago/Turabian StyleBuentello-Montoya, David Antonio, and Victor Manuel Maytorena-Soria. 2025. "Feature Importance Analysis of Solar Gasification of Biomass via Machine Learning Models" Energies 18, no. 16: 4409. https://doi.org/10.3390/en18164409
APA StyleBuentello-Montoya, D. A., & Maytorena-Soria, V. M. (2025). Feature Importance Analysis of Solar Gasification of Biomass via Machine Learning Models. Energies, 18(16), 4409. https://doi.org/10.3390/en18164409