Influence of Fin Geometry on Enhancement of Phase Change Material Melting in a Finned Double-Pipe Heat Exchanger
Abstract
1. Introduction
2. Physical Model
3. Mathematical Model
4. Numerical Method and Validation
4.1. Numerical Simulations
4.2. Initial and Boundary Conditions
4.3. Validation of the Numerical Model
5. Results and Discussion
5.1. Mechanism of PCM Melting in Various Segments of Heat Exchanger
5.2. Enhancement of Melting Rate Through Sudden Step Reduction in Fin Thickness
5.3. Comparison of Influence of Smooth and Stepwise Fin Thickness Reduction on the Melting Rate
6. Conclusions
- -
- The single-thickness reduction fin achieves approximately a 12% higher melting rate compared to the uniform-thickness fin, while the double-thickness reduction fin demonstrates an improvement of about 9% over the uniform-thickness configuration.
- -
- The smooth-thickness reduction fin also exhibits an approximately 9% enhancement in the melting rate relative to the uniform-thickness fin.
- -
- The temperature distribution along the fin length revealed that single-thickness reduction fins maintain higher temperatures over a greater length compared to smooth reduction fins, promoting more effective heat transfer in the melting process.
- -
- In the upper segments of the PCM domain, where natural convection is weak, fins with single- and double-thickness reductions improved the local melting rate by approximately 16% and 12%, respectively, compared to uniform-thickness fins.
- -
- The performance of the stepwise-thickness reduction/expansion fin is approximately similar to that of the uniform-thickness fin.
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
A | area, m2 |
c | specific heat at constant pressure, kJ/kg °C |
d | diameter, m |
f | liquid fraction |
g | gravitational acceleration, m/s2 |
h | specific enthalpy, kJ/kg |
H | total enthalpy, kJ/kg |
ΔH | latent heat content, kJ/kg |
k | thermal conductivity, W/m °C |
T | temperature, K or °C |
Tm | melting temperature of PCM, °C |
t | time, s |
p | pressure, Pa |
velocity in x direction, m/s | |
velocity in y direction, m/s | |
x, y | space coordinates |
β | coefficient of thermal expansion |
viscosity, Pa. s | |
ρ | density, kg/m3 |
Subscript | |
l | liquid |
s | solid |
References
- Alhamdo, M.H.; Theeb, M.A.; Golam, A.S. Finned double-tube PCM system as a waste heat storage. IOP Conf. Ser. Mater. Sci. Eng. 2015, 95, 012033. [Google Scholar] [CrossRef]
- Geete, P.; Kumar, N.; Somani, S.K.; Gangele, A. Simulation of double pipe heat exchanger with implementation of PCM. Int. J. Innov. Technol. Explor. Eng. (IJITEE) 2019, 8, 658–663. [Google Scholar] [CrossRef]
- Fong, M.; Kurnia, J.; Sasmito, A.P. Application of phase change material-based thermal capacitor in double tube heat exchanger:A Numerical Investigation. Energies 2020, 13, 4327. [Google Scholar] [CrossRef]
- Dukhana, W.A.; Dhaidana, N.S.; Al-Hattabb, T.A. Experimental investigation of the horizontal double pipe heat exchanger utilized phase change material. Mater. Sci. Eng. 2020, 671, 012148. [Google Scholar] [CrossRef]
- Motevali, A.; Rostami, M.H.; Najafi, G.; Yan, W.-M. Evaluation and improvement of PCM melting in double tube heat exchangers using different combinations of nanoparticles and PCM (The Case of Renewable Energy Systems). Sustainability 2021, 13, 10675. [Google Scholar] [CrossRef]
- Paroutoglou, E.; Fojan, P.; Gurevich, L.; Furbo, S.; Fan, J.; Medrano, M.; Afshari, A. A numerical parametric study of a double-pipe LHTES unit with PCM encapsulated in the annular space. Sustainability 2022, 14, 13317. [Google Scholar] [CrossRef]
- Şimşek, F. Numerical analysis of double pipe heat exchanger using different internal pipe material in the melting Process of PCM. Int. J. Innov. Res. Rev. 2024, 8, 25–34. [Google Scholar]
- Tiari, S.; Hockins, A.; Mahdavi, M. Numerical study of a latent heat thermal energy storage system enhanced by varying fin configurations. Case Stud. Therm. Eng. 2021, 25, 100999. [Google Scholar] [CrossRef]
- Bondareva, N.S.; Ghalambaz, M.; Sheremet, M.A. Influence of the fin shape on heat transport in phase change material heat sink with constant heat loads. Energies 2021, 14, 1389. [Google Scholar] [CrossRef]
- Cheriet, N.; Benlekkam, M.; Kherris, S. Influence of fin shape design on thermal efficiency of phase change material-based thermal energy storage unit. Arch. Mech. Eng. 2024, 71, 189–211. [Google Scholar] [CrossRef]
- Al-Mudhafara, A.H.N.; Nowakowskib, A.F.; Nicolleau, F.C.G.A. Enhancing the thermal performance of PCM in a shell and tube latent heat energy storage system by utilizing innovative fins. Energy Rep. 2021, 7, 20–126. [Google Scholar] [CrossRef]
- Fang, J.; Han, T.; Bi, Y.; Yan, H.; Wei, J. Numerical study on heat transfer and enhancement mechanism in PCM-filled shell-and-tube heat exchangers. Front. Energy Res. 2022, 10, 885564. [Google Scholar] [CrossRef]
- Mao, Q.; Hu, X.; Zhu, Y. Numerical investigation of heat transfer performance and structural optimization of fan-shaped finned tube heat exchanger. Energies 2022, 15, 5682. [Google Scholar] [CrossRef]
- Ma, F.; Zhu, T.; Zhang, Y.; Lu, X.; Zhang, W.; Feng, M. A review on heat transfer enhancement of phase change materials using fin tubes. Energies 2023, 16, 10545. [Google Scholar] [CrossRef]
- Zhang, J.; Cao, Z.; Huang, S.; Huang, X.; Han, Y.; Wen, C.; Walther, J.H.; Yang, Y. Solidification performance improvement of phase change materials for latent heat thermal energy storage using novel branch-structured fins and nanoparticles. Appl. Energy 2023, 342, 121158. [Google Scholar] [CrossRef]
- Zaib, A.; Mazhar, A.R.; Aziz, S.; Talha, T.; Jung, D.-W. Heat transfer augmentation using duplex and triplex tube phase change material (PCM) heat exchanger configurations. Energies 2023, 16, 4037. [Google Scholar] [CrossRef]
- Waqas, H.; Hussain, M.; Ahmad, S.; Al-Mdallal, Q.M.; Abdelmohimen, M.A.H. Enhancing thermal storage performance: A combined approach using nano-integrated phase change material and arc fins. Int. Commun. Heat Mass Transf. 2025, 161, 108549. [Google Scholar] [CrossRef]
- Vanaga, R.; Narbuts, J.; Zundāns, Z.; Gušča, J. Systematic literature review of software tools for modeling heat transfer in phase change materials for building applications. Int. Conf. Sustain. Energy Green Technol. 2023, 1372, 012017. [Google Scholar] [CrossRef]
- Nedjar, B. An enthalpy-based finite element method for nonlinear heat problems involving phase change. Comput. Struct. 2002, 80, 9–21. [Google Scholar] [CrossRef]
- Bejan, A. Convection Heat Transfer, 4th ed.; Wiley: Hoboken, NJ, USA, 2013. [Google Scholar]
- ANSYS Fluent Theory Guide. Available online: https://www.afs.enea.it/project/neptunius/docs/fluent/html/th/node349.htm (accessed on 3 May 2025).
- Elsayed, A.O. Numerical investigation on PCM melting in triangular cylinders. Alex. Eng. J. 2018, 57, 2819–2828. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elsayed, A.O. Influence of Fin Geometry on Enhancement of Phase Change Material Melting in a Finned Double-Pipe Heat Exchanger. Energies 2025, 18, 4355. https://doi.org/10.3390/en18164355
Elsayed AO. Influence of Fin Geometry on Enhancement of Phase Change Material Melting in a Finned Double-Pipe Heat Exchanger. Energies. 2025; 18(16):4355. https://doi.org/10.3390/en18164355
Chicago/Turabian StyleElsayed, Amr Owes. 2025. "Influence of Fin Geometry on Enhancement of Phase Change Material Melting in a Finned Double-Pipe Heat Exchanger" Energies 18, no. 16: 4355. https://doi.org/10.3390/en18164355
APA StyleElsayed, A. O. (2025). Influence of Fin Geometry on Enhancement of Phase Change Material Melting in a Finned Double-Pipe Heat Exchanger. Energies, 18(16), 4355. https://doi.org/10.3390/en18164355