High-Performance Asymmetric Supercapacitor Based on a Bilayer Cu0.7Zn0.3CoNiSyO4−y/Ni3S2 Electrode
Abstract
1. Introduction
2. Materials and Methods
3. Synthesis of the CuxZn1−xCoNiSyO4−y
4. Results
4.1. Structural and Morphology Characterization
4.2. Electrochemical Evaluation of Manufactured Electrodes
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gao, S.Q.; Zhang, P.P.; Guo, S.H.; Chen, W.Q.; Li, M.; Liu, F.; Cheng, J.P. Synthesis of single-phase CuCo2−xNixS4 for-performance supercapacitor. J. Colloid Interface Sci. 2019, 555, 284–293. [Google Scholar] [CrossRef] [PubMed]
- Elshahawy, A.M.; Li, X.; Zhang, H.; Hu, Y.; Ho, K.H.; Guan, C.; Wang, J. Controllable MnCo2S4 nanostructures for high performance hybrid supercapacitors. J. Mater. Chem. A 2017, 5, 7494–7506. [Google Scholar] [CrossRef]
- Sharma, N.; Phase, D.; Thotiyl, M.O.; Ogale, S. Single phase Cu3SnS4 nanoparticles for robust high capacity Li-ion battery anode. ChemElectroChem 2019, 6, 1371–1375. [Google Scholar] [CrossRef]
- Sahoo, S.; Krishnamoorthy, K.; Pazhamalai, P.; Mariappan, V.K.; Kim, S.-J. Copper molybdenum sulfide nanoparticles embedded on graphene sheets as advanced electrodes for wide temperature-tolerant supercapacitors. Inorg. Chem. Front. 2019, 6, 1775–1784. [Google Scholar] [CrossRef]
- Balu, R.; Sundaram, S.K.; Rameshkumar, S.; Aravinth, K.; Ramasamy, P. Controlled growth of 2D structured Cu2WS4 nanoflakes for high-performance all-solid-state supercapacitors. J. Electroanal. Chem. 2022, 922, 116718. [Google Scholar] [CrossRef]
- Wang, X.; Wu, P.; Zhao, Z.; Sun, L.; Deng, Q.; Yin, Z.; Chen, X. Construction of flower like ZnCo2S4/ZnCo2O4 arrays on Ni foam for high performance asymmetric supercapacitors. J. Mater. Sci. Mater. Electron. 2020, 31, 4895–4904. [Google Scholar] [CrossRef]
- Xiang, G.; Yin, J.; Qu, G.; Sun, P.; Hou, P.; Huang, J.; Xu, X. Construction of ZnCo2S4@Ni(OH)2 core-shell nanostructures for asymmetric supercapacitors with high energy densities. Inorg. Chem. Front. 2019, 6, 2135–2141. [Google Scholar] [CrossRef]
- Yuan, Y.; Jia, H.; Liu, Z.; Wang, L.; Sheng, J.; Fei, W. A highly conductive Ni(OH)2 nano-sheet wrapped CuCo2S4 nano-tube electrode with a core–shell structure for high performance supercapacitors. Dalton Trans. 2021, 50, 8476–8486. [Google Scholar] [CrossRef]
- Lv, Y.; Liu, A.; Shi, Z.; Che, H.; Mu, J.; Guo, Z.; Zhang, X. Construction of hierarchical zinc cobalt sulfide@nickel sulfide core-shell nanosheet arrays for high-performance asymmetric solid-state supercapacitors. Chem. Eng. J. 2018, 349, 397–407. [Google Scholar] [CrossRef]
- Yan, M.; Yao, Y.; Wen, J.; Long, L.; Kong, M.; Zhang, G.; Liao, X.; Yin, G.; Huang, Z. Construction of a hierarchical NiCo2S4@PPy core-shell heterostructure nanotube array on Ni foam for a high-performance asymmetric supercapacitor. ACS Appl. Mater. Interfaces 2016, 8, 24525–24535. [Google Scholar] [CrossRef]
- Liu, X.; Wu, Z.; Yin, Y. Hierarchical NiCo2S4@PANI core/shell nanowires grown on carbon fiber with enhanced electrochemical performance for hybrid supercapacitors. Chem. Engin. J. 2017, 323, 330–339. [Google Scholar] [CrossRef]
- Liu, L.L.; Annamalai, K.P.; Tao, Y.-S. A hierarchically porous CuCo2S4/graphene composite as an electrode material for supercapacitors. New Carbon Mater. 2016, 31, 336–342. [Google Scholar] [CrossRef]
- Fan, L.-Q.; Pan, F.; Tu, Q.-M.; Gu, Y.; Huang, J.-L.; Huang, Y.-F.; Wu, J.-H. Synthesis of CuCo2S4 nanosheet arrays on Ni foam as binder-free electrode for asymmetric supercapacitor. Int. J. Hydrogen Energy 2018, 43, 23372–23381. [Google Scholar] [CrossRef]
- Bahaa, A.; Balamurugan, J.; Kim, N.H.; Lee, J.H. Metal organic framework derived hierarchical copper cobalt sulfide nanosheet arrays for high−performance solid−state asymmetric supercapacitors. J. Mater. Chem. A 2019, 7, 8620–8632. [Google Scholar] [CrossRef]
- Zhang, M.; Sui, Y.; Yuan, X.; Qi, J.; Wei, F.; Meng, Q.; He, Y.; Ren, Y.; Sun, Z.; Liu, J. Controllable Zn0.76Co0.24S nanoflower arrays grown on carbon fiber papers for high-performance supercapacitors. Nano 2019, 14, 1950030. [Google Scholar] [CrossRef]
- Chen, X.; Chen, D.; Guo, X.; Wang, R.; Zhang, H. Facile growth of caterpillar-like NiCo2S4 nanocrystal arrays on nickle foam for high-performance supercapacitors. ACS Appl. Mater. Interfaces 2017, 9, 18774–18781. [Google Scholar] [CrossRef]
- Vignesh, V.; Navamathavan, R. Spherical-like ball-by-ball architecture of Ni-Co-Zn-S electrodes for electrochemical energy storage application in supercapacitors. J. Electrochem. Soc. 2017, 164, E434–E439. [Google Scholar] [CrossRef]
- Hou, L.; Shi, Y.; Zhu, S.; Rehan, M.; Pang, G.; Zhang, X.; Yuan, C. Hollow mesoporous hetero-NiCo2S4/Co9S8 submicro-spindles: Unusual formation and appealing pseudocapacitance towards hybrid supercapacitors. J. Mater. Chem. A 2017, 5, 133–144. [Google Scholar] [CrossRef]
- Vijayakumar, S.; Dhakal, G.; Kim, S.-H.; Lee, J.; Lee, Y.R.; Shim, J.-J. Facile synthesis of Zn-Co-S nanostrip cluster arrays on Ni foam for high-performance hybrid supercapacitor. Nanomaterials 2021, 11, 3209. [Google Scholar] [CrossRef]
- Moosavifard, S.E.; Fani, S.; Rahmanian, M. Hierarchical CuCo2S4 hollow nanoneedle arrays as novel binder-free electrodes for highperformance asymmetric supercapacitors. Chem. Commun. 2016, 52, 4517–4520. [Google Scholar] [CrossRef]
- Guo, S.; Chen, W.; Li, M.; Wang, J.; Liu, F.; Cheng, J.P. Effect of reaction temperature on the amorphous-crystalline transition of copper cobalt sulfide for supercapacitors. Electrochim. Acta 2018, 271, 498–506. [Google Scholar] [CrossRef]
- Tang, J.; Ge, Y.; Shen, J.; Ye, M. Facile synthesis of CuCo2S4 as a novel electrode material for ultrahigh supercapacitor performance. Chem. Commun. 2016, 52, 1509. [Google Scholar] [CrossRef]
- Li, J.; Li, J.; Shao, M.; Yan, Y.; Li, R. MOF-Derived ultrathin NiCo-S nanosheet hybrid array electrodes prepared on nickel foam for high-performance supercapacitors. Nanomaterials 2023, 13, 1229. [Google Scholar] [CrossRef]
- Cheng, C.; Zhang, X.; Wei, C.; Liu, Y.; Cui, C.; Zhang, Q.; Zhang, D. Mesoporous hollow ZnCo2S4 core-shell nanospheres for high performance supercapacitors. Ceram. Int. 2018, 44, 17464–17472. [Google Scholar] [CrossRef]
- Pramanik, A.; Maiti, S.; Dhawa, T.; Sreemany, M.; Mahanty, S. High faradaic charge storage in ZnCo2S4 film on Ni-foam with a hetero-dimensional microstructure for hybrid supercapacitor. Mater. Today Energy 2018, 9, 416–427. [Google Scholar] [CrossRef]
- Hussain, I.; Lamiel, C.; Mohamed, S.G.; Vijayakumar, S.; Ali, A.; Shim, J.-J. Controlled synthesis and growth mechanism of zinc cobalt sulfide rods on Ni-foam for high-performance supercapacitors. J. Ind. Eng. Chem. 2019, 71, 250–259. [Google Scholar] [CrossRef]
- Li, H.; Li, Z.; Sun, M.; Wu, Z.; Shen, W.; Fu, Y.Q. Zinc cobalt sulfide nanoparticles as high performance electrode material for asymmetric supercapacitor. Electrochim. Acta 2019, 319, 716–726. [Google Scholar] [CrossRef]
- Liu, Y.; Xin, N.; Yang, Q.; Shi, W. 3D CNT/graphene network conductive substrate supported MOFs-derived CoZnNiS nanosheet arrays for ultra-high volumetric/gravimetric energy density hybrid supercapacitor. J. Colloid Interface Sci. 2021, 583, 288–298. [Google Scholar] [CrossRef]
- Zhang, H.; Guan, B.; Gu, J.; Li, Y.; Ma, C.; Zhao, J.; Wang, T.; Cheng, C. One-step synthesis of nickel cobalt sulphides particles: Tuning the composition for high performance supercapacitors. RSC Adv. 2016, 6, 58916–58924. [Google Scholar] [CrossRef]
- Sharma, M.; Gaur, A. Cu doped zinc cobalt oxide based solid-state symmetric supercapacitors: A promising key for high energy density. J. Phys. Chem. 2020, 124, 9–16. [Google Scholar] [CrossRef]
- Li, B.; Luo, B.; Zhao, J.; Pan, Y.; Zhou, H.; Xiao, Y.; Lei, S.; Cheng, B. High electrical conductivity-induced enhancement effect of electrochemical performance in mesoporous NiCo2S4 nanorod-based supercapacitor. J. Energy Storage 2019, 26, 100955. [Google Scholar] [CrossRef]
- Migunova, A.A.; Nemkayeva, R.R.; Zhakanbayev, Y.A.; Tuleushev, Y.Z. One-step CuCoNiSxO4−x thio/oxy spinel on Ni foam for high-performance asymmetric supercapacitors. Energies 2025, 18, 561. [Google Scholar] [CrossRef]
- Sun, Y.; Wu, J.; Zhang, Z.; Liao, Q.; Zhang, S.; Wang, X.; Xie, Y.; Ma, K.; Kang, Z.; Zhang, Y. Phase reconfiguration of multivalent nickel sulfides in hydrogen evolution. Energy Environ. Sci. 2022, 15, 633–644. [Google Scholar] [CrossRef]
- Feng, N.; Hu, D.; Wang, P.; Sun, X.; Li, X.; He, D. Growth of nanostructured nickel sulfide films on Ni foam as high-performance cathodes for lithium ion batteries. Phys. Chem. Chem. Phys. 2013, 15, 9924–9930. [Google Scholar] [CrossRef]
- Khan, I.A.; Medwal, R.; Fareed, S.; Farid, A.; Vas, J.V.; Reddy, M.V.; Rawat, R.S. Nanostructured polycrystalline Ni3S2 as electrode material for lithium ion batteries. Mater. Res. Express 2020, 7, 015517. [Google Scholar] [CrossRef]
- Cheng, Z.; Abernathy, H.; Liu, M. Raman Spectroscopy of Nickel Sulfide Ni3S2. J. Phys. Chem. C 2007, 111, 17997–18000. [Google Scholar] [CrossRef]
- Zhu, M.; Wang, D.; Ge, Z.; Pan, L.; Chen, Y.; Wang, W.; Mitsuzaki, N.; Jiad, S.; Chen, Z. Recent advances in transition metal sulfide-based electrode materials for supercapacitors. Chem. Commun. 2025, 61, 8314–8326. [Google Scholar] [CrossRef]
- Shariq, M.; Alhashmialameer, D.; Adawi, H.; Alrahili, M.R.; Almashnowi, M.Y.; Alzahrani, A.; Sharma, M.; Ali, S.K.; Slimani, Y. Advancements in transition metal sulfide supercapacitors: A focused review on high-performance energy storage. J. Ind. Eng. Chem. 2025, 144, 269–291. [Google Scholar] [CrossRef]
- Meena, J.; Sivasubramaniam, S.S.; David, E.; Santhakumar, K. Green supercapacitors: Review and perspectives on sustainable template-free synthesis of metal and metal oxide nanoparticles. RSC Sustain. 2024, 2, 1224–1245. [Google Scholar] [CrossRef]
- Yan, J.; Lu, J.; Sheng, Y.; Sun, Y.; Zhang, D. Research Progress in the Preparation of Transition Metal Sulfide Materials and Their Supercapacitor Performance. Micromachines 2024, 15, 849. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.; Hu, Z.; Zhao, J.; Wang, H.; Zhai, S.; An, Q.; Xiao, Z. Flower-like porous carbon derived from carboxymethyl cellulose doped with CoS2 and Cu7.2S4 nanoparticles for asymmetric supercapacitors. Int. J. Biol. Macromol. 2025, 311 Pt 1, 143648. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Yuan, P.; Guo, S.; Gao, S.; Wang, J.; Li, M.; Liu, F.; Wang, J.; Cheng, J.P. Formation of mixed metal sulfides of NixCu1−xCo2S4 for high-performance supercapacitors. J. Electroanal. Chem. 2019, 836, 134–142. [Google Scholar] [CrossRef]
Sample | Cu | Zn | Co | Ni | S | O |
---|---|---|---|---|---|---|
Cu0.3-Zn0.7 | 5.96 | 14.37 | 21.40 | 19.27 | 30.68 | 8.62 |
Cu0.5-Zn0.5 | 10.87 | 9.69 | 21.45 | 18.01 | 26.76 | 13.21 |
Cu0.7-Zn0.3 | 14.74 | 5.55 | 20.76 | 17.92 | 30.58 | 10.45 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Migunova, A.; Gabdullin, M.; Nemkayeva, R.; Abdullin, K. High-Performance Asymmetric Supercapacitor Based on a Bilayer Cu0.7Zn0.3CoNiSyO4−y/Ni3S2 Electrode. Energies 2025, 18, 4348. https://doi.org/10.3390/en18164348
Migunova A, Gabdullin M, Nemkayeva R, Abdullin K. High-Performance Asymmetric Supercapacitor Based on a Bilayer Cu0.7Zn0.3CoNiSyO4−y/Ni3S2 Electrode. Energies. 2025; 18(16):4348. https://doi.org/10.3390/en18164348
Chicago/Turabian StyleMigunova, Anastassiya, Maratbek Gabdullin, Renata Nemkayeva, and Khabibulla Abdullin. 2025. "High-Performance Asymmetric Supercapacitor Based on a Bilayer Cu0.7Zn0.3CoNiSyO4−y/Ni3S2 Electrode" Energies 18, no. 16: 4348. https://doi.org/10.3390/en18164348
APA StyleMigunova, A., Gabdullin, M., Nemkayeva, R., & Abdullin, K. (2025). High-Performance Asymmetric Supercapacitor Based on a Bilayer Cu0.7Zn0.3CoNiSyO4−y/Ni3S2 Electrode. Energies, 18(16), 4348. https://doi.org/10.3390/en18164348