A Parametric Study of an Indirect Evaporative Cooler Using a Spray Dryer Model
Abstract
1. Introduction
2. Model Description
2.1. Computational Grid
2.2. Assumptions
- The problem is steady-state.
- The air behaves like an ideal gases.
- The flow is laminar.
- The water droplets in the exhaust region are entering at random positions at the exhaust inlet.
- The droplets are prevented from bouncing off the walls by invoking an appropriate command. A droplet hitting the wall is taken out of consideration.
- At the surface of the exhaust side wall (“wet wall”), water is assumed to exist in an infinitely thin layer.
2.3. Modeling Equations
2.3.1. Gas Phase
2.3.2. Liquid Phase
2.4. Operating Conditions
- Step-wise reduction in the droplet temperature from 26 °C to 16 °C.
- Step-wide reduction in the exhaust inlet velocity by introducing a bypass factor from 1.0 to 0.1.
- Step-wise increase in the channel length from 25 cm to 75 cm.
3. Results
- The droplet evaporation effect as described above which leads to a cooling of the air around the droplets pathways and thus to an increased relative humidity of the air.
- A wall evaporation effect that is accounted for in the first computational cell near the wall at the exhaust side.
3.1. Effect of the Droplet Temperature
3.2. Bypass Effect
3.3. Effect of the Channel Length
3.4. Combination of Best Parameters
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pérez-Lombard, L.; Ortiz, J.; Pout, C. A review on buildings energy consumption information. Energy Build. 2008, 40, 394–398. [Google Scholar] [CrossRef]
- Duan, Z.; Zhan, C.; Zhang, X.; Mustafa, M.; Zhao, X.; Alimohammadisagvand, B.; Hasan, A. Indirect evaporative cooling: Past, present and future potentials. Renew. Sustain. Energy Rev. 2012, 16, 6823–6850. [Google Scholar] [CrossRef]
- Mohammed, R.H.; El-Morsi, M.; Abdelaziz, O. Indirect evaporative cooling for buildings: A comprehensive patents review. J. Build. Eng. 2022, 50, 104158. [Google Scholar] [CrossRef]
- Berning, T.; Sørensen, H.; Nielsen, M.P. A Computational Analysis of Heat and Mass Transfer in an Indirect Evaporative Cooler Using the Spray Dryer Model. Energies 2024, 17, 2676. [Google Scholar] [CrossRef]
- Taler, J.; Jagieła, B.; Jaremkiewicz, M. Overview of the M-Cycle Technology for Air Conditioning and Cooling Applications. Energies 2022, 15, 1814. [Google Scholar] [CrossRef]
- Zhao, X.; Li, J.; Riffat, S. Numerical study of a novel counter-flow heat and mass exchanger for dew point evaporative cooling. Appl. Therm. Eng. 2008, 28, 1942–1951. [Google Scholar] [CrossRef]
- Chen, Q.; Yang, K.; Wang, M.; Pan, N.; Guo, Z.Y. A new approach to analysis and optimization of evaporative cooling system I: Theory. Energy 2010, 35, 2448–2454. [Google Scholar] [CrossRef]
- Chen, Q.; Pan, N.; Guo, Z.Y. A new approach to analysis and optimization of evaporative cooling system II: Applications. Energy 2011, 36, 2890–2898. [Google Scholar] [CrossRef]
- Lee, J.; Choi, B.; Lee, D.Y. Comparison of configurations for a compact regenerative evaporative cooler. Int. J. Heat Mass Transf. 2013, 65, 192–198. [Google Scholar] [CrossRef]
- Riangvilaikul, B.; Kumar, S. Numerical study of a novel dew point evaporative cooling system. Energy Build. 2010, 42, 2241–2250. [Google Scholar] [CrossRef]
- Woods, J.; Kozubal, E. A desiccant-enhanced evaporative air conditioner: Numerical model and experiments. Energy Convers. Manag. 2013, 65, 208–220. [Google Scholar] [CrossRef]
- Anisimov, S.; Pandelidis, D. Numerical study of the Maisotsenko cycle heat and mass exchanger. Int. J. Heat Mass Transf. 2014, 75, 75–96. [Google Scholar] [CrossRef]
- Pandelidis, D.; Cichoń, A.; Pacak, A.; Anisimov, S.; Drąg, P. Counter-flow indirect evaporative cooler for heat recovery in the temperate climate. Energy 2018, 165, 877–894. [Google Scholar] [CrossRef]
- Pandelidis, D.; Cichoń, A.; Pacak, A.; Anisimov, S.; Drąg, P. Performance comparison between counter- and cross-flow indirect evaporative coolers for heat recovery in air conditioning systems in the presence of condensation in the product air channels. Int. J. Heat Mass Transf. 2019, 130, 757–777. [Google Scholar] [CrossRef]
- Cui, X.; Chua, K.; Yang, W. Numerical simulation of a novel energy-efficient dew-point evaporative air cooler. Appl. Energy 2014, 136, 979–988. [Google Scholar] [CrossRef]
- Xu, P.; Ma, X.; Diallo, T.M.; Zhao, X.; Fancey, K.; Li, D.; Chen, H. Numerical investigation of the energy performance of a guideless irregular heat and mass exchanger with corrugated heat transfer surface for dew point cooling. Energy 2016, 109, 803–817. [Google Scholar] [CrossRef]
- Xu, P.; Ma, X.; Zhao, X.; Fancey, K. Experimental investigation of a super performance dew point air cooler. Appl. Energy 2017, 203, 761–777. [Google Scholar] [CrossRef]
- Wan, Y.; Ren, C.; Xing, L. An approach to the analysis of heat and mass transfer characteristics in indirect evaporative cooling with counter flow configurations. Int. J. Heat Mass Transf. 2017, 108, 1750–1763. [Google Scholar] [CrossRef]
- Wan, Y.; Lin, J.; Chua, K.J.; Ren, C. A new method for prediction and analysis of heat and mass transfer in the counter-flow dew point evaporative cooler under diverse climatic, operating and geometric conditions. Int. J. Heat Mass Transf. 2018, 127, 1147–1160. [Google Scholar] [CrossRef]
- De Antonellis, S.; Joppolo, C.M.; Liberati, P.; Milani, S.; Romano, F. Modeling and experimental study of an indirect evaporative cooler. Energy Build. 2017, 142, 147–157. [Google Scholar] [CrossRef]
- Liberati, P.; De Antonellis, S.; Leone, C.; Joppolo, C.M.; Bawa, Y. Indirect Evaporative cooling systems: Modelling and performance analysis. Energy Procedia 2017, 140, 475–485. [Google Scholar] [CrossRef]
- De Antonellis, S.; Joppolo, C.M.; Liberati, P. Performance measurement of a cross-flow indirect evaporative cooler: Effect of water nozzles and airflows arrangement. Energy Build. 2019, 184, 114–121. [Google Scholar] [CrossRef]
- Lin, J.; Thu, K.; Bui, T.; Wang, R.; Ng, K.; Chua, K. Study on dew point evaporative cooling system with counter-flow configuration. Energy Convers. Manag. 2016, 109, 153–165. [Google Scholar] [CrossRef]
- Lin, J.; Bui, D.T.; Wang, R.; Chua, K.J. On the fundamental heat and mass transfer analysis of the counter-flow dew point evaporative cooler. Appl. Energy 2018, 217, 126–142. [Google Scholar] [CrossRef]
- Oh, S.J.; Shahzad, M.W.; Burhan, M.; Chun, W.; Kian Jon, C.; KumJa, M.; Ng, K.C. Approaches to energy efficiency in air conditioning: A comparative study on purge configurations for indirect evaporative cooling. Energy 2019, 168, 505–515. [Google Scholar] [CrossRef]
- Jafarian, H.; Sayyaadi, H.; Torabi, F. A numerical model for a dew-point counter-flow indirect evaporative cooler using a modified boundary condition and considering effects of entrance regions. Int. J. Refrig. 2017, 84, 36–51. [Google Scholar] [CrossRef]
- Min, Y.; Chen, Y.; Yang, H. Numerical study on indirect evaporative coolers considering condensation: A thorough comparison between cross flow and counter flow. Int. J. Heat Mass Transf. 2019, 131, 472–486. [Google Scholar] [CrossRef]
- Liu, Y.; Li, J.M.; Yang, X.; Zhao, X. Two-dimensional numerical study of a heat and mass exchanger for a dew-point evaporative cooler. Energy 2019, 168, 975–988. [Google Scholar] [CrossRef]
- Liu, Y.; Akhlaghi, Y.G.; Zhao, X.; Li, J. Experimental and numerical investigation of a high-efficiency dew-point evaporative cooler. Energy Build. 2019, 197, 120–130. [Google Scholar] [CrossRef]
- Zhu, G.; Chen, W.; Zhang, D.; Wen, T. Performance evaluation of counter flow dew-point evaporative cooler with a three-dimensional numerical model. Appl. Therm. Eng. 2023, 219, 119483. [Google Scholar] [CrossRef]
- Marrero, T.R.; Mason, E.A. Gaseous Diffusion Coefficients. J. Phys. Chem. Ref. Data 1972, 1, 3–118. [Google Scholar] [CrossRef]
- Fletcher, D.; Guo, B.; Harvie, D.; Langrish, T.; Nijdam, J.; Williams, J. What is important in the simulation of spray dryer performance and how do current CFD models perform? Appl. Math. Model. 2006, 30, 1281–1292. [Google Scholar] [CrossRef]
- Schiller, L.; Naumann, A. A Drag Coefficient Correlation. Z. Vereins Dtsch. Ingenieure 1935, 17, 318–320. [Google Scholar]
- Ranz, W.E.; Marshall, W.R., Jr. Evaporation from Drops, Part I. Chem. Eng. Prog. 1952, 48, 141–146. [Google Scholar]
Property | Value | Unit |
---|---|---|
Supply temperature | 26 | °C |
Exhaust temperature | 26 | °C |
Droplet temperature | 26 | °C |
Supply relative humidity | 60 | % |
Exhaust relative humidity | 60 | % |
Average droplet diameter | 50 | microns |
Droplet flow rate | 20, 40, 50 | mL/s |
Supply velocity | 2.44 | m/s |
Exhaust velocity | 2.44 | m/s |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Berning, T.; Gu, T.; Yin, C. A Parametric Study of an Indirect Evaporative Cooler Using a Spray Dryer Model. Energies 2025, 18, 4345. https://doi.org/10.3390/en18164345
Berning T, Gu T, Yin C. A Parametric Study of an Indirect Evaporative Cooler Using a Spray Dryer Model. Energies. 2025; 18(16):4345. https://doi.org/10.3390/en18164345
Chicago/Turabian StyleBerning, Torsten, Tianbao Gu, and Chungen Yin. 2025. "A Parametric Study of an Indirect Evaporative Cooler Using a Spray Dryer Model" Energies 18, no. 16: 4345. https://doi.org/10.3390/en18164345
APA StyleBerning, T., Gu, T., & Yin, C. (2025). A Parametric Study of an Indirect Evaporative Cooler Using a Spray Dryer Model. Energies, 18(16), 4345. https://doi.org/10.3390/en18164345