Modelling of Spatial Harmonic Interactions in a Modular PM Generator
Abstract
1. Introduction
2. Stator Winding Reconfigurations of the MPMG Segment
3. Modelling of MPMG
3.1. General Mathematical Model of Three-Phase PM Generator
- —stator phase, “a” current and voltage, a = 1, 2, 3;
- —stator winding resistance;
- —flux linkage of winding “a”, produced by PM, a = 1, 2, 3;
- ,,—inductance of the windings (leakage, self and mutual), a, b = 1,2,3;
- —rotor position; —rotor angular speed.
3.2. Mathematical Model Adaptation for Stator Winding Reconfiguration of MPMG
3.3. Application of HBM for Modelling Spatial Harmonic Interaction in Three-Phase MPMG
3.3.1. General Case (Possible External Asymmetry of the Generator)
3.3.2. Special Case (External Symmetry of the Generator)
4. Laboratory Tests and Model Verifications
4.1. Description of Tested Generator
4.2. Parameters of the Mathematical Model
4.3. Verification of the Spatial Harmonic Interaction Model
4.3.1. Verification of the Stator EMF
4.3.2. Verification of the Stator Currents
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Parameters of the Mathematical Model
- -
- the machine permeance function, .
- -
- the permeance function of the air gap, .
- -
- PM flux density distribution in the air gap for a slotless cylindrical machine, .
- -
- the stator winding factor for the assumed MMF harmonics, .
Appendix A.1. Stator Winding Inductances
Appendix A.2. PM Flux Linkages
- —value of unit permeance of a smooth air gap, —Carter factor,
- —winding magnetic axe locations, where .
References
- Gieras, J.F. Permanent Magnet Motor Technology: Design and Applications; CRC Press: Boca Raton, FL, USA, 2010. [Google Scholar]
- Kirtley, J.L. Permanent Magnets in Electric Machines. In Electric Power Principle; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2019. [Google Scholar]
- Cheng, M.; Zhu, Y. The state of the art of wind energy conversion systems and technologies: A review. Energy Convers. Manag. 2014, 88, 332–347. [Google Scholar] [CrossRef]
- Sawant, M.; Thakare, S.; Rao, A.P.; Feijóo-Lorenzo, A.E.; Bokde, N.D. A Review on State-of-the-Art Reviews in Wind-Turbine- and Wind-Farm-Related Topics. Energies 2021, 14, 2041. [Google Scholar] [CrossRef]
- Xu, J.; Ni, T.; Zheng, B. Hydropower development trends from a technological paradigm perspective. Energy Convers. Manag. 2015, 90, 195–206. [Google Scholar] [CrossRef]
- Fraile-Ardanuy, J.; Wilhelmi, J.R.; Fraile-Mora, J.J.; Pérez, J.I. Variable-Speed hydro generation: Operational aspects and control. IEEE Trans. Energy Convers. 2006, 21, 569–574. [Google Scholar] [CrossRef]
- Borkowski, D.; Węgiel, T.; Kisielewski, P.; Liszka, D. Universal Modular Permanent Magnet Synchronous Generator for Small Low-Head Hydropower Plants. IEEE Trans. Energy Convers. 2023, 38, 2884–2894. [Google Scholar] [CrossRef]
- Habib, A.; Zainuri, M.A.A.M.; Che, H.S.; Ibrahim, A.A.; Rahim, N.A.; Alaas, Z.M.; Ahmed, M.M.R. A systematic review on current research and developments on coreless axial-flux permanent-magnet machines. IET Electr. Power Appl. 2022, 16, 1095–1116. [Google Scholar] [CrossRef]
- Gieras, J.; Wang, R.; Kamper, M. Axial Flux Permanent Magnet Brushless Machines; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2004. [Google Scholar]
- Kahourzade, S.; Mahmoudi, A.; Ping, H.W.; Uddin, M.N. A comprehensive review of axial-flux permanent magnet machines. Can. J. Electr. Comput. Eng. 2014, 37, 19–33. [Google Scholar] [CrossRef]
- Tsunata, R.; Takemoto, M.; Imai, J.; Saito, T.; Ueno, T. Comparison of Thermal Characteristics in Various Aspect Ratios for Radial-Flux and Axial-Flux Permanent Magnet Machines. IEEE Trans. Ind. Appl. 2023, 59, 3353–3367. [Google Scholar] [CrossRef]
- Sitapati, K.; Krishnan, R. Performance comparisons of radial and axial field, permanent-magnet, brushless machines. IEEE Trans. Ind. Appl. 2001, 37, 1219–1226. [Google Scholar] [CrossRef]
- Heller, B.; Hamata, V. Harmonic Field Effects in Induction Machines; Elsevier Science Ltd.: Amsterdam, The Netherlands, 1977; ISBN 9780444998569. [Google Scholar]
- Pyrhönen, J.; Jokinen, T.; Hrabovcova, V. Design of Rotating Electrical Machines, 2nd ed.; John Wiley & Sons Ltd.: Chichester, UK, 2014; ISBN 978-1-118-58157-5. [Google Scholar]
- Sobczyk, T. A reinterpretation of the Floquet solution of the ordinary differential equation system with periodic coefficients as a problem of infinite matrix. Compel 1986, 5, 1–22. [Google Scholar] [CrossRef]
- Gilmore, R.J.; Steer, M.B. Nonlinear Circuit Analysis Using the Method of Harmonic Balance—A Review of the Art. Part, I. Introductory Concepts. Int. J. Microw. Millim. Wave Comput. Aided Eng. 1991, 1, 22–37. [Google Scholar] [CrossRef]
- Sobczyk, T. Direct determination of two-periodic solution for nonlinear dynamic systems. Compel 1994, 13, 509–529. [Google Scholar] [CrossRef]
- Rusek, J. Category slot harmonics and the torque of induction machines. Compel 2003, 22, 388–409. [Google Scholar] [CrossRef]
- Esparza, M.; Segundo-Ramirez, J.; Kwon, J.B.; Wang, X.; Blaabjerg, F. Modeling of VSC-based power systems in the extended harmonic domain. IEEE Trans. Power Electron. 2017, 32, 5907–5916. [Google Scholar] [CrossRef]
- Ludowicz, W.; Wojciechowski, R.M. Analysis of the Distributions of Displacement and Eddy Currents in the Ferrite Core of an Electromagnetic Transducer Using the 2D Approach of the Edge Element Method and the Harmonic Balance Method. Energies 2021, 14, 3980. [Google Scholar] [CrossRef]
- Radwan-Pragłowska, N.; Węgiel, T.; Borkowski, D. Application of the Harmonic Balance Method for Spatial Harmonic Interactions Analysis in Axial Flux PM Generators. Energies 2021, 14, 5570. [Google Scholar] [CrossRef]
- Arribas, B.; Almandoz, G.; Egea, A.; Poza, J.; Iturbe, I. Analysis of Multiphase Permanent Magnet Motors via Space-Harmonic Model. In Proceedings of the 2024 International Conference on Electrical Machines (ICEM), Torino, Italy, 1–4 September 2024; pp. 1–7. [Google Scholar]
- Sobczyk, T.J.; Drozdowski, P. Inductances of electrical machine winding with a nonuniform air-gap. Arch. Für Elektrotechnik 1993, 76, 213–218. [Google Scholar] [CrossRef]
- Węgiel, T.; Weinreb, K.; Sułowicz, M. Main inductances of induction motor for diagnostically specialized mathematical models. Arch. Electr. Eng. 2010, 59, 51–66. [Google Scholar] [CrossRef]
- Radwan-Pragłowska, N.; Wegiel, T. Diagnostics of Interior PM Machine Rotor Faults Based on EMF Harmonics. Energies 2024, 17, 2198. [Google Scholar] [CrossRef]
- Lerch, T. Analysis of the Impact of Design Parameters on the Power Density of the New Design of the Cogging Machine. Energies 2023, 16, 3000. [Google Scholar] [CrossRef]
- Ayaz, M.; Bakbak, A.; Canseven, H.T.; Altιntaş, M.; Meşe, E.; Akin, O. Design Considerations on E-core for Modular and Scalable Permanent Magnet Synchronous Machine. In Proceedings of the 2020 6th International Conference on Electric Power and Energy Conversion Systems (EPECS), Istanbul, Turkey, 5–7 October 2020; pp. 141–145. [Google Scholar] [CrossRef]
- Wang, K.; Lin, H. Modular Permanent Magnet Synchronous Machine with Low Space Harmonic Content. Energies 2020, 13, 3924. [Google Scholar] [CrossRef]
- Kaiser, B.; Parspour, N. Transverse Flux Machine—A Review. IEEE Access 2022, 10, 18395–18419. [Google Scholar] [CrossRef]
- Zhu, Z.Q.; Howe, D.; Ekkehard, B.; Ackermann, B. Instantaneous magnetic field distribution in brushless permanent magnet motors, part I: Open-circuit field. IEEE Trans. Magn. 1993, 29, 124–134. [Google Scholar] [CrossRef]
- Zhu, Z.Q.; Howe, D. Instantaneous magnetic field distribution in brushless permanent magnet motors, part III: Effect of Stator Slotting. IEEE Trans. Magn. 1993, 29, 143–151. [Google Scholar] [CrossRef]
Winding Paths | Phase Connection | n (rpm) | I (pu) | U (pu) | P (pu) |
---|---|---|---|---|---|
Series | ¦ Y | 0 | 0.5 | 0 | 0 |
150 | 0.5 | 1 | 0.5 | ||
¦ Δ | 150 | 0.87 | 0.58 | 0.5 | |
260 | 0.87 | 1 | 0.87 | ||
Parallel | ||Y | 260 | 1 | 0.87 | 0.87 |
300 | 1 | 1 | 1 | ||
|| Δ | 300 | 1.73 | 0.58 | 1 | |
519 | 1.73 | 1 | 1.73 |
Parameters and Dimensions |
---|
Axial length of stator and rotor core = 120.0 mm; Number of pole pairs p = 10; |
Stator outer radius 345.0 mm; Stator internal radius = 265.0 mm; |
Rotor outer radius = 261.5 mm; Air gap thickness = 3.5 mm; |
Number of stator slots = 114; Winding type: double layer; |
Number of stator parallel paths— 2 or 1; Winding coil span—4 slots |
Layout of first phase (1 2 -7 -8 13 14 -18 -19 24 25 -30 -31 36 -41 -42 47 48 -53 -54 58 59 -64 -65 70 71 75 -76 81 82 -87 -88 93 -98 -99 104 105 -110 -111); |
Total number of phase winding turns = 2 × 190; Equivalent slot opening = 4 mm |
Dimensions of a single magnet: 30.0 mm × 8.0 mm; lm = 8.0 mm; |
PM residual flux density Br = 1.38 T; PM coercive force Hc = 963 kA/m; Magnet type N45SH |
Opening angle between magnets = 50°; PM pole span = 6.8°; |
Inductances | |||||||||
---|---|---|---|---|---|---|---|---|---|
Paths | |||||||||
|| | 0.95 mH | 1.67 mH | 0.22 mH | 0.532 Wb | 3.26 mWb | 0.85 mWb | 0.59 mWb | 0.36 mWb | 0.07 mWb |
¦ | 3.80 mH | 6.68 mH | 0.88 mH | 1.064 Wb | 6.52 mWb | 1.70 mWb | 1.18 mWb | 0.72 mWb | 0.14 mWb |
MPMG | THDEMF | EMF(RMS) | |||
---|---|---|---|---|---|
Analytical Calculations | Measure | Analytical Calculations | Measure | |ΔEMF(%)| | |
Separate parallel path | 2.25% | 2.19% | 236.22 V | 236.23 V | 0.004% |
MPMG (Configuration and Load) | THDI | IG(RMS) | ||||
---|---|---|---|---|---|---|
Analytical Calculations | Measure | Analytical Calculations | Measure | |∆I(%)| | ||
||Y 300 rpm | 0.82% | 0.80% | 31.91 A | 31.54 A | 1.2% | |
||Δ 300 rpm | 42.03% | 42.42% | 25.11 A | 25.19 A | 0.3% | |
¦Y 150 rpm | 0.86% | 0.89% | 18.31 A | 18.46 A | 0.8% | |
¦Δ 260 rpm | 32.79% | 32.94% | 15.06 A | 15.95 A | 5.6% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Węgiel, T.; Borkowski, D. Modelling of Spatial Harmonic Interactions in a Modular PM Generator. Energies 2025, 18, 4297. https://doi.org/10.3390/en18164297
Węgiel T, Borkowski D. Modelling of Spatial Harmonic Interactions in a Modular PM Generator. Energies. 2025; 18(16):4297. https://doi.org/10.3390/en18164297
Chicago/Turabian StyleWęgiel, Tomasz, and Dariusz Borkowski. 2025. "Modelling of Spatial Harmonic Interactions in a Modular PM Generator" Energies 18, no. 16: 4297. https://doi.org/10.3390/en18164297
APA StyleWęgiel, T., & Borkowski, D. (2025). Modelling of Spatial Harmonic Interactions in a Modular PM Generator. Energies, 18(16), 4297. https://doi.org/10.3390/en18164297