Operational Roles of Artificial Intelligence in Energy Security: A Triangulated Review of Abstracts (2021–2025)
Abstract
1. Introduction
2. Materials and Methods
2.1. Search Strategy and Review Protocol
2.2. Selection of Keywords
2.3. Inclusion and Exclusion Criteria
2.4. Preparation and Preprocessing
- -
- Artificial intelligence-related terms:
- -
- Energy security–related terms:
2.5. Identifying AI Operational Roles in Energy Security
- Supervised extraction of high-frequency trigrams;
- Manual coding of meaningful excerpts;
- Embedding-based clustering using contextual language models.
2.5.1. Lexical Role Identification (Trigram Analysis)
- -
- O: total number of trigram occurrences linked to a role.
- -
- U: number of unique trigrams linked to a role.
- -
- α: weight for diversity (set to 3).
2.5.2. Interpretive Role Coding (Manual)
2.5.3. Semantic Role Clustering (Embeddings)
2.5.4. Triangulation and Statistical Concordance
- -
- Lexical categorisation of frequent trigrams, with role labels refined through iterative validation (Colab notebook);
- -
- Manual coding of 219 excerpts, with inductively derived role labels based on contextual interpretation;
- -
- Semantic clustering of the same excerpts using Sentence-BERT embeddings and HDBSCAN, yielding emergent role categories without predefined labels.
- -
- Spearman’s rank-order correlation, to evaluate concordance in the ranking of role importance across methods.
- -
- Pearson’s correlation coefficient, to assess the linear association between the number of excerpts or expressions assigned to each role.
2.6. Auxiliary Correspondence of Operational Roles in Preprints
3. Results
3.1. Literature Identification and Selection
3.1.1. Identification and Deduplication
3.1.2. Screening and Eligibility Assessment
3.1.3. Inclusion—Final Dataset
3.2. Lexical Categorisation Results (Trigram Analysis)
3.3. Interpretive Coding Results (Manual Analysis)
3.4. Semantic Clustering Results (Embedding Analysis)
3.5. Triangulated Role Frequencies and Statistical Concordance
3.6. Correspondence of Operational Roles in Preprints
3.7. Limitations
4. Discussion
5. Conclusions
- AI has gained increasing visibility in energy security research, reflecting its expanding role in managing complexity and supporting the functions of energy systems.
- Across all three methods, the most frequently identified roles involve functions such as forecasting and prediction, optimisation of energy systems, energy market operations/trading, and renewable energy integration/trading, indicating a strong emphasis on operational performance and system management.
- Roles related to infrastructure planning, grid management and stability, and cybersecurity appeared less prominently in the abstract-level data, particularly in lexical analyses, suggesting that such roles may be expressed in more varied or implicit ways.
- Methodological triangulation confirmed the consistency of the core role categories, while also demonstrating that the prominence of specific roles varies depending on the analytical lens. Lexical frequency methods emphasised standardised phrasing, whereas semantic and interpretive approaches captured more context-dependent functions.
- The current literature describes AI primarily through its operational capabilities. Future research may benefit from engaging with full texts and applying structured taxonomies to capture a broader spectrum of AI applications in energy security, including those related to resilience, planning, and cross-sectoral coordination.
Supplementary Materials
Funding
Data Availability Statement
Conflicts of Interest
References
- International Energy Agency. World Energy Outlook 2022. Energy Security in Energy Transitions. Available online: https://www.iea.org/reports/world-energy-outlook-2022/energy-security-in-energy-transitions (accessed on 1 August 2025).
- Safari, A.; Daneshvar, M.; Anvari-Moghaddam, A. Energy Intelligence: A Systematic Review of Artificial Intelligence for Energy Management. Appl. Sci. 2024, 14, 11112. [Google Scholar] [CrossRef]
- Himeur, Y.; Elnour, M.; Fadli, F.; Meskin, N.; Petri, I.; Rezgui, Y.; Bensaali, F.; Amira, A. Next-generation energy systems for sustainable smart cities: Roles of transfer learning. Sustain. Cities Soc. 2022, 85, 104059. [Google Scholar] [CrossRef]
- Biswal, B.; Deb, S.; Datta, S.; Ustun, T.S.; Cali, U. Review on smart grid load forecasting for smart energy management using machine learning and deep learning techniques. Energy Rep. 2024, 12, 3654–3670. [Google Scholar] [CrossRef]
- Mystakidis, A.; Koukaras, P.; Tsalikidis, N.; Ioannidis, D.; Tjortjis, C. Energy Forecasting: A Comprehensive Review of Techniques and Technologies. Energies 2024, 17, 1662. [Google Scholar] [CrossRef]
- Svoboda, R.; Basterrech, S.; Kozal, J.; Platos, J.; Wozniak, M. A natural gas consumption forecasting system for continual learning scenarios based on Hoeffding trees with change point detection mechanism. Knowl.-Based Syst. 2024, 304, 21. [Google Scholar] [CrossRef]
- Hajar, I.; Kassim, M.; Minhat, M.S.; Azmi, I.N. Optimal efficiency on nuclear reactor secondary cooling process using machine learning model. Int. J. Electr. Comput. Eng. 2024, 14, 6287–6299. [Google Scholar] [CrossRef]
- Haleem Medattil Ibrahim, A.; Sadanandan, S.K.; Ghaoud, T.; Subramaniam Rajkumar, V.; Sharma, M. Incipient Fault Detection in Power Distribution Networks: Review, Analysis, Challenges, and Future Directions. IEEE Access 2024, 12, 112822–112838. [Google Scholar] [CrossRef]
- Murtaza, A.A.; Saher, A.; Zafar, M.H.; Moosavi, S.K.R.; Aftab, M.F.; Sanfilippo, F. Paradigm shift for predictive maintenance and condition monitoring from Industry 4.0 to Industry 5.0: A systematic review, challenges and case study. Result Eng. 2024, 24, 24. [Google Scholar] [CrossRef]
- Mahmoud, M.A.; Md Nasir, N.R.; Gurunathan, M.; Raj, P.; Mostafa, S.A. The current state of the art in research on predictive maintenance in smart grid distribution network: Fault’s types, causes, and prediction methods—A systematic review. Energies 2021, 14, 5078. [Google Scholar] [CrossRef]
- De La Cruz, J.; Gómez-Luna, E.; Ali, M.; Vasquez, J.C.; Guerrero, J.M. Fault Location for Distribution Smart Grids: Literature Overview, Challenges, Solutions, and Future Trends. Energies 2023, 16, 2280. [Google Scholar] [CrossRef]
- Plevris, V.; Papazafeiropoulos, G. AI in Structural Health Monitoring for Infrastructure Maintenance and Safety. Infrastructures 2024, 9, 225. [Google Scholar] [CrossRef]
- Szczepaniuk, H.; Szczepaniuk, E.K. Applications of artificial intelligence algorithms in the energy sector. Energies 2022, 16, 347. [Google Scholar] [CrossRef]
- Park, C.; Kim, M. Utilization and challenges of artificial intelligence in the energy sector. Energy Environ. 2024. [Google Scholar] [CrossRef]
- Aldhyani, T.H.; Alkahtani, H. Artificial intelligence algorithm-based economic denial of sustainability attack detection systems: Cloud computing environments. Sensors 2022, 22, 4685. [Google Scholar] [CrossRef]
- Mohamed, N. Renewable Energy in the Age of AI: Cybersecurity Challenges and Opportunities. In Proceedings of the 2024 15th International Conference on Computing Communication and Networking Technologies (ICCCNT), Kamand, India, 24–28 June 2024; pp. 1–6. [Google Scholar]
- Ramadan, A.I.H.A.; Ardebili, A.A.; Longo, A.; Ficarella, A. Advancing resilience in green energy systems: Comprehensive review of ai-based data-driven solutions for security and safety. In Proceedings of the 2023 IEEE International Conference on Big Data (BigData), Sorrento, Italy, 15–18 December 2023; pp. 4002–4010. [Google Scholar]
- Tür, M.R. Energy supply security and artificial intelligence applications. Insight Turk. 2022, 24, 213–234. [Google Scholar] [CrossRef]
- Guliev, I.A.; Mammadov, A.; Ibrahimli, K. The Use of Artificial Intelligence Technologies in Energy and Climate Security. Rev. Bus. Econ. Stud. 2024, 12, 58–71. [Google Scholar] [CrossRef]
- Wang, X.; Wang, K. How is artificial intelligence technology transforming energy security? New evidence from global supply chains. Oeconomia Copernic. 2025, 16, 15–38. [Google Scholar] [CrossRef]
- Onukwulu, E.C.; Agho, M.O.; Eyo-Udo, N.L. Developing a framework for AI-driven optimization of supply chains in energy sector. Glob. J. Adv. Res. Rev. 2023, 1, 82–101. [Google Scholar] [CrossRef]
- Aljarrah, E. AI-based model for Prediction of Power consumption in smart grid-smart way towards smart city using blockchain technology. Intell. Syst. Appl. 2024, 24, 104199. [Google Scholar] [CrossRef]
- Yang, K.L.; Zhang, X.; Luo, H.J.; Hou, X.P.; Lin, Y.; Wu, J.Y.; Yu, L. Predicting energy prices based on a novel hybrid machine learning: Comprehensive study of multi-step price forecasting. Energy 2024, 298, 18. [Google Scholar] [CrossRef]
- Nyangon, J. Climate-Proofing Critical Energy Infrastructure: Smart Grids, Artificial Intelligence, and Machine Learning for Power System Resilience against Extreme Weather Events. J. Infrastruct. Syst. 2024, 30, 16. [Google Scholar] [CrossRef]
- Fan, Z.C.; Yan, Z.; Wen, S.P. Deep Learning and Artificial Intelligence in Sustainability: A Review of SDGs, Renewable Energy, and Environmental Health. Sustainability 2023, 15, 13493. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- Python Software Foundation. Python Language Reference (Version 3.11); Python Software Foundation: Beaverton, OR, USA, 2022. [Google Scholar]
- SeatGeek Fuzzywuzzy: Fuzzy String Matching in Python. Aviliable online: https://github.com/seatgeek/fuzzywuzzy (accessed on 10 April 2025).
- Landis, J.R.; Koch, G.G. The Measurement of Observer Agreement for Categorical Data. Biometrics 1977, 33, 159–174. [Google Scholar] [CrossRef]
- QSR International. NVivo (Version 12); QSR International: Burlington, MA, USA, 2020. [Google Scholar]
- Athe, P.; Dinh, N.; Gupta, A. Knowledge representation to support EMDAP implementation in advanced reactor licensing applications. Nucl. Eng. Des. 2024, 428, 113526. [Google Scholar] [CrossRef]
- Abrar, M.; Salam, A.; Ullah, F.; Nadeem, M.; AlSalman, H.; Mukred, M.; Amin, F. Advanced neural network-based model for predicting court decisions on child custody. PeerJ Comput. Sci. 2024, 10, e2293. [Google Scholar] [CrossRef]
- Aydöner, C. Development and application of a GIS tool in the design of surface water quality monitoring networks: A micro-watershed–based approach. Environ. Monit. Assess. 2024, 196, 985. [Google Scholar] [CrossRef]
- Bureau, P. Climate knowledge or climate debate? Terminology 2024, 30, 35–57. [Google Scholar] [CrossRef]
- Hashmi, E.; Yildirim Yayilgan, S.; Hameed, I.A.; Mudassar Yamin, M.; Ullah, M.; Abomhara, M. Enhancing Multilingual Hate Speech Detection: From Language-Specific Insights to Cross-Linguistic Integration. IEEE Access 2024, 12, 121507–121537. [Google Scholar] [CrossRef]
- Li, J.; Yao, R.; Ren, M.; Zhang, J.; Zhang, X.; Ma, T. Distributed Optical Fiber Vibration Signal Recognition Technology Based on Gramian Angular Field. Zhongguo Jiguang 2024, 51, 0506003. [Google Scholar] [CrossRef]
- Zhang, F.; Xu, M.C.; Yan, Y.K.; Huang, K.M. Public discourses and government interventions behind China’s ambitious carbon neutrality goal. Commun. Earth Environ. 2023, 4, 10. [Google Scholar] [CrossRef]
- Mattia, S.; Paolo, M.; Stefano, N. Virtual earth cloud: A multi-cloud framework for enabling geosciences digital ecosystems. Int. J. Digit. Earth 2023, 16, 43–65. [Google Scholar] [CrossRef]
- Li, X. Legal text basic element identification based on the BERT model in the judicial field. J. Comput. Methods Sci. Eng. 2024, 24, 2333–2342. [Google Scholar] [CrossRef]
- Murshed, M.G.S.; Bahmani, K.; Schuckers, S.; Hussain, F. Deep Age-Invariant Fingerprint Segmentation System. IEEE Trans. Biom. Behav. Iden. Sci. 2024, 7, 313–330. [Google Scholar] [CrossRef]
- Srinivasan, R.; Rajeswari, D.; Arivarasi, A.; Govindasamy, A. Real-Time Vehicle Classification and License Plate Recognition via Deformable Convolution-Based Yolo v8 Network. IEEE Sens. J. 2024, 24, 39771–39778. [Google Scholar] [CrossRef]
- Saba, M.; Valdelamar Martínez, D.; Torres Gil, L.K.; Chanchí Golondrino, G.E.; Alarcón, M.A.O. Application of Supervised Learning Methods and Information Gain Methods in the Determination of Asbestos–Cement Roofs’ Deterioration State. Appl. Sci. 2024, 14, 8441. [Google Scholar] [CrossRef]
- Jamil, S.; Rahman, M.; Haider, A. Bag of features (Bof) based deep learning framework for bleached corals detection. Big Data Cogn. Comput. 2021, 5, 53. [Google Scholar] [CrossRef]
- Armand, L. The posthuman abstract: AI, DRONOLOGY & “BECOMING ALIEN”. AI Soc. 2023, 38, 2571–2576. [Google Scholar] [CrossRef]
- Felizzato, G.; Liberatore, N.; Mengali, S.; Viola, R.; Moriggia, V.; Romolo, F.S. A Deep Learning Approach to Investigating Clandestine Laboratories Using a GC-QEPAS Sensor. Chemosensors 2024, 12, 152. [Google Scholar] [CrossRef]
- Azha, S.F.; Sidek, L.M.; Ahmad, Z.; Zhang, J.; Basri, H.; Zawawi, M.H.; Noh, N.M.; Ahmed, A.N. Enhancing river health monitoring: Developing a reliable predictive model and mitigation plan. Ecol. Indic. 2023, 156, 22. [Google Scholar] [CrossRef]
- Bai, Q.; Amiri-Simkooei, A.; Mestdagh, S.; Simons, D.G.; Snellen, M. Mussel culture monitoring with semi-supervised machine learning on multibeam echosounder data using label spreading. J. Environ. Manag. 2024, 369, 122250. [Google Scholar] [CrossRef]
- Felix, C.B.; Chen, W.H.; Ubando, A.T.; Park, Y.K.; Lin, K.Y.A.; Pugazhendhi, A.; Nguyen, T.B.; Dong, C.D. A comprehensive review of thermogravimetric analysis in lignocellulosic and algal biomass gasification. Chem. Eng. J. 2022, 445, 136730. [Google Scholar] [CrossRef]
- Alsamhi, S.H.; Shvetsov, A.V.; Kumar, S.; Hassan, J.; Alhartomi, M.A.; Shvetsova, S.V.; Sahal, R.; Hawbani, A. Computing in the Sky: A Survey on Intelligent Ubiquitous Computing for UAV-Assisted 6G Networks and Industry 4.0/5.0. Drones 2022, 6, 177. [Google Scholar] [CrossRef]
- Wang, Z.; Hong, T.Z.; Li, H.; Piette, M.A. Predicting city-scale daily electricity consumption using data-driven models. Adv. Appl. Energy 2021, 2, 21. [Google Scholar] [CrossRef]
- Fang, L.; He, B. A deep learning framework using multi-feature fusion recurrent neural networks for energy consumption forecasting. Appl. Energy 2023, 348, 17. [Google Scholar] [CrossRef]
- Rao, A.M.; Sharma, G.D.; Tiwari, A.K.; Hossain, M.R.; Dev, D. Crude oil Price forecasting: Leveraging machine learning for global economic stability. Technol. Forecast. Social Change 2025, 216, 19. [Google Scholar] [CrossRef]
- Gurbanov, S.; Mikayilov, J.I.; Mukhtarov, S.; Maharramli, S. The price and income elasticities of natural gas demand in Azerbaijan: Is there room to export more? Hum. Soc. Sci. Commun. 2023, 10, 11. [Google Scholar] [CrossRef]
- Magazzino, C.; Gattone, T.; Giolli, L. Dynamic interactions between oil prices and renewable energy production in Italy amid the COVID-19 pandemic: Wavelet and machine learning analyses. Energy Ecol. Environ. 2024, 9, 502–520. [Google Scholar] [CrossRef]
- Medina, A.M.; Alvaro, J.A.H. Using Generative Pre-Trained Transformers (GPT) for Electricity Price Trend Forecasting in the Spanish Market. Energies 2024, 17, 2338. [Google Scholar] [CrossRef]
- Meher, B.K.; Anand, A.; Kumar, S.; Birau, R.; Singh, M. Effectiveness of Random Forest Model in Predicting Stock Prices of Solar Energy Companies in India. Int. J. Energy Econ. Policy 2024, 14, 426–434. [Google Scholar] [CrossRef]
- Sadorsky, P. A Random Forests Approach to Predicting Clean Energy Stock Prices. J. Risk Financ. Manag. 2021, 14, 48. [Google Scholar] [CrossRef]
- Wang, X.; Mao, Y.Q.; Duan, Y.H.; Guo, Y.B. A Study on China coal Price forecasting based on CEEMDAN-GWO-CatBoost hybrid forecasting model under Carbon Neutral Target. Front. Environ. Sci. 2022, 10, 16. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, K.L.; Lu, Q.; Wu, J.Y.; Yu, L.; Lin, Y. Predicting carbon futures prices based on a new hybrid machine learning: Comparative study of carbon prices in different periods. J. Environ. Manag. 2023, 346, 14. [Google Scholar] [CrossRef]
- Pan, B.; Song, T.R.; Yue, M.; Chen, S.N.; Zhang, L.J.; Edlmann, K.; Neil, C.W.; Zhu, W.Y.; Iglauer, S. Machine learning- based shale wettability prediction: Implications for H2, CH4 and CO2 geo-storage. Int. J. Hydrogen Energy 2024, 56, 1384–1390. [Google Scholar] [CrossRef]
- Pattnaik, A.; Kumar Dauda, A.; Padhee, S.; Panda, S.; Panda, A. Security constrained optimal power flow solution of hybrid storage integrated cleaner power systems. Appl. Therm. Eng. 2023, 232, 121058. [Google Scholar] [CrossRef]
- Tawalbeh, M.; Farooq, A.; Martis, R.; Al-Othman, A. Optimization techniques for electrochemical devices for hydrogen production and energy storage applications. Int. J. Hydrogen Energy 2024, 52, 1058–1092. [Google Scholar] [CrossRef]
- Wang, H.S.; Williams-Stroud, S.; Crandall, D.; Chen, C. Machine learning and deep learning for mineralogy interpretation and CO2 saturation estimation in geological carbon Storage: A case study in the Illinois Basin. Fuel 2024, 361, 14. [Google Scholar] [CrossRef]
- Zou, C.; Li, S.; Liu, C.; Wang, L. New energy storage technologies and their business models empowered by new quality productivity forces. Shiyou Xuebao 2024, 45, 1443–1461. [Google Scholar] [CrossRef]
- Chowdhury, C. Bayesian Optimization for Efficient Prediction of Gas Uptake in Nanoporous Materials. ChemPhysChem 2024, 25, 10. [Google Scholar] [CrossRef] [PubMed]
- Cong, W. Machine learning and LSSVR model optimization for gasification process prediction. Multiscale Multidiscip. Model. Exp. Des. 2024, 7, 5991–6018. [Google Scholar] [CrossRef]
- Ermoliev, Y.; Zagorodny, A.G.; Bogdanov, V.L.; Ermolieva, T.; Havlik, P.; Rovenskaya, E.; Komendantova, N.; Obersteiner, M. Linking Distributed Optimization Models for Food, Water, and Energy Security Nexus Management. Sustainability 2022, 14, 1255. [Google Scholar] [CrossRef]
- Jakoplic, A.; Frankovic, D.; Bulat, H.; Rojnic, M. Location-Specific Optimization of Photovoltaic Forecasting Models Using Fine-Tuning Techniques. IEEE Access 2024, 12, 100646–100658. [Google Scholar] [CrossRef]
- Vaish, J.; Tiwari, A.K.; Siddiqui, K.M. Optimization of micro grid with distributed energy resources using physics based meta heuristic techniques. IET Renew. Power Gener. 2023, 19, e12699. [Google Scholar] [CrossRef]
- Yang, Z.; Ren, Z.; Sun, Z.; Liu, M.; Jiang, J.; Yin, Y. Security-constrained Economic Dispatch of Renewable Energy Integrated Power Systems Based on Proximal Policy Optimization Algorithm. Dianwang Jishu 2023, 47, 988–997. [Google Scholar] [CrossRef]
- Zhu, J.J.; Feng, C.; Zhao, Z.Y.; Yang, H.M.; Liu, Y.J. Application of Deep Learning Algorithm in Optimization Control of Electrostatic Precipitator in Coal-Fired Power Plants. Processes 2024, 12, 477. [Google Scholar] [CrossRef]
- Nguyen, V.G.; Sirohi, R.; Tran, M.H.; Truong, T.H.; Duong, M.T.; Pham, M.T.; Cao, D.N. Renewable energy role in low-carbon economy and net-zero goal: Perspectives and prospects. Energy Environ. 2024, 36, 2248–2287. [Google Scholar] [CrossRef]
- Ali, J.S.; Qiblawey, Y.; Alassi, A.; Massoud, A.M.; Muyeen, S.M.; Abu-Rub, H. Power System Stability With High Penetration of Renewable Energy Sources: Challenges, Assessment, and Mitigation Strategies. IEEE Access 2025, 13, 39912–39934. [Google Scholar] [CrossRef]
- Lin, Y.; Lu, Q.; Tan, B.; Yu, Y. Forecasting energy prices using a novel hybrid model with variational mode decomposition. Energy 2022, 246, 123366. [Google Scholar] [CrossRef]
- Kivimaa, P.; Sivonen, M.H. How will renewables expansion and hydrocarbon decline impact security? Analysis from a socio-technical transitions perspective. Environ. Innov. Soc. Trans. 2023, 48, 18. [Google Scholar] [CrossRef]
- Li, Q.; Cheng, Z.; Fang, J.; Mou, Q.; Liu, F.; Cong, L. Research progress on variation pattern and monitoring control technology of negative pressure for gas drainage in directional long borehole. Meitiandizhi Yu Kantan Coal. Geol. Explor. 2024, 52, 171–182. [Google Scholar] [CrossRef]
- Mavuthanahalli, V.; Shankar, H. Statistical Analysis of PV Cell Power Generation and Influence of Weather on Power Generation. J. Mines Met. Fuels 2023, 71, 217–222. [Google Scholar]
- He, J.; Li, Y.H.; Xu, X.C.; Wu, D. Energy consumption forecasting for oil and coal in China based on hybrid deep learning. PLoS ONE 2025, 20, 21. [Google Scholar] [CrossRef]
- Huang, Y.R.; Zheng, Z. Research Hotspots and Trend Analysis of Energy Security Based on Citespace Knowledge Graph. Chem. Tech. Fuels Oils 2023, 59, 1024–1033. [Google Scholar] [CrossRef]
- Bhutta, M.S.; Li, Y.; Abubakar, M.; Almasoudi, F.M.; Alatawi, K.S.S.; Altimania, M.R.; Al-Barashi, M. Optimizing solar power efficiency in smart grids using hybrid machine learning models for accurate energy generation prediction. Sci. Rep. 2024, 14, 25. [Google Scholar] [CrossRef]
- Gasmi, H.; Abed, A.M.; Dutta, A.K.; Alhomayani, F.M.; Mahariq, I.; Alturise, F.; Alkhalaf, S.; Alkhalifah, T.; Elmasry, Y.; Khan, B. Heat recovery integration in a hybrid geothermal-based system producing power and heating using machine learning approach to maximize outputs. Case Stud. Therm. Eng. 2024, 63, 12. [Google Scholar] [CrossRef]
- Taneja, S.; Alioto, M. PUF Architecture with Run-Time Adaptation for Resilient and Energy-Efficient Key Generation via Sensor Fusion. IEEE J. Solid-State Circuits 2021, 56, 2182–2192. [Google Scholar] [CrossRef]
- Sujod, M.Z.; Ghazali, S.N.A.M.; Kadir, M.F.A.; Al-Shetwi, A.Q. PV Fault Classification: Impact on Accuracy Performance Using Feature Extraction in Random-Forest Cross Validation Algorithm. J. Adv. Res. Des. 2024, 123, 66–78. [Google Scholar] [CrossRef]
- Cui, J.; Fu, T.H.; Yang, J.Y.; Wang, S.J.; Li, C.R.; Han, N.; Zhang, X.M. An active early warning method for abnormal electricity load consumption based on data multi-dimensional feature. Energy 2025, 314, 15. [Google Scholar] [CrossRef]
- Hashim, M.; Khan, L.; Javaid, N.; Ullah, Z.; Javed, A. Stacked machine learning models for non-technical loss detection in smart grid: A comparative analysis. Energy Rep. 2024, 12, 1235–1253. [Google Scholar] [CrossRef]
- Mei, Q.; Qinyou, H.; Hu, Y.; Yang, Y.; Liu, X.; Huang, Z.; Wang, P. Structural analysis and vulnerability assessment of the European LNG maritime supply chain network (2018–2020). Ocean. Coast. Manag. 2024, 253, 107126. [Google Scholar] [CrossRef]
- Liu, Z.X.; Zhang, X.; Sun, Y.; Zhou, Y.K. Advanced controls on energy reliability, flexibility and occupant-centric control for smart and energy-efficient buildings. Energy Build. 2023, 297, 24. [Google Scholar] [CrossRef]
- Chen, D.Y.; Lin, X.J.; Qiao, Y.Y. Perspectives for artificial intelligence in sustainable energy systems. Energy 2025, 318, 9. [Google Scholar] [CrossRef]
- Kishore, S.R.N.; Mandal, S.; Thakur, M. Domain-informed multi-step wind speed forecasting: Evaluating extreme wind conditions and seasonal variations. Earth Sci. Inform. 2025, 18, 25. [Google Scholar] [CrossRef]
- Nguyen, T.C. AI as a solution for tackling the sustainable energy challenge in developing countries. Energy Sustain. Dev. 2025, 87, 3. [Google Scholar] [CrossRef]
- Kumar, N.; Tripathi, M.M.; Gupta, S.; Alotaibi, M.A.; Malik, H.; Afthanorhan, A. Study of Potential Impact of Wind Energy on Electricity Price Using Regression Techniques. Sustainability 2023, 15, 14448. [Google Scholar] [CrossRef]
- Soltani, A. Exploring the interplay of foreign direct investment, digitalization, and green finance in renewable energy: Advanced analytical methods and machine learning insights. Energy Conv. Manag.-X 2024, 24, 19. [Google Scholar] [CrossRef]
- Zhou, Y.; Chen, J.; Zhang, L.; Zhang, Y.; Teng, C.; Huang, X. Opportunity for Developing Ultra High Voltage Transmission Technology Under the Emission Peak, Carbon Neutrality and New Infrastructure. Gaodianya Jishu 2021, 47, 2396–2408. [Google Scholar] [CrossRef]
- Hou, Z.W.; Liu, J.R. Enhancing Smart Grid Sustainability: Using Advanced Hybrid Machine Learning Techniques While Considering Multiple Influencing Factors for Imputing Missing Electric Load Data. Sustainability 2024, 16, 8092. [Google Scholar] [CrossRef]
- Ashfaq, T.; Khalid, M.I.; Ali, G.; Affendi, M.E.; Iqbal, J.; Hussain, S.; Ullah, S.S.; Yahaya, A.S.; Khalid, R.; Mateen, A. An Efficient and Secure Energy Trading Approach with Machine Learning Technique and Consortium Blockchain. Sensors 2022, 22, 7263. [Google Scholar] [CrossRef]
- Neshat, M.; Thilakaratne, M.; El-Abd, M.; Mirjalili, S.; Gandomi, A.H.; Boland, J. Smart Buildings Energy Consumption Forecasting using Adaptive Evolutionary Ensemble Learning Models. arXiv 2025, arXiv:2506.11864. [Google Scholar]
- Bangroo, I.S. AI-based predictive analytic approaches for safeguarding the future of electric/hybrid vehicles. arXiv 2023, arXiv:2304.13841. [Google Scholar]
- Chung, J.-W.; Talati, N.; Chowdhury, M. Toward cross-layer energy optimizations in AI systems. arXiv 2024, arXiv:2404.06675. [Google Scholar]
- Naeini, H.K.; Shomali, R.; Pishahang, A.; Hasanzadeh, H.; Mohammadi, M.; Asadi, S.; Varmaghani, A.; Lonbar, A.G. PINN-DT: Optimizing Energy Consumption in Smart Building Using Hybrid Physics-Informed Neural Networks and Digital Twin Framework with Blockchain Security. arXiv 2025, arXiv:2503.00331. [Google Scholar]
- Li, J.; Zhang, R.; Wang, H.; Liu, Z.; Lai, H.; Zhang, Y. Deep reinforcement learning for voltage control and renewable accommodation using spatial-temporal graph information. IEEE Trans. Sustain. Energy 2023, 15, 249–262. [Google Scholar] [CrossRef]
- Telila, Y.K.; Senevirathne, D.; Tissera, D.; Narayan, A.; Capretz, M.A.; Grolinger, K. Federated Learning for Anomaly Detection in Energy Consumption Data: Assessing the Vulnerability to Adversarial Attacks. In Proceedings of the 2025 IEEE Conference on Technologies for Sustainability (SusTech), Los Angeles, CA, USA, 20–23 April 2025; pp. 1–8. [Google Scholar]
- Diao, R.; Shi, D.; Zhang, B.; Wang, S.; Li, H.; Xu, C.; Lan, T.; Bian, D.; Duan, J. On training effective reinforcement learning agents for real-time power grid operation and control. arXiv 2020, arXiv:2012.06458. [Google Scholar]
- Khan, M.A.U.H.; Islam, M.; Ahmed, I.; Rabbi, M.M.K.; Anonna, F.R.; Zeeshan, M.; Ridoy, M.H.; Chowdhury, B.R.; Rabbi, M.N.S.; Sadnan, G. Secure Energy Transactions Using Blockchain Leveraging AI for Fraud Detection and Energy Market Stability. arXiv 2025, arXiv:2506.19870. [Google Scholar] [CrossRef]
- Paulraj, J.; Raghuraman, B.; Gopalakrishnan, N.; Otoum, Y. Autonomous AI-based Cybersecurity Framework for Critical Infrastructure: Real-Time Threat Mitigation. arXiv 2025, arXiv:2507.07416. [Google Scholar]
- Böcking, L.; Michaelis, A.; Schäfermeier, B.; Baier, A.; Kühl, N.; Körner, M.-F.; Nolting, L. Generative Artificial Intelligence in the Energy Sector; Fraunhofer FIT, Fraunhofer IEE and TenneT TSO GmbH: Bayreuth, Germany, 2024. [Google Scholar]
- IEA. Energy and AI. 2025. Available online: https://www.iea.org/reports/energy-and-ai (accessed on 1 August 2025).
- Das, T. Accelerating AI Sustainability and Innovation at the Department of Energy; Bipartisan Policy Center: Washington, DC, USA, 2024. [Google Scholar]
- European Commission. The EU Artificial Intelligence Act. Official Journal Version of 13 June 2024. 2024. Available online: https://eur-lex.europa.eu/eli/reg/2024/1689/oj/eng (accessed on 1 August 2025).
- European Commission. White Paper on Artificial Intelligence—A European Approach to Excellence and Trust. 2020. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52020DC0065 (accessed on 1 August 2025).
- Kuhlmann, A.; Mehlum, E.; Moore, J. Harnessing Artificial Intelligence to Accelerate the Energy Transition; World Economic Forum: Geneva, Switzerland, 2021; p. 2022. Available online: https://www3.weforum.org/docs/WEF_Harnessing_AI_to_accelerate_the_Energy_Transition_2021.pdf (accessed on 1 August 2025).
- The Linux Foundation. Unlocking AI’s Potential for the Energy Transition Through Open Source; The Linux Foundation: San Francisco, CA, USA, 2025; Available online: https://lfenergy.org/unlocking-ais-potential-for-the-energy-transition-through-open-source/ (accessed on 1 August 2025).
- European Commission. Communication from the Commission to the European Parliament, the European Council, the Council, the European Economic and Social Committee and the Committee of the Regions REPowerEU Plan. COM/2022/230 Final. 2022. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:52022DC0230 (accessed on 1 August 2025).
- European Commission. Directive (EU) 2022/2555 of the European Parliament and of the Council of 14 December 2022 on Measures for a High Common Level of Cybersecurity Across the Union, Amending Regulation (EU) No 910/2014 and Directive (EU) 2018/1972, and Repealing Directive (EU) 2016/1148 (NIS 2 Directive) (Text with EEA Relevance). PE/32/2022/REV/2. 2022. Available online: https://eur-lex.europa.eu/eli/dir/2022/2555/oj/eng (accessed on 1 August 2025).
- International Energy Agency. Climate Resilience for Energy Security; International Energy Agency: Paris, France, 2022. [Google Scholar]
- Shi, D.; Li, Z.; Zurada, J.; Manikas, A.; Guan, J.; Weichbroth, P. Ontology-based text convolution neural network (TextCNN) for prediction of construction accidents. Knowl. Inf. Syst. 2024, 66, 2651–2681. [Google Scholar] [CrossRef]
- Bałdyga, M.; Barański, K.; Belter, J.; Kalinowski, M.; Weichbroth, P. Anomaly Detection in Railway Sensor Data Environments: State-of-the-Art Methods and Empirical Performance Evaluation. Sensors 2024, 24, 2633. [Google Scholar] [CrossRef]
- Shi, D.; Gan, S.; Zurada, J.; Guan, J.; Wang, F.; Weichbroth, P. A multi-model approach to construction site safety: Fault trees, Bayesian networks, and ontology reasoning. Expert. Syst. Appl. 2025, 288, 127817. [Google Scholar] [CrossRef]
Method | Description | Unit of Analysis | Output | Evaluated Metric |
---|---|---|---|---|
Trigram Frequency Analysis (2.5.1) | NLP-based extraction of three-word phrases with role assignment | 165 abstracts | Role frequencies (based on trigrams) | Importance score (W) based on unique trigrams (U) |
Manual Coding (2.5.2) | Interpretive categorisation of functional excerpts using NVivo, based on the researcher’s contextual understanding | 219 excerpts | Single operational role per excerpt | Intracoder reliability (κ = 0.95) |
Embedding Clustering (2.5.3) | Sentence-BERT clustering with UMAP + HDBSCAN, inductive labelling | 219 excerpts | Operational role categories from clusters | Cluster coherence |
Triangulation (2.5.4) | Cross-method alignment and statistical validation | Operational roles across methods | Concordant typology | Spearman’s ρ and Pearson’s r |
Stage | Count |
---|---|
Records retrieved from Scopus | 152 |
Records retrieved from Web of Science | 141 |
Total records retrieved | 293 |
Duplicates removed automatically | 52 |
Duplicates removed manually | 38 |
Unique records after deduplication | 203 |
Records excluded after screening | 38 |
Final records included | 165 |
Year | Publications |
---|---|
2021 | 10 |
2022 | 14 |
2023 | 37 |
2024 | 64 |
2025 | 40 |
Total | 165 |
Operational Role | Exemplary Trigrams (up to 3) | Unique Trigrams (U) | Total Occurrences (O) | Importance Score (W) | Example Publications |
---|---|---|---|---|---|
Energy market operations/trading | [“energy load forecasting”, “carbon price prediction”, “grid operation”] | 53 | 256 | 415 | [23,50,51,52,53,54,55,56,57,58,59] |
Energy storage | [“energy load forecasting”, “carbon price prediction”, “grid operation”] | 52 | 254 | 410 | [60,61,62,63,64] |
Optimisation of energy systems/operations | [“grid operation”, “system management”, “energy management”] | 51 | 249 | 402 | [62,65,66,67,68,69,70,71] |
Renewable energy integration | [“grid operation”, “system management”, “energy management”] | 5 | 34 | 49 | [70,72,73] |
Forecasting/predicting | [“energy load forecasting”, “carbon price prediction”] | 2 | 7 | 13 | [23,52,55,56,57,58,59,74] |
Cybersecurity | [“security issues related”] | 1 | 3 | 6 | [75] |
Monitoring/anomaly detection | [“parameter monitoring technology”] | 1 | 3 | 6 | [76] |
Grid management and stability | [“grid operation”, “system management”, “energy management”] | 0 | 0 | 0 | |
Planning of energy resources/infrastructure | [“grid operation”, “system management”, “energy management”] | 0 | 0 | 0 |
No. | Operational Role | No. of Excerpts | Representative Excerpt |
---|---|---|---|
1 | Forecasting and prediction | 48 | “model for real-world photovoltaic power generation forecasting” [68], “a statistical model that forecasts the power generation at the PV cell plant” [77], “consumption forecasting of oil and coal” [78], “forecasting natural gas consumption” [6], “energy security prediction and early warning mechanism” [79]. |
2 | Optimisation of energy systems | 42 | “proximal policy optimisation algorithm is figured out” [70], “optimise energy production and distribution” [80], “optimising gasification processes” [66]. |
3 | Renewable energy integration | 33 | “intelligent integration of new energy storage with the source, grid, and load” [64], “in-depth thermodynamic analysis and optimisation of an integrated renewable energy system” [66,81]. |
4 | Monitoring and anomaly detection | 29 | “instability monitoring and adaptive error correction” [82], “gas drainage parameter monitoring technology” [76], “fault diagnosis” [83]. |
5 | Grid management and stability | 24 | “maintaining grid stability” [84], “overcomes the impact of theft attacks on the smart grid” [85]. |
6 | Energy market operations | 23 | “a strategic framework for managing energy trade complexity” [86], “building industry with optimal tradeoff strategies between energy consumption and thermal comfort of built environment” [87]. |
7 | Cybersecurity | 20 | “implementing layered AI-based cybersecurity measures to defend smart energy systems” [88], “overcomes the impact of theft attacks on the smart grid” [85]. |
No. | Operational Role | No. of Excerpts | Representative Excerpt |
---|---|---|---|
1 | Forecasting and prediction | 32 | “wind speed forecasting” [89], “prediction of carbon price” [59], “crude oil price forecasting” [52], “enhancing electricity demand forecasting and optimising power grids to reduce energy losses” [90]. |
2 | Energy market operations | 24 | “the impact analysis of wind energy on electricity prices” [91], “prediction of carbon price” [59].” |
3 | Renewable energy integration | 19 | “a novel framework for enhancing renewable energy systems” [92]. |
4 | Infrastructure and resource planning | 15 | “development of ‘the new infrastructure” [93]. |
5 | Optimisation of energy systems | 13 | “enhancing electricity demand forecasting and optimising power grids to reduce energy losses” [90], “optimise renewable energy deployment” [92]. |
6 | Monitoring and anomaly detection | 7 | “resilience of power grid operations” [94]. |
7 | Cybersecurity | 7 | “a secure energy trading mechanism based on blockchain technology” [95], “overcomes the impact of theft attacks on the smart grid” [85]. |
8 | Grid management and operations | 5 | “aids in grid operation” [77]. |
Operational Role | Trigram Analysis (U) | Manual Coding | Semantic Clustering |
---|---|---|---|
Forecasting and prediction | 2 | 48 | 32 |
Optimisation of energy systems | 51 | 42 | 13 |
Renewable energy integration | 5 | 33 | 19 |
Monitoring and anomaly detection | 1 | 29 | 7 |
Grid management and stability | – | 24 | 5 |
Energy market operations/trading | 53 | 23 | 24 |
Cybersecurity | 1 | 20 | 7 |
Planning of energy infrastructure | – | – | 15 |
Comparison Method Pair | Spearman ρ | p-Value | Pearson r | p-Value |
---|---|---|---|---|
Manual Coding vs. Trigram | 0.68 | 0.07 | 0.73 | 0.04 |
Manual Coding vs. Clustering | 0.91 | 0.002 | 0.88 | 0.004 |
Trigram vs. Clustering | 0.66 | 0.08 | 0.57 | 0.13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gawlik-Kobylińska, M. Operational Roles of Artificial Intelligence in Energy Security: A Triangulated Review of Abstracts (2021–2025). Energies 2025, 18, 4275. https://doi.org/10.3390/en18164275
Gawlik-Kobylińska M. Operational Roles of Artificial Intelligence in Energy Security: A Triangulated Review of Abstracts (2021–2025). Energies. 2025; 18(16):4275. https://doi.org/10.3390/en18164275
Chicago/Turabian StyleGawlik-Kobylińska, Małgorzata. 2025. "Operational Roles of Artificial Intelligence in Energy Security: A Triangulated Review of Abstracts (2021–2025)" Energies 18, no. 16: 4275. https://doi.org/10.3390/en18164275
APA StyleGawlik-Kobylińska, M. (2025). Operational Roles of Artificial Intelligence in Energy Security: A Triangulated Review of Abstracts (2021–2025). Energies, 18(16), 4275. https://doi.org/10.3390/en18164275