Design of Pumping Installations with the Energy-Efficient Pumps (EEP) Tool †
Abstract
1. Introduction
2. Materials and Methods: Organisation of the Workbook
- -
- A comparison of equations for estimating the head losses in pipes (major losses) (Worksheet “10_Head losses”).
- -
- A comparison of equations for the estimation of the friction coefficient (λ), including explicit and implicit equations (Worksheet “10_Head losses”).
- -
- A comparison of the total head losses calculated with the reference procedure and the equivalent length method, assuming different percentages for the minor losses (Worksheet “11_Head losses—Leq”).
- -
- A procedure to obtain the system equation of a given installation (Worksheet “7_System curve”).
- -
- A procedure to calculate the rotation speed of the pump to obtain a specific operating point (Worksheet “12_Point 2”).
- -
- A procedure to perform different calculations with dimensionless coefficients (Worksheet “12_Point 2”).
- -
- A procedure to assess the occurrence of cavitation (Worksheet “20_Cavitation”).
- -
- A procedure to assess possible economic savings (Worksheet “21_Table 3 points + EUR”).
3. Results
3.1. Major Head Losses, Friction Coefficient, and Minor Head Losses
3.2. System Curve
3.3. Pump Performance Curves
3.4. Operating Points
3.5. Dimensionless Coefficients
3.6. Net Positive Suction Head (NPSH)
3.7. Overall Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ribeiro, J.T.G. Sistemas Elevatórios de Águas Residuais em Edifícios. Dissertação de Mestrado em Engenharia Civil, Especialização em Construções. Master’s Thesis, Faculdade de Engenharia da Universidade do Porto, Porto, Portugal, 2014. (In Portuguese). [Google Scholar]
- Grundfos. Seminário Gestão Eficiente de Bombas Centrífugas; Instituto Superior de Engenharia de Coimbra: Coimbra, Portugal, 2024. (In Portuguese) [Google Scholar]
- Grundfos. Grunfdos Product Selection. 2025. Available online: https://product-selection.grundfos.com/pt/advanced-selection (accessed on 30 July 2025).
- Zhang, H.; Li, K.; Liu, T.; Liu, Y.; Hu, J.; Zuo, Q.; Jiang, L. Analysis the Composition of Hydraulic Radial Force on Centrifugal Pump Impeller: A Data-Centric Approach Based on CFD Datasets. Appl. Sci. 2025, 15, 7597. [Google Scholar] [CrossRef]
- Nan, L.; Wang, Y.; Chen, D.; Huang, W.; Zhu, Z.; Liu, F. A Novel Energy Performance Prediction Approach towards Parametric Modeling of a Centrifugal Pump in the Design Process. Water 2023, 15, 1951. [Google Scholar] [CrossRef]
- Pei, Y.; Liu, Q.; Ooi, K.T. Research on Energy-Efficient Disc Pumps: A Review on Physical Models and Energy Efficiency. Machines 2023, 11, 954. [Google Scholar] [CrossRef]
- Yu, J.; Akoto, E.; Degbedzui, D.K.; Hu, L. Predicting Centrifugal Pumps’ Complete Characteristics Using Machine Learning. Processes 2023, 11, 524. [Google Scholar] [CrossRef]
- Pavlenko, I.; Kulikov, O.; Ratushnyi, O.; Ivanov, V.; Pitel’, J.; Kondus, V. Effect of Impeller Trimming on the Energy Efficiency of the Counter-Rotating Pumping Stage. Appl. Sci. 2023, 13, 761. [Google Scholar] [CrossRef]
- Pavlenko, I.; Ciszak, O.; Kondus, V.; Ratushnyi, O.; Ivchenko, O.; Kolisnichenko, E.; Kulikov, O.; Ivanov, V. An Increase in the Energy Efficiency of a New Design of Pumps for Nuclear Power Plants. Energies 2023, 16, 2929. [Google Scholar] [CrossRef]
- Oliveira, A.V.M.; Ramirez, J.R.; Mendes, J.C.A.F. Design of Pumping Installations: Development of an Excel Workbook for Hydraulic Machines Lectures. In Proceedings of the CYTEF 2024—XII Iberian Congress/X Ibero-American Congress Refrigeration Sciences and Technologies, Elche, Spain, 26–28 June 2024; Valero, F.J.A., García, S.C., Llorens, D.C., Miralles, M.L., Beltrán, P.J.M., Martínez, P.M., González, J.M., Cámara, J.M., Ramírez, J.R., Quiles, P.G.V., Eds.; (Abstract Book). p. 96, ISBN 978-84-09-61977-1. [Google Scholar] [CrossRef]
- Lahiouel, Y.; Lahiouel, R. Evaluation of energy losses in pipes. In Proceedings of the CFM2015-22ème, Congrès Français de Mécanique, Lyon, France, 24–28 August 2015. [Google Scholar]
- Prates Coelho, A.; Renato Zanini, J.; Teixeira de Faria, R.; Barcellos Dalri, A.; Fabiano Palaretti, L. Comparação de equações para estimativa da perda de carga em tubulações de polietileno. Appl. Res. Agrotechnol. 2018, 11, 25–31. (In Portuguese) [Google Scholar]
- Vidal, L.E.O.; Maury, D.E.C.; Chipana, R.A.F. Hydraulic balance of mine pumping systems: A case study. Ingeniare Rev. Chil. Ing. 2010, 18, 335–342. [Google Scholar]
- Madodi, S.A.; Abdul Wahhab, H.A.; Mahmoud, N.S. Comparative Assessment of Friction Head Losses in Pipe Flow. In ICPER 2020. Lecture Notes in Mechanical Engineering 2023; Ahmad, F., Al-Kayiem, H.H., King Soon, W.P., Eds.; Springer: Singapore, 2022. [Google Scholar] [CrossRef]
- Robaina, A.D. Análise de equações explícitas para o cálculo do coeficiente “f” da fórmula universal de perda de carga. Ciência Rural. Santa Maria 1992, 22, 157–159. (In Portuguese) [Google Scholar] [CrossRef]
- Marques, J.A.A.S.; Sousa, J.J.O. Fórmula de Colebrook-White: Velha mas actual. Soluções empíricas. Faculdade de Ciências e Tecnologia da Universidade de Coimbra. In Proceedings of the Atas do III SILUSBA—Simpósio de Hidráulica e Recursos Hídricos dos Países de Língua Oficial Portuguesa, Maputo, Moçambique, 15–19 April 1997. (In Portuguese). [Google Scholar]
- Sousa, J.J.O.; Cunha, M.C.; Marques, J.A.A.S. An explicit solution to the Colebrook-White equation through Simulated Annealing. In Water Industry Systems: Modelling and Optimization Applications; Savic, D., Walters, G., Eds.; Research Studies Press LTD: Boston, MA, USA, 1999; pp. 347–355. ISBN 0863802486/978-0863802485. [Google Scholar]
- Araújo, R.S.; Bezerra, A.A.; Sousa, M.C.B.; Moura, B.D. Influência das equações explícitas de fator de atrito no dimensionamento de redes de distribuição. In Proceedings of the 30° Congresso Brasileiro de Engenharia Sanitária e Ambiental (ABES-2019), Natal, Brazil, 16–19 June 2019. (In Portuguese). [Google Scholar]
- Muzzo, L.E.; Matoba, G.K.; Ribeiro, L.F. Uncertainty of pipe flow friction factor equations. Mech. Res. Commun. 2021, 116, 103764. [Google Scholar] [CrossRef]
- Young, F.Y.; Munson, B.R.; Okiishi, T.H.; Huebsch, W.W. Introduction to Fluid Mechanics, 5th ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2012; ISBN 978-0-470-90215-8. [Google Scholar]
- Hazen, A. Storage to be provided in impounding reservoirs for municipal water supply. Trans. Am. Soc. Civ. Eng. 1914, 77, 1539–1640. [Google Scholar] [CrossRef]
- Flamant, A. Sur la répartition des pressions dans un solide rectangulaire chargé transversalement. CR Acad. Sci. 1892, 114, 1465–1468. [Google Scholar]
- Moody, L.F. An approximate formula for pipe friction factors. Trans. Am. Soc. Mech. Eng. 1947, 69, 1005–1011. [Google Scholar]
- Haaland, S.E. Simple and explicit formulas for the friction factor in turbulent pipe flow. J. Fluids Eng. 1983, 105, 89–90. [Google Scholar] [CrossRef]
- Chen, J.J. A simple explicit formula for the estimation of pipe friction factor. Proc. Inst. Civ. Eng. 1984, 77 Pt 2, 49–55. [Google Scholar] [CrossRef]
- Colebrook, C.F. Turbulent flow in pipes, with particular reference to the transition region between the smooth and rough pipe laws. J. Inst. Civ. Eng. 1939, 11, 133–156. [Google Scholar] [CrossRef]
- Muzzo, L.E.; Pinho, D.; Lima, L.E.M.; Ribeiro, L.F. Accuracy/speed analysis of pipe friction factor correlations. In INCREaSE 2019 Proceedings of the 2nd International Congress on Engineering and Sustainability in the XXI Century; Springer Nature Switzerland AG: Cham, Switzerland, 2019; pp. 664–679. [Google Scholar]
- Moody, L.F. Friction factors for pipe flow. Trans. ASME 1944, 66, 671–684. [Google Scholar] [CrossRef]
- Colebrook, C.F.; White, C.M. Experiments with fluid friction in roughened pipes. Proc. R. Soc. A 1937, 161, 367–381. [Google Scholar]
- Bistafa, S. Mecânica dos Fluidos: Noções e Aplicações; Editora Blucher: São Paulo, Brazil, 2010; ISBN 978-85-212-0497-8. (In Portuguese) [Google Scholar]
- Kang, H.L.; Park, H.J.; Han, S.H. Investigation of the Flow Characteristics for Cylinder-in-Ball Valve Due to a Change in the Opening Rate. Appl. Sci. 2022, 12, 8930. [Google Scholar] [CrossRef]
Country | University/Institute | Degree | Course | Curricular Unit | Academic Year | ECTS * |
---|---|---|---|---|---|---|
Portugal | IPC/ISEC | Master | Mechanical Engineering | Fluid Networks | 1 | 6 |
Bachelor | Mechanical Engineering | Laboratories of Thermal Engineering | 3 | 6 | ||
Hydraulic Machines | 2 | 5 | ||||
Electromechanical Engineering | Hydraulic and Thermal Machines | 2 | 5 | |||
Spain | UMH | Master | HVAC and Electrical Facilities; Energy Efficiency | Fluid Installations | 1 | 6 |
Bachelor | Mechanical Engineering | Applied Fluid Mechanics | 2 | 6 |
Material | PVC | Galvanised Steel | Copper | Stainless Steel | Acrylic | ||
---|---|---|---|---|---|---|---|
Diameter [mm] | 28.8 | 19.9 | 14.9 | 27.3 | 26.0 | 25.5 | 22.0 |
Exponent | 1.94 | 1.88 | 1.77 | 1.99 | 1.89 | 1.89 | 1.84 |
Reference ε [mm] | 0.0015 | 0.0015 | 0.0015 | 0.15 | 0.0015 | 0.0015 | 0 |
ε/d | 0.00035 | 0.00008 | 0.0001 | 0.0037 | 0.0001 | 0.00004 | 0 |
Experimental ε [mm] | 0.01 | 0.0015 | 0.0015 | 0.1 | 0.002 | 0.001 | 0 |
Component | Cut-Off Valve | Diaphragm Valve | Foot Valve | Venturi | Water Counter | Elbow 90° |
---|---|---|---|---|---|---|
KL | 0.72 | 10 | 6 | 3.3 | 12.5 | 0.6 |
Valve (Globe, Cut-Off, …) | Elbow 90° | “Tee” Line Flow | “Tee” Branch Flow | Foot Valve | Filter |
---|---|---|---|---|---|
3.0 | 0.95 | 0.30 | 2.0 | 3.0 | 2.5 |
2.5 | 0.90 | 0.25 | 1.8 | 2.5 | 2.0 |
2.0 | 0.85 | 0.20 | 1.6 | 2.0 | 1.5 |
1.5 | 0.80 | 0.15 | 1.4 | 1.5 | 1.0 |
1.0 | 0.75 | 0.10 | 1.2 | 1.0 | 0.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oliveira, A.V.M.; Ramirez, J.R. Design of Pumping Installations with the Energy-Efficient Pumps (EEP) Tool. Energies 2025, 18, 4248. https://doi.org/10.3390/en18164248
Oliveira AVM, Ramirez JR. Design of Pumping Installations with the Energy-Efficient Pumps (EEP) Tool. Energies. 2025; 18(16):4248. https://doi.org/10.3390/en18164248
Chicago/Turabian StyleOliveira, A. Virgílio M., and Javier Ruiz Ramirez. 2025. "Design of Pumping Installations with the Energy-Efficient Pumps (EEP) Tool" Energies 18, no. 16: 4248. https://doi.org/10.3390/en18164248
APA StyleOliveira, A. V. M., & Ramirez, J. R. (2025). Design of Pumping Installations with the Energy-Efficient Pumps (EEP) Tool. Energies, 18(16), 4248. https://doi.org/10.3390/en18164248