Energy Management of Electric–Hydrogen Coupled Integrated Energy System Based on Improved Proximal Policy Optimization Algorithm
Abstract
1. Introduction
2. Mathematical Description of EHCS
2.1. Mathematical Modeling of Hydrogen Energy Storage System (HESS)
- (1)
- Mathematical Modeling of Electrolyzer
- (2)
- Mathematical Modeling of Fuel Cell
- (3)
- Mathematical Modeling of Hydrogen Storage Tank
2.2. Objective Function
- (1)
- Equipment Operating Costs
- (2)
- Costs of Participating in Electricity Market Transactions
- (3)
- Costs of Participating in Carbon Credit Market Transactions
- (4)
- Costs of Participating in Green Certificate Market Transactions
2.3. Constraints
- (1)
- Power Balance Constraints
- (2)
- CHP Unit Operational Constraints
- (3)
- Electric Boiler Operational Constraints
- (4)
- Energy Exchange Constraints
- (5)
- Renewable Energy Output Constraints
- (6)
- HESS Operational Constraints
3. Energy Management Strategy of EHCS Based on IPPO Algorithm
4. Case Studies
4.1. Parameter Settings
4.2. Analysis of the Training Process
4.3. Analysis of Online Operation Results
4.4. Analysis of System Operation Results
- (1)
- Comparison of Different Algorithms
- (2)
- Comparison of Different Scenarios
4.5. Analysis of System Robustness
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Alabi, T.M.; Aghimien, E.I.; Agbajor, F.D.; Yang, Z.; Lu, L.; Adeoye, A.R.; Gopaluni, B. A review on the integrated optimization techniques and machine learning approaches for modeling, prediction, and decision making on integrated energy systems. Renew. Energy 2022, 194, 822–849. [Google Scholar] [CrossRef]
- Zhao, J.; Song, Y.; Fan, H. Optimization Scheduling of Hydrogen-Integrated Energy Systems Considering Multi-Timescale Carbon Trading Mechanisms. Energies 2025, 18, 1612. [Google Scholar] [CrossRef]
- Yang, M.; Liu, Y. Research on multi-energy collaborative operation optimization of integrated energy system considering carbon trading and demand response. Energy 2023, 283, 129117. [Google Scholar] [CrossRef]
- Teng, F.; Zhang, Q.; Zou, T.; Zhu, J.; Tu, Y.; Feng, Q. Energy management strategy for seaport integrated energy system under polymorphic network. Sustainability 2022, 15, 53. [Google Scholar] [CrossRef]
- Liu, D.; Zang, C.; Zeng, P.; Li, W.; Wang, X.; Liu, Y.; Xu, S. Deep reinforcement learning for real-time economic energy management of microgrid system considering uncertainties. Front. Energy Res. 2023, 11, 1163053. [Google Scholar] [CrossRef]
- Wang, Y.; Hao, Y.; Wang, L.; Dang, X.; Jiang, L.; Zhang, Y. Multi-objective optimal dispatching for multi-energy microgrid based on improved particle swarm optimization algorithm. Electr. Meas. Instrum. 2023, 60, 29–36+59. [Google Scholar]
- Hosseini, S.; Beigvand, S.D.; Abdi, H.; Rastgou, A. Society-based Grey Wolf Optimizer for large scale Combined Heat and Power Economic Dispatch problem considering power losses. Appl. Soft Comput. 2022, 117, 108351. [Google Scholar] [CrossRef]
- Fan, Y.; Liu, W.; Zhu, F.; Wang, S.; Yue, H.; Zeng, Y.; Xu, B.; Zhong, P.-A. Short-term stochastic multi-objective optimization scheduling of wind-solar-hydro hybrid system considering source-load uncertainties. Appl. Energy 2024, 372, 123781. [Google Scholar] [CrossRef]
- Li, X.; Chen, Y.Z.; Li, H.W.; Liu, L.; Huang, J.Q.; Guo, P.F. Two-stage Robust Optimization of Low-Carbon Economic Dispatch for Electricity-Thermal Integrated Energy System considering Carbon Trade. Electr. Power Constr. 2024, 45, 58–69. [Google Scholar]
- Zhang, Y.; Fu, L.; Zhu, W.; Bao, X.; Liu, C. Robust model predictive control for optimal energy management of island microgrids with uncertainties. Energy 2018, 164, 1229–1241. [Google Scholar] [CrossRef]
- Zhao, Z.; Guo, J.; Luo, X.; Lai, C.S.; Yang, P.; Lai, L.L.; Li, P.; Guerrero, J.M.; Shahidehpour, M. Distributed Robust Model Predictive Control-Based Energy Management Strategy for Islanded Multi-Microgrids Considering Uncertainty. IEEE Trans. Smart Grid 2022, 13, 2107–2120. [Google Scholar] [CrossRef]
- Zhou, S.; Hu, Z.; Gu, W.; Jiang, M.; Chen, M.; Hong, Q.; Booth, C. Combined heat and power system intelligent economic dispatch: A deep reinforcement learning approach. Int. J. Electr. Power Energy Syst. 2020, 120, 106016. [Google Scholar] [CrossRef]
- Zhang, Y.; Lin, Y.; Huang, G.; Yang, X.D.; Weng, G.Q.; Zhou, Z.Y. Review on applications of deep reinforcement learning in regulation of microgrid systems. Power Syst. Technol. 2023, 47, 2774–2788. [Google Scholar]
- Baldi, S.; Michailidis, I.; Ravanis, C.; Kosmatopoulos, E.B. Model-based and model-free “plug-and-play” building energy efficient control. Appl. Energy 2015, 154, 829–841. [Google Scholar] [CrossRef]
- Wang, X.; Zhao, Q.; Zhao, L. Energy management approach for integrated electricity-heat energy system based on deep Q-learning network. Electr. Power Constr. 2021, 42, 10–28. [Google Scholar]
- Feng, C.; Zhang, Y.; Wen, F.; Ye, C.; Zhang, Y.B. Energy management strategy for microgrid based on deep expected Q network algorithm. Autom. Electr. Power Syst. 2022, 46, 14–22. [Google Scholar]
- Ji, Y.; Wang, J.; Xu, J.; Fang, X.; Zhang, H. Real-Time Energy Management of a Microgrid Using Deep Reinforcement Learning. Energies 2019, 12, 2291. [Google Scholar] [CrossRef]
- Hua, H.C.; Qin, Y.C.; Hao, C.T.; Cao, J. Optimal energy management strategies for energy Internet via deep reinforcement learning approach. Appl. Energy 2019, 239, 598–609. [Google Scholar] [CrossRef]
- Chen, P.; Liu, M.; Chen, C.; Shang, X. A battery management strategy in microgrid for personalized customer requirements. Energy 2019, 189, 116245. [Google Scholar] [CrossRef]
- Lillicrap, T.P.; Hunt, J.J.; Pritzel, A.; Heess, N.; Erez, T.; Tassa, Y.; Silver, D.; Wierstra, D. Continuous control with deep reinforcement learning. arXiv 2017, arXiv:1509.02971. [Google Scholar]
- Yang, Z.; Ren, Z.; Sun, Z.; Liu, M.; Jiang, J.; Yin, Y. Security-constrained economic dispatch of renewable energy integrated power systems based on proximal policy optimization algorithm. Power Syst. Technol. 2023, 47, 988–998. [Google Scholar]
- Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; Klimov, O. Proximal policy optimization algorithms. arXiv 2017, arXiv:1707.06347. [Google Scholar]
- Belgium’s Electricity Transmission System Operator. Available online: https://www.elia.be/en/grid-data (accessed on 14 July 2024).
- Bischi, A.; Taccari, L.; Martelli, E.; Amaldi, E.; Manzolini, G.; Silva, P.; Campanari, S.; Macchi, E. A detailed MILP optimization model for combined cooling, heat and power system operation planning. Energy 2014, 76, 168–174. [Google Scholar] [CrossRef]
- Yin, Y.; Liu, T.; He, C. Day-ahead stochastic coordinated scheduling for thermal-hydro-wind-photovoltaic systems. Energy 2019, 187, 1552–1565. [Google Scholar] [CrossRef]
- Rahman, M.T.; Hasan, K.N.; Sokolowski, P. Evaluation of wind farm aggregation using probabilistic clustering algorithms for power system stability assessment. Sustain. Energy Grids Netw. 2022, 30, 100678. [Google Scholar] [CrossRef]
- Wei, F.X.; Yu, L.; Zhang, X.D. Fully distributed event-triggered security control for DC micro-grids subject to DoS attacks. IEEE Trans. Smart Grid 2025, 162, 929–941. [Google Scholar]
Time Period (h) | Electricity Price (CNY/kWh) | |
---|---|---|
Valley Period | 23:00~6:00 | 0.48 |
Flat Period | 7:00, 11:00~17:00 | 0.90 |
Peak Period | 8:00~10:00, 18:00~22:00 | 1.35 |
Parameter | Value | Parameter | Value |
---|---|---|---|
1000 kW | 0.95 | ||
0/1200 kW | 0.05 | ||
300/360 kW | 0.8/0.75 | ||
0/200 kW | 2000 kWh | ||
0.2/0.9 | 0/200 kW | ||
0.15/0.17 | 0.95/0.95 | ||
0.6 | 0.6/0.88 | ||
0.7/0.96/0.26 | (960, 400) | ||
(0, 0) | (200, 0) | ||
(960, 800) | (0, 0) |
Parameter | Value |
---|---|
Policy Network Learning Rate | 3 × 10−4 |
Value Network Learning Rate | 3 × 10−4 |
Reward Discount Factor | 0.99 |
Greed Parameter | 0.2 |
Clipping Parameter | 0.2 |
Replay-buffer Size | 10,000 |
Training Episode | 1500 |
Minibatch Size | 128 |
Methods\Scenarios | Scenario 1 | Scenario 2 | Scenario 3 | Scenario 4 | Scenario 5 |
---|---|---|---|---|---|
IPPO | 17,787.57 | 17,224.72 | 18,079.62 | 18,355.14 | 17,792.29 |
PPO | 17,904.24 | 17,341.39 | 18,269.35 | 18,511.39 | 17,948.54 |
DDGP | 17,943.56 | 17,380.71 | 18,334.42 | 18,586.63 | 18,023.78 |
IPSO | 17,867.35 | 17,304.5 | 18,187.41 | 18,445.62 | 17,882.77 |
SMILP | 17,310.20 | 16,747.35 | 17,589.21 | 17,831.82 | 17,268.97 |
Methods | Online Execution Time(s) |
---|---|
IPPO | 0.41 |
PPO | 0.41 |
DDPG | 0.40 |
IPSO | 14.12 |
SMILP | 152.4 |
Scenarios | Scenario 1 | Scenario 2 | Scenario 3 | Scenario 4 | Scenario 5 |
---|---|---|---|---|---|
Total carbon emissions (kg) | 10,980.75 | 10,980.75 | 10,238.21 | 6064.30 | 6064.30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, J.; Gao, Z.; Chen, Z. Energy Management of Electric–Hydrogen Coupled Integrated Energy System Based on Improved Proximal Policy Optimization Algorithm. Energies 2025, 18, 3925. https://doi.org/10.3390/en18153925
Zhao J, Gao Z, Chen Z. Energy Management of Electric–Hydrogen Coupled Integrated Energy System Based on Improved Proximal Policy Optimization Algorithm. Energies. 2025; 18(15):3925. https://doi.org/10.3390/en18153925
Chicago/Turabian StyleZhao, Jingbo, Zhengping Gao, and Zhe Chen. 2025. "Energy Management of Electric–Hydrogen Coupled Integrated Energy System Based on Improved Proximal Policy Optimization Algorithm" Energies 18, no. 15: 3925. https://doi.org/10.3390/en18153925
APA StyleZhao, J., Gao, Z., & Chen, Z. (2025). Energy Management of Electric–Hydrogen Coupled Integrated Energy System Based on Improved Proximal Policy Optimization Algorithm. Energies, 18(15), 3925. https://doi.org/10.3390/en18153925